Lecture Outline

- Memory Hierarchy Management
- Register Allocation via Graph Coloring
 - Register interference graph
 - Graph coloring heuristics
 - Spilling
- Cache Management

The Memory Hierarchy (circa 2004)

- Registers: 1 cycle, 256-8000 bytes
- Cache: 3 cycles, 256k-16M
- Main memory: 20-100 cycles, 512M-64G
- Disk: 0.5-5M cycles, 10G-1T

Managing the Memory Hierarchy

- Programs are written as if there are only two kinds of memory: main memory and disk.
- Programmer is responsible for moving data from disk to memory (e.g., file I/O).
- Hardware is responsible for moving data between memory and caches.
- Compiler is responsible for moving data between memory and registers.
Some Trends (circa 2004)

- Power usage limits
 - Size and speed of registers/caches.
 - Speed of processors.
 - Improves faster than memory speed (and disk speed).
 - The cost of a cache miss is growing.
 - The widening gap between processors and memory is bridged with more levels of caches.

- It is very important to:
 - Manage registers properly.
 - Manage caches properly.

- Compilers are good at managing registers.

The Register Allocation Problem

- Recall that intermediate code uses as many temporaries as necessary.
 - Typical intermediate code uses too many temporaries.
 - This simplifies code generation and optimization.
 - But complicates final translation to assembly.

- The register allocation problem:
 - Rewrite the intermediate code to use at most as many temporaries as there are machine registers.
 - Method: Assign multiple temporaries to a register.
 - But without changing the program behavior.

History

- Register allocation is as old as intermediate code.
 - Register allocation was used in the original FORTRAN compiler in the '50s.
 - Very crude algorithms were used back then.

- A breakthrough was not achieved until 1980.
 - Register allocation scheme based on graph coloring.
 - Relatively simple, global, and works well in practice.

An Example

- Consider the program
 \[
 \begin{align*}
 a &:= c + d \\
 e &:= a + b \\
 f &:= e - 1
 \end{align*}
 \]
 with the assumption that \(a \) and \(e \) die after use.

- Temporary \(a \) can be "reused" after "\(a + b \)".

- Same with temporary \(e \) after "\(e - 1 \)".

- Can allocate \(a, e, \) and \(f \) all to one register \((r_1) \):
 \[
 \begin{align*}
 r_1 &:= r_2 + r_3 \\
 r_1 &:= r_1 + r_4 \\
 r_1 &:= r_1 - 1
 \end{align*}
 \]
Basic Register Allocation Idea

- The value in a dead temporary is not needed for the rest of the computation.
 - A dead temporary can be reused.

- Basic rule:
 Temporaries \(t_1 \) and \(t_2 \) **can share the same register if at all points in the program at most one of \(t_1 \) or \(t_2 \) is live**.

Algorithm: Part I

Compute live variables for each program point:

- \(a := b + c \)
- \(d := -a \)
- \(e := d + f \)
- \(f := 2 \times e \)
- \(b := d + e \)
- \(e := e - 1 \)
- \(b := f + c \)

The Register Interference Graph

- Two temporaries that are live simultaneously cannot be allocated in the same register.
- We construct an undirected graph with:
 - a node for each temporary, and
 - an edge between \(t_1 \) and \(t_2 \) if they are live simultaneously at some point in the program.

- This is the register interference graph (RIG).
 - Two temporaries can be allocated to the same register if there is no edge connecting them.

Register Interference Graph: Example

- For our example:
 - E.g., \(b \) and \(c \) cannot be in the same register.
 - E.g., \(b \) and \(d \) can be in the same register.
Register Interference Graph: Properties

- It extracts exactly the information needed to characterize legal register assignments.
- It gives a global (i.e., over the entire flow graph) picture of the register requirements.
- After RIG construction, the register allocation algorithm is architecture independent.

