Type Checking

Outline

• General properties of type systems
• Types in programming languages
• Notation for type rules
 - Logical rules of inference
• Common type rules

Static Checking

• Refers to the compile-time checking of programs in order to ensure that the semantic conditions of the language are being followed.

Examples of static checks include:
- Type checks.
- Flow-of-control checks.
- Uniqueness checks.
- Name-related checks.

Static Checking (Cont.)

Flow-of-control checks: statements that cause flow of control to leave a construct must have some place where control can be transferred; e.g., break statements in C

Uniqueness checks: a language may dictate that in some contexts, an entity can be defined exactly once; e.g., identifier declarations, labels, values in case expressions

Name-related checks: Sometimes the same name must appear two or more times; e.g., in Ada a loop or block can have a name that must then appear both at the beginning and at the end
Types and Type Checking

- A type is a set of values together with a set of operations that can be performed on them.
- The purpose of type checking is to verify that operations performed on a value are in fact permissible.
- The types of identifiers are typically available from declarations, but we may have to keep track of the type of intermediate expressions.

Type Expressions and Type Constructors

A language usually provides a set of base types that it supports, together with ways to construct other types using type constructors.

Through type expressions we are able to represent types that are defined in a program.

Type Expressions

- A base type is a type expression.
- A type name (e.g., a record name) is a type expression.
- A type constructor applied to type expressions is a type expression. E.g.,
 - arrays: If T is a type expression and I is a range of integers, then array(I,T) is a type expression.
 - records: If T1, ..., Tn are type expressions and f1, ..., fn are field names, then record((f1,T1),...,((fn,Tn)) is a type expression.
 - pointers: If T is a type expression, then pointer(T) is a type expression.
 - functions: If T1, ..., Tn, and T are type expressions, then (T1,...,Tn) → T is also a type expression.

Notions of Type Equivalence

Name equivalence: In many languages, e.g. Pascal, types can be given names. Name equivalence views each distinct name as a distinct type. So, two type expressions are name equivalent if and only if they are identical.

Structural equivalence: Two expressions are structurally equivalent if and only if they have the same structure; i.e., if they are formed by applying the same constructor to structurally equivalent type expressions.
Example of Type Equivalence

In the Pascal fragment

```pascal
  type nextptr = ^node;
  prevptr = ^node;
  var  p : nextptr;
       q : prevptr;
```

p is not name equivalent to *q*, but *p* and *q* are structurally equivalent.

Static Type Systems & Their Expressiveness

- A static type system enables a compiler to detect many common programming errors.
- The drawback is that some correct programs are disallowed.
 - Some argue for dynamic type checking instead.
 - Others argue for more expressive static type checking.
 - But more expressive type systems are also more complex.

Compile-time Representation of Types

- Need to represent type expressions in a way that is both easy to construct and easy to check.

Approach 1: Type Graphs

- Basic types can have predefined “internal values”, e.g., small integer values.
- Named types can be represented using a pointer into a hash table.
- Composite type expressions: the node for \(f(T_1,\ldots,T_n) \) contains a value representing the type constructor \(f \), and pointers to the nodes for the expressions \(T_1,\ldots,T_n \).

Compile-time Representation of Types (Cont.)

Example:

```pascal
  var x, y : array[1..42] of integer;
```
Compile-Time Representation of Types

Approach 2: Type Encodings

Basic types use a predefined encoding of the low-order bits.

<table>
<thead>
<tr>
<th>BASIC TYPE</th>
<th>ENCODING</th>
</tr>
</thead>
<tbody>
<tr>
<td>boolean</td>
<td>0000</td>
</tr>
<tr>
<td>char</td>
<td>0001</td>
</tr>
<tr>
<td>integer</td>
<td>0010</td>
</tr>
</tbody>
</table>

The encoding of a type expression $\text{op}(T)$ is obtained by concatenating the bits encoding op to the left of the encoding of T. E.g.:

<table>
<thead>
<tr>
<th>TYPE EXPRESSION</th>
<th>ENCODING</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>00 00 00 0001</td>
</tr>
<tr>
<td>array(char)</td>
<td>00 00 01 0001</td>
</tr>
<tr>
<td>ptr(array(char))</td>
<td>00 10 01 0001</td>
</tr>
<tr>
<td>ptr(ptr(array(char)))</td>
<td>10 10 01 0001</td>
</tr>
</tbody>
</table>

Compile-Time Representation of Types: Notes

- Type encodings are simple and efficient.
- On the other hand, named types and type constructors that take more than one type expression as argument are hard to represent as encodings. Also, recursive types cannot be represented directly.

