LR Parsing
LALR Parser Generators
Outline

- Review of bottom-up parsing
- Computing the parsing DFA
- Using parser generators
Bottom-up Parsing (Review)

• A bottom-up parser rewrites the input string to the start symbol.

• The state of the parser is described as:

 \[\alpha | \gamma \]

 - \(\alpha \) is a stack of terminals and non-terminals;
 - \(\gamma \) is the string of terminals not yet examined.

• Initially: \(I \ x_1 x_2 \ldots x_n \)
The Shift and Reduce Actions (Review)

Recall the CFG: \[E \rightarrow E + (E) \mid \text{int} \]

A bottom-up parser uses two kinds of actions:

- **Shift** pushes a terminal from input on the stack
 \[E + (\text{int}) \Rightarrow E + (\text{int}) \]

- **Reduce** pops 0 or more symbols off of the stack (production RHS) and pushes a non-terminal on the stack (production LHS)
 \[E + (E + (E)) \Rightarrow E + (E) \]
Key Issue: When to Shift or Reduce?

- Idea: use a deterministic finite automaton (DFA) to decide when to shift or reduce
 - The input is the stack
 - The language consists of terminals and non-terminals

- We run the DFA on the stack and we examine the resulting state X and the token tok after I
 - If X has a transition labeled tok then **shift**
 - If X is labeled with “$A \rightarrow \beta$ on tok” then **reduce**
LR(1) Parsing: An Example

```
E → int
  | int + (int) + (int)$ shift
  | int $ shift (x3)
  | int $ shift (x3)
  | int $ shift
  | int $ shift
  | int $ shift
  | int $ accept

E → int + (int)
  | E → int
  | E → int

E → E + (E)
  | E → E + (E)

E → E + (E)
  | E → E + (E)

E → E + (E)
  | E → E + (E)
```

```
E → int
  | int + (int) + (int)$ shift
  | int $ shift (x3)
  | int $ shift (x3)
  | int $ shift
  | int $ shift
  | int $ accept

E → int + (int)
  | E → int
  | E → int
  | E → int
  | E → int
  | E → int

E → E + (E)
  | E → E + (E)

E → E + (E)
  | E → E + (E)

E → E + (E)
  | E → E + (E)

E → E + (E)
  | E → E + (E)

E → E + (E)
  | E → E + (E)

E → E + (E)
  | E → E + (E)
```
Representing the DFA

- Parsers represent the DFA as a 2D table. (Recall table-driven lexical analysis.)
- Lines correspond to DFA states.
- Columns correspond to terminals and non-terminals.
- Typically columns are split into:
 - Those for terminals: the action table.
 - Those for non-terminals: the goto table.
Representing the DFA: Example

The table for a fragment of our DFA:

<table>
<thead>
<tr>
<th></th>
<th>int</th>
<th>+</th>
<th>(</th>
<th>)</th>
<th>$</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>s4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>g6</td>
</tr>
<tr>
<td>4</td>
<td>s5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>r_E \rightarrow \text{int}</td>
<td>r_E \rightarrow \text{int}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>s7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>r_E \rightarrow E+(E)</td>
<td>r_E \rightarrow E+(E)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- sk is shift and goto state k
- r_X \rightarrow \alpha is reduce
- gk is goto state k
The LR Parsing Algorithm

- After a shift or reduce action we rerun the DFA on the entire stack
 - This is wasteful, since most of the work is repeated

- To avoid this, we remember for each stack element on which state it brings the DFA.

- LR parser maintains a stack

 $\langle \text{sym}_1, \text{state}_1 \rangle \ldots \langle \text{sym}_n, \text{state}_n \rangle$

 state_k is the final state of the DFA on $\text{sym}_1 \ldots \text{sym}_k$
let \(I = w\$ \) be initial input
let \(j = 0 \)
let DFA state 0 be the start state
let stack = \(\langle \text{dummy}, 0 \rangle \)

repeat
 case action[top_state(stack), I[j]] of
 shift \(k \): push \(\langle I[j++], k \rangle \)
 reduce \(X \rightarrow A \):
 pop \(|A| \) pairs,
 push \(\langle X, \text{goto}[\text{top_state}(stack), X] \rangle \)
 accept: halt normally
 error: halt and report error
Key Issue: How is the DFA Constructed?