Graph Coloring: Definitions

- A coloring of a graph is an assignment of colors to nodes, such that nodes connected by an edge have different colors.
- A graph is k-colorable if it has a coloring with k colors.

Register Allocation Through Graph Coloring

- Assume a regular architecture.
- In our problem, colors = registers.
 - We need to assign colors (registers) to graph nodes (temporaries).
- Let k = number of machine registers.
- If the RIG is k-colorable then there is a register assignment that uses no more than k registers.

Graph Coloring: Example

- Consider the example RIG

 ![Graph Coloring Example](image)

 - There is no coloring with less than 4 colors.
 - There are various 4-colorings of this graph. (One of them is shown in the figure.)
Graph Coloring: Example

- Under this coloring, the code becomes:

 \[
 \begin{align*}
 r_2 &:= r_3 + r_4 \\
 r_3 &:= -r_2 \\
 r_2 &:= r_3 + r_1 \\
 r_1 &:= 2 \times r_2 \\
 r_3 &:= r_3 + r_2 \\
 r_2 &:= r_2 - 1 \\
 r_3 &:= r_1 + r_4
 \end{align*}
 \]

Computing Graph Colorings

- The remaining problem is how to compute a coloring for the interference graph.

- But:
 1. Computationally this problem is NP-hard.
 - No efficient algorithms are known.
 2. A coloring might not even exist for a given number of registers.

- The solution to (1) is to use heuristics.
- We will consider the other problem later.

Graph Coloring Heuristic

- Observation:
 - Pick a node \(t \) with fewer than \(k \) neighbors in RIG.
 - Eliminate \(t \) and its edges from RIG.
 - If the resulting graph has a \(k \)-coloring then so does the original graph.

 Why:
 - Let \(c_1, \ldots, c_n \) be the colors assigned to the neighbors of \(t \) in the reduced graph.
 - Since \(n < k \) we can pick some color for \(t \) that is different from those of its neighbors.

Graph Coloring Simplification Heuristic

- The following works well in practice:
 - Pick a node \(t \) with fewer than \(k \) neighbors.
 - Put \(t \) on a stack and remove it from the RIG.
 - Repeat until the graph has one node.

 Then start assigning colors to nodes on the stack (starting with the last node added).
 - At each step pick a color different from those assigned to already colored neighbors.
Graph Coloring Example (1)

- Start with the RIG and with $k = 4$:

 Stack: []

- Remove a

Graph Coloring Example (2)

- Start with the RIG and with $k = 4$:

 Stack: [a]

- Remove d

Graph Coloring Example (3)

- Now all nodes have fewer than 4 neighbors and can be removed in e.g. the order: c, b, e, f

 Stack: [d, a]

Graph Coloring Example (4)

- Start assigning colors to: $[f, e, b, c, d, a]$

 Stack: [d, a]
What if the Heuristic Fails?

- What if during simplification we get to a state where all nodes have k or more neighbors?

- Example: try to find a 3-coloring of the RIG:

```
 a
 b
 f
 e
 d
 c
```

What if the Heuristic Fails?

- Remove a and get stuck (as shown below).

- Pick a node as a possible candidate for spilling.
 - A spilled temporary "lives" is memory.
 - Assume that f is picked as a candidate.

What if the Heuristic Fails?

- Remove f and continue the simplification.
 - Simplification now succeeds: b, d, e, c

What if the Heuristic Fails?

- On the assignment phase we get to the point when we have to assign a color to f.
 - We hope that among the 4 neighbors of f we used less than 3 colors \Rightarrow optimistic coloring.
Spilling

• Since optimistic coloring failed, we must spill temporary f (actual spill).
• We must allocate a memory location as the "home" of f.
 - Typically this is in the current stack frame.
 - Call this address fa.
• Before each operation that uses f, insert
 \(f := \text{load } fa \)
• After each operation that defines f, insert
 \(\text{store } f, fa \)

Recomputing Liveness Information

• The new liveness information after spilling:

Recomputing Liveness Information

• New liveness information is almost as before.
 • f is live only:
 - Between a \(f := \text{load } fa \) and the next instruction.
 - Between a store \(f, fa \) and the preceding instruction.
 • Spilling reduces the live range of f.
 - And thus reduces its interferences.
 - Which results in fewer RIG neighbors for f.
Recompute RIG After Spilling

• The only changes are in removing some of the edges of the spilled node.
• In our case f now interferes only with c and d.
• And now the resulting RIG is 3-colorable.