- Recursive types (e.g., lists, trees) are not a problem for type graphs: the graph simply contains a cycle.

Types in an Example Programming Language

- Let’s assume that types are:
 - integers & floats (base types)
 - arrays of a base type
 - booleans (used in conditional expressions).

- The user declares types for all identifiers.

- The compiler infers types for expressions.
 - Infers a type for every expression.

Type Checking and Type Inference

Type Checking is the process of verifying fully typed programs.

Type Inference is the process of filling in missing type information.

- The two are different, but are often used interchangeably.
Rules of Inference

• We have seen two examples of formal notation specifying parts of a compiler:
 - Regular expressions (for the lexer).
 - Context-free grammars (for the parser).

• The appropriate formalism for type checking is logical rules of inference.

Why Rules of Inference?

• Inference rules have the form:
 If Hypothesis is true, then Conclusion is true.

• Type checking happens via reasoning of the form:
 If E_1 and E_2 have certain types, then E_3 has a certain type.

• Rules of inference are a compact notation for “If-Then” statements.

From English to an Inference Rule

• The notation is easy to read (with practice).

• Start with a simplified system and gradually add features.

• Building blocks:
 - Symbol \land is “and”
 - Symbol \Rightarrow is “if-then”
 - $x:T$ is “x has type T”

From English to an Inference Rule (2)

If e_1 has type int and e_2 has type int, then $e_1 + e_2$ has type int

$((e_1 \text{ has type int } \land e_2 \text{ has type int}) \Rightarrow e_1 + e_2 \text{ has type int})$

$((e_1 : \text{int } \land e_2 : \text{int}) \Rightarrow e_1 + e_2 : \text{int})$
From English to an Inference Rule (3)

The statement

\[(e_1 \text{: int} \land e_2 \text{: int}) \Rightarrow e_1 + e_2 \text{: int}\]

is a special case of

\[\text{Hypothesis}_1 \land \ldots \land \text{Hypothesis}_n \Rightarrow \text{Conclusion}\]

This is an inference rule.

Notation for Inference Rules

• By tradition inference rules are written

\[\vdash \text{Hypothesis}_1 \ldots \vdash \text{Hypothesis}_n \quad \vdash \text{Conclusion}\]

• Type rules have hypotheses and conclusions of the form:

\[\vdash e : T\]

• \(\vdash\) means “it is provable that . . .”

Two Rules

\[i \text{ is an integer} \quad \vdash i : \text{int} \quad \text{[Int]}\]

\[\vdash e_1 : \text{int} \quad \vdash e_2 : \text{int} \quad \vdash e_1 + e_2 : \text{int} \quad \text{[Add]}\]

• These two rules give templates describing how to type integer constants and expressions that are additions.

• By filling in the templates, we can produce complete typings for expressions.

Example: 1 + 2

\[1 \text{ is an integer} \quad \vdash 1 : \text{int} \quad \quad \quad 2 \text{ is an integer} \quad \vdash 2 : \text{int} \]

\[\vdash 1 + 2 : \text{int}\]
Type Soundness

• A type system is *sound* if
 - Whenever $\vdash e : T$
 - Then e evaluates to a value of type T

• We only want sound rules
 - But some sound rules are better than others
 - Consider the rule:
 $\dfrac{\text{i is an integer}}{\vdash i : \text{number}}$
 - This rule loses some information

Type Checking Proofs

• Type checking proves facts $e : T$
 - Proof is on the structure of the AST.
 - Proof has the shape of the AST.
 - One type rule is used for each kind of AST node.