- The stack describes the context of the parse:
 - What non-terminal we are looking for.
 - What production RHS we are looking for.
 - What we have seen so far from the RHS.

- Each DFA state describes several such contexts.
 E.g., when we are looking for non-terminal E, we might be looking either for an int or an $E + (E)$ RHS.
LR(0) Items

• An LR(0) item is a production with a “ε” somewhere on the RHS.

• The LR(0) items for $T \rightarrow (E)$ are

 $T \rightarrow I (E)$
 $T \rightarrow (I E)$
 $T \rightarrow (E I)$
 $T \rightarrow (E)$

• The only LR(0) item for $X \rightarrow \varepsilon$ is $X \rightarrow I$
LR(0) Items: Intuition

• An item \([X \rightarrow \alpha I \beta]\) says that the parser:
 - is looking for an \(X\)
 - has an \(\alpha\) on top of the stack
 - expects to find a string derived from \(\beta\) next in the input.

• Notes:
 - \([X \rightarrow \alpha I a\beta]\) means that \(a\) should follow.
 • Then we can shift it and still have a viable prefix.
 - \([X \rightarrow \alpha I]\) means that we could reduce \(X\).
 • But this is not always a good idea!
LR(1) Items

- An LR(1) item is a pair:
 \[X \rightarrow \alpha \mid \beta, \ a \]
 - \(X \rightarrow \alpha \beta \) is a production.
 - \(\alpha \) is a terminal (the lookahead terminal).
 - LR(1) means 1 lookahead terminal.

- \([X \rightarrow \alpha \mid \beta, \ a]\) describes a context of the parser.
 - We are trying to find an \(X \) followed by an \(a \).
 - We have (at least) \(\alpha \) already on top of the stack.
 - Thus we need to see next a prefix derived from \(\beta a \).
Note

• The symbol I was used before to separate the stack from the rest of input:
 $\alpha I \gamma$, where α is the stack and γ is the remaining string of terminals.

• In items, I is used to mark a prefix of a production RHS:
 $X \rightarrow \alpha I \beta$, a
 - Here β might contain non-terminals as well.

• In either case, the stack is on the left of I
Convention

• We add to our grammar a fresh new start symbol S and a production $S \rightarrow E$
 - Where E is the old start symbol.

• The initial parsing context contains:

 $S \rightarrow \mid E \mid , \mid$

 - Trying to find an S as a string derived from $E\$
 - The stack is empty.
LR(1) Items (Cont.)

• In context containing
 \[E \rightarrow E + (E), + \]
 - If (follows then we can perform a shift to context containing
 \[E \rightarrow E + (E), + \]

• In context containing
 \[E \rightarrow E + (E), + \]
 - We can perform a reduction with \(E \rightarrow E + (E) \)
 - But only if a + follows
• Consider the item
 \[E \rightarrow E + (I \ E) , + \]
• We expect a string derived from \(E) + \)
• Our example has two productions for \(E \)
 \[E \rightarrow \text{int} \quad \text{and} \quad E \rightarrow E + (E) \]
• We describe this by extending the context with two more items:
 \[E \rightarrow I \ \text{int} \quad ,) \]
 \[E \rightarrow I \ E + (E) ,) \]
The Closure Operation

• The operation of extending the context with items is called the closure operation.

\[
\text{Closure}(\text{Items}) = \\
\quad \text{repeat} \\
\quad \quad \text{for each } [X \to \alpha | Y \beta, a] \text{ in } \text{Items} \\
\quad \quad \quad \text{for each production } Y \to \gamma \\
\quad \quad \quad \quad \text{for each } b \text{ in } \text{First}(\beta a) \\
\quad \quad \quad \quad \quad \text{add } [Y \to I \gamma, b] \text{ to } \text{Items} \\
\quad \quad \quad \text{until } \text{Items is unchanged}
\]
Constructing the Parsing DFA (1)

• Construct the start context:

 \[\text{Closure}({S \rightarrow I E, \$}) \]

 \[
 \begin{align*}
 S & \rightarrow I E \quad \$, \\
 E & \rightarrow I E+(E), \$ \\
 E & \rightarrow I \text{int} \quad \$, \\
 E & \rightarrow I E+(E) \quad + \\
 E & \rightarrow I \text{int} \quad +
 \end{align*}
 \]

• We abbreviate as:

 \[
 \begin{align*}
 S & \rightarrow I E \quad \$, \\
 E & \rightarrow I E+(E) \quad \$/+
 \end{align*}
 \]
Constructing the Parsing DFA (2)

• A DFA state is a closed set of LR(1) items.