![Diagram of nodes and edges]

Spilling Notes

• Additional spills might be required before a coloring is found.
• The tricky part is deciding what to spill.
• Possible heuristics:
 - Spill temporaries with most conflicts.
 - Spill temporaries with few definitions and uses.
 - Avoid spilling in inner loops.
• Any heuristic is correct.

Precolored Nodes

• Precolored nodes are nodes which are \textit{a priori} bound to actual machine registers.
• These nodes are usually used for some specific (time-critical) purpose, e.g.:
 - for the frame pointer;
 - for the first N arguments ($N=2,3,4,5$).

Precolored Nodes (Cont.)

• For each color, there should be only one precolored node with that color; all precolored nodes usually interfere with each other.
• We can give an ordinary temporary the same color as a precolored node as long as it does not interfere with it.
• However, we cannot simplify or spill precolored nodes; we thus treat them as having “infinite” degree.
Managing Caches

- Compilers are very good at managing registers.
 - Much better than a programmer could be.

- Compilers are not good at managing caches.
 - This problem is still left to programmers.
 - It is still an open question whether a compiler can do anything general to improve performance.

- Compilers can, and a few do, perform some simple cache optimization.

Cache Optimization

- Consider the loop:
  ```c
  for (j = 1; j < 10; j++)
    for (i = 1; i < 1000000; i++)
      a[i] *= b[i]
  ```

 - This program has terrible cache performance.
 - Why?

Cache Optimization (Cont.)

- Consider now the program:
  ```c
  for (i = 1; i < 1000000; i++)
    for (j = 1; j < 10; j++)
      a[i] *= b[i]
  ```

 - Computes the same thing.
 - But with much better cache behavior.
 - Might actually be more than 10x faster!

- A compiler can perform this optimization
 - called *loop interchange*.

Effects of Global Register Allocation

Reduction in % for MIPS C Compiler

<table>
<thead>
<tr>
<th>Program</th>
<th>cycles</th>
<th>total loads/stores</th>
<th>scalar loads/stores</th>
</tr>
</thead>
<tbody>
<tr>
<td>boyer</td>
<td>37.6</td>
<td>76.9</td>
<td>96.2</td>
</tr>
<tr>
<td>diff</td>
<td>40.6</td>
<td>69.4</td>
<td>92.5</td>
</tr>
<tr>
<td>yacc</td>
<td>31.2</td>
<td>67.9</td>
<td>84.4</td>
</tr>
<tr>
<td>nroff</td>
<td>16.3</td>
<td>49.0</td>
<td>54.7</td>
</tr>
<tr>
<td>ccom</td>
<td>25.0</td>
<td>53.1</td>
<td>67.2</td>
</tr>
<tr>
<td>upas</td>
<td>25.3</td>
<td>48.2</td>
<td>70.9</td>
</tr>
<tr>
<td>as1</td>
<td>30.5</td>
<td>54.6</td>
<td>70.8</td>
</tr>
<tr>
<td>Geo Mean</td>
<td>28.4</td>
<td>59.0</td>
<td>75.4</td>
</tr>
</tbody>
</table>
Concluding Remarks

- Register allocation is a “must have” optimization in most compilers:
 - Because intermediate code uses too many temporaries.
 - Because it makes a big difference in performance.

- Graph coloring is a powerful register allocation scheme (with many variations on the heuristics).

- Register allocation is more complicated for CISC machines.