• In the type rule used for a node e:
 - Hypotheses are the proofs of types of e's subexpressions.
 - Conclusion is the type of e.

• Types are computed in a bottom-up pass over the AST.

Rules for Constants of Other Types

├ $\vdash \text{true} : \text{bool}$ [Bool]
├ $\vdash \text{false} : \text{bool}$ [Bool]

├ f is a floating point number
├ $\vdash f : \text{float}$ [Float]

Two More Rules

├ $\vdash e : \text{bool}$ [Not]
├ $\vdash \text{not } e : \text{bool}$ [Not]

├ $\vdash e_1 : \text{bool}$
├ $\vdash e_2 : T$ [While]
├ $\vdash \text{while } e_1 \text{ do } e_2 : T$ [While]
A Problem

• What is the type of a variable reference?

\[\text{x is an identifier} \quad \frac{}{\text{- x : ?}} \quad \text{[Var]} \]

• See the problem?
• The local, structural rule does not carry enough information to give \(x \) a type.

A Solution

• Put more information in the rules!

• A type environment gives types for free variables.
 - A type environment is a function from Identifiers to Types.
 - A variable is free in an expression if it is not defined within the expression.

Type Environments

Let \(E \) be a function from Identifiers to Types.

The sentence \(E \vdash e : T \)

is read:
Under the assumption that variables have the types given by the environment \(E \), it is provable that the expression \(e \) has the type \(T \).

Modified Rules

The type environment is added to the earlier rules:

\[\text{i is an integer} \quad \frac{}{E \vdash i : \text{int}} \quad \text{[Int]} \]

\[E \vdash e_1 : \text{int} \quad E \vdash e_2 : \text{int} \quad \frac{}{E \vdash e_1 + e_2 : \text{int}} \quad \text{[Add]} \]
New Rules

And we can now write a rule for variables:

\[
E(x) = T \quad E \vdash x : T \quad [\text{Var}]
\]

Type Checking of Expressions

<table>
<thead>
<tr>
<th>Production</th>
<th>Semantic Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E \rightarrow \text{id})</td>
<td>{ if (declared(id.name)) then (E . \text{type} := \text{lookup(id.name).type}) else (E . \text{type} := \text{error();}) }</td>
</tr>
<tr>
<td>(E \rightarrow \text{int})</td>
<td>{ (E . \text{type} := \text{integer;}) }</td>
</tr>
<tr>
<td>(E \rightarrow E_1 + E_2)</td>
<td>{ if ((E_1 . \text{type} == \text{integer AND}) (E_2 . \text{type} == \text{integer})) then (E . \text{type} := \text{integer;}) else (E . \text{type} := \text{error();}) }</td>
</tr>
</tbody>
</table>

Type Checking of Expressions (Cont.)

We may also specify automatic \textit{type coercion}, e.g.

\[
\begin{array}{c|c|c}
\text{E1.type} & \text{E2.type} & \text{E.type} \\
\hline
\text{integer} & \text{integer} & \text{integer} \\
\text{integer} & \text{float} & \text{float} \\
\text{float} & \text{integer} & \text{float} \\
\text{float} & \text{float} & \text{float} \\
\end{array}
\]

Type Checking of Statements: Assignment

Semantic Rules:

\(S \rightarrow \text{Lval} := \text{Rval} \) \{\text{check_types(Lval.type,Rval.type)}}

Note that in general \text{Lval} can be a variable or it may be a more complicated expression, e.g., a dereferenced pointer, an array element, a record field, etc.

Type checking involves ensuring that:

- \text{Lval} is a type that can be assigned to, e.g., it is not a function or a procedure.
- the types of \text{Lval} and \text{Rval} are “compatible”, i.e., that the language rules provide for coercion of the type of \text{Rval} to the type of \text{Lval}.
Type Checking of Statements: Loops, Conditionals

Semantic Rules:

Loop → while E do S
\{\text{check_types}(E.\text{type}, \text{bool})\}

Cond → if E then S1 else S2
\{\text{check_types}(E.\text{type}, \text{bool})\}

In this last rule, we may also want to check that S1.\text{type} == S2.\text{type}