• The start state contains \([S \rightarrow \epsilon \ E \ , \ $]\).

• A state that contains \([X \rightarrow \alpha \ I \ , \ b]\) is labeled with “reduce with \(X \rightarrow \alpha\) on \(b\)”.

• And now the transitions …
The DFA Transitions

- A state “State” that contains \([X \rightarrow \alpha \, y \beta, \, b]\) has a transition labeled \(y\) to a state that contains the items “Transition(State, \(y\))”
 - \(y\) can be a terminal or a non-terminal

\[
\text{Transition(State, } y) \\
\text{Items} = \emptyset \\
\text{for each } [X \rightarrow \alpha \, y \beta, \, b] \text{ in State} \\
\text{add } [X \rightarrow \alpha y \, \beta, \, b] \text{ to Items} \\
\text{return Closure(Items)}
\]
Constructing the Parsing DFA: Example

\[
S \rightarrow 1\ E \ , \ ,\ $ \\
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
E \rightarrow 1\ \text{int} \ , \ , \ $/+/ \\
\]

\[
E \rightarrow 1\ \text{int} \ , \ 1, \ $/+/ \\
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
E \rightarrow 1\ \text{int} \ , \ , \ $/+/ \\
\]

\[
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
E \rightarrow 1\ \text{int} \ , \ , \ $/+/ \\
\]

\[
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
E \rightarrow 1\ \text{int} \ , \ , \ $/+/ \\
\]

\[
E \rightarrow 1\ \text{int} \ , \ , \ $/+/ \\
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
\]

\[
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
E \rightarrow 1\ \text{int} \ , \ , \ $/+/ \\
\]

\[
E \rightarrow 1\ \text{int} \ , \ , \ $/+/ \\
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
\]

\[
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
E \rightarrow 1\ \text{int} \ , \ , \ $/+/ \\
\]

\[
E \rightarrow 1\ \text{int} \ , \ , \ $/+/ \\
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
\]

\[
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
E \rightarrow 1\ \text{int} \ , \ , \ $/+/ \\
\]

\[
E \rightarrow 1\ \text{int} \ , \ , \ $/+/ \\
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
\]

\[
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
E \rightarrow 1\ \text{int} \ , \ , \ $/+/ \\
\]

\[
E \rightarrow 1\ \text{int} \ , \ , \ $/+/ \\
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
\]

\[
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
E \rightarrow 1\ \text{int} \ , \ , \ $/+/ \\
\]

\[
E \rightarrow 1\ \text{int} \ , \ , \ $/+/ \\
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
\]

\[
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
E \rightarrow 1\ \text{int} \ , \ , \ $/+/ \\
\]

\[
E \rightarrow 1\ \text{int} \ , \ , \ $/+/ \\
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
\]

\[
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
E \rightarrow 1\ \text{int} \ , \ , \ $/+/ \\
\]

\[
E \rightarrow 1\ \text{int} \ , \ , \ $/+/ \\
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
\]

\[
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
E \rightarrow 1\ \text{int} \ , \ , \ $/+/ \\
\]

\[
E \rightarrow 1\ \text{int} \ , \ , \ $/+/ \\
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
\]

\[
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
E \rightarrow 1\ \text{int} \ , \ , \ $/+/ \\
\]

\[
E \rightarrow 1\ \text{int} \ , \ , \ $/+/ \\
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
\]

\[
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
E \rightarrow 1\ E + (E) , \ , \ $/+/ \\
E \rightarrow 1\ \text{int} \ , \ , \ $/+/ \\
LR Parsing Tables: Notes

- Parsing tables (i.e., the DFA) can be constructed automatically for a CFG.

- But we still need to understand the construction to work with parser generators.
 - E.g., they report errors in terms of sets of items.

- What kind of errors can we expect?
Shift/Reduce Conflicts

• If a DFA state contains both
 \([X \rightarrow \alpha \parallel a\beta, b]\) and \([Y \rightarrow \gamma \parallel, a]\)

• Then on input “a” we could either
 - Shift into state \([X \rightarrow \alpha a \parallel \beta, b]\), or
 - Reduce with \(Y \rightarrow \gamma\)

• This is called a \textit{shift-reduce conflict}
Shift/Reduce Conflicts

- Typically due to ambiguities in the grammar.
- Classic example: the dangling else
 \[S \rightarrow \text{if } E \text{ then } S \mid \text{if } E \text{ then } S \text{ else } S \mid \text{OTHER} \]
- We will have a DFA state containing:
 \[[S \rightarrow \text{if } E \text{ then } S \mid, \text{ else}] \]
 \[[S \rightarrow \text{if } E \text{ then } S \mid \text{else } S, \ x] \]
- If else follows then we can shift or reduce.
- Default (yacc, ML-yacc, bison, etc.) is to shift.
 - Default behavior is as needed in this case.
More Shift/Reduce Conflicts

• Consider the ambiguous grammar:
 \[E \rightarrow E + E \mid E \ast E \mid \text{int} \]

• We will have the states containing:
 \[[E \rightarrow E \ast I \ E, +] \quad [E \rightarrow E \ast E I, +] \]
 \[[E \rightarrow I \ E + E, +] \quad \Rightarrow^E [E \rightarrow E I + E, +] \]

• Again we have a shift/reduce on input +
 - We need to reduce (* binds more tightly than +)
 - Recall solution: declare the precedence of * and +
More Shift/Reduce Conflicts

• In yacc declare precedence and associativity:
  ```yacc
  %left +
  %left *
  ```

• Precedence of a rule = that of its last terminal. See yacc manual for ways to override this default.

• Resolve shift/reduce conflict with a `shift` if:
 - no precedence declared for either rule or terminal;
 - input terminal has higher precedence than the rule;
 - the precedences are the same and right associative.
Using Precedence to Solve S/R Conflicts

• Back to our example:

 \[E \rightarrow E \ast I E, \ + \] [E \rightarrow E \ast E I, \ +] \\
 \[E \rightarrow I E + E, \ + \] \Rightarrow^E \ [E \rightarrow E I + E, \ +] \\
 \ldots \ldots \ldots \ldots \ldots \\

 \[E \rightarrow E \ast I E, \ + \] [E \rightarrow E \ast E I, \ +] \\

• We will choose reduce because precedence of rule \(E \rightarrow E \ast E \) is higher than of terminal \(+ \).
Using Precedence to Solve S/R Conflicts

- Same grammar as before:
 \[E \rightarrow E + E \mid E \ast E \mid \text{int} \]

- We will also have the states:

 \[
 [E \rightarrow E + I E, +] \quad [E \rightarrow E + E I, +] \\
 [E \rightarrow I E + E, +] \Rightarrow^E [E \rightarrow E I + E, +]

 \]

- Now we also have a shift/reduce on input +
 - We will choose reduce because \(E \rightarrow E + E \) and + have the same precedence and + is left-associative.
Using Precedence to Solve S/R Conflicts

• Back to our dangling else example:
 \[S \rightarrow \text{if } E \text{ then } S \text{ I, else} \]
 \[S \rightarrow \text{if } E \text{ then } S \text{ I else } S, \text{ x} \]

• Can eliminate conflict by declaring \textit{else} having higher precedence than \textit{then}.

• But this starts to look like “hacking the tables”.

• Best to avoid overuse of precedence declarations or we will end with unexpected parse trees.
Precedence Declarations Revisited

The term “precedence declaration” is misleading!

These declarations do not define precedence; instead, they define conflict resolutions.
I.e., they instruct shift-reduce parsers to resolve conflicts in certain ways.
These two are not quite the same!
Reduce/Reduce Conflicts

- If a DFA state contains both $[X \rightarrow \alpha I, a]$ and $[Y \rightarrow \beta I, a]$
 - Then on input “a” we do not know which production to reduce.

- This is called a reduce/reduce conflict
Reduce/Reduce Conflicts

• Usually due to gross ambiguity in the grammar.
• Ex. A grammar for a sequence of identifiers:
 \[S \rightarrow \varepsilon \mid \text{id} \mid \text{id} \ S \]

• There are two parse trees for the string \text{id}
 \[S \rightarrow \text{id} \]
 \[S \rightarrow \text{id} \ S \rightarrow \text{id} \]
• How does this confuse the parser?
More on Reduce/Reduce Conflicts

• Consider the states

 \[S \rightarrow \text{id} \text{ I}, \quad \$ \]
 \[S^' \rightarrow \text{I} \text{ S}, \quad \$ \]
 \[S \rightarrow \text{I}, \quad \$ \] \Rightarrow^{id} \quad \[S \rightarrow \text{I}, \quad \$ \]
 \[S \rightarrow \text{I id}, \quad \$ \]
 \[S \rightarrow \text{I id S}, \quad \$ \]

• Reduce/reduce conflict on input $\$

 \[S^' \rightarrow S \rightarrow \text{id} \]
 \[S^' \rightarrow S \rightarrow \text{id S} \rightarrow \text{id} \]

• Better to rewrite the grammar as:

 \[S \rightarrow \varepsilon \mid \text{id S} \]
Using Parser Generators

• Parser generators automatically construct the parsing DFA given a CFG.
 - Use precedence declarations and default conventions to resolve conflicts.
 - The parser algorithm is the same for all grammars (and is provided as a library function).

• But most parser generators do not construct the DFA as described before.
 - Because the LR(1) parsing DFA has 1000s of states even for a simple language.
LR(1) Parsing Tables are Big

- But many states are similar, e.g.

<table>
<thead>
<tr>
<th>1</th>
<th>E → int , l, $/+</th>
<th>E → int , l, $/+</th>
</tr>
</thead>
<tbody>
<tr>
<td>E → int , l, $/+</td>
<td>E → int , l, $/+</td>
<td>E → int , l, $/+</td>
</tr>
</tbody>
</table>

- Idea: merge the DFA states whose items differ only in the lookahead tokens
 - We say that such states have the same core

- We obtain

<table>
<thead>
<tr>
<th>1′</th>
<th>E → int , l, $/+</th>
<th>E → int , l, $/+</th>
</tr>
</thead>
<tbody>
<tr>
<td>E → int , l, $/+</td>
<td>E → int , l, $/+</td>
<td>E → int , l, $/+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>E → int , l, $/+</th>
<th>E → int , l, $/+</th>
</tr>
</thead>
<tbody>
<tr>
<td>E → int , l, $/+</td>
<td>E → int , l, $/+</td>
<td>E → int , l, $/+</td>
</tr>
</tbody>
</table>
The Core of a Set of LR Items

Definition: The core of a set of LR items is the set of first components
- Without the lookahead terminals

- Example: the core of
 \[\{[X \rightarrow \alpha \mid \beta, b], [Y \rightarrow \gamma \mid \delta, d]\} \]
 is
 \[\{X \rightarrow \alpha \mid \beta, Y \rightarrow \gamma \mid \delta\} \]
LALR States

• Consider for example the LR(1) states
 \([\{X \rightarrow \alpha I, a\}, \{Y \rightarrow \beta I, c\}\]
 \([\{X \rightarrow \alpha I, b\}, \{Y \rightarrow \beta I, d\}\]
• They have the same core and can be merged
• The merged state contains:
 \([\{X \rightarrow \alpha I, a/b\}, \{Y \rightarrow \beta I, c/d\}\]
• These are called LALR(1) states
 - Stands for LookAhead LR
 - Typically 10 times fewer LALR(1) states than LR(1)
A LALR(1) DFA

• Repeat until all states have distinct core
 - Choose two distinct states with same core
 - Merge the states by creating a new one with the union of all the items
 - Point edges from predecessors to new state
 - New state points to all the previous successors
Conversion LR(1) to LALR(1): Example.
The LALR Parser Can Have Conflicts

• Consider for example the LR(1) states:

 \[
 \{[X \rightarrow \alpha \, I, a], [Y \rightarrow \beta \, I, b] \}
 \]

 \[
 \{[X \rightarrow \alpha \, I, b], [Y \rightarrow \beta \, I, a] \}
 \]

• And the merged LALR(1) state:

 \[
 \{[X \rightarrow \alpha \, I, a/b], [Y \rightarrow \beta \, I, a/b] \}
 \]

• Has a new reduce/reduce conflict!

• In practice, such cases are rare.
LALR vs. LR Parsing: Things to keep in mind

• LALR languages are not natural.
 - They are an “efficiency hack” on LR languages.

• Any reasonable programming language has a LALR(1) grammar.

• LALR(1) parsing has become a standard for programming languages and parser generators.
A Hierarchy of Grammar Classes

From Andrew Appel, "Modern Compiler Implementation in ML"