Global Optimization
Lecture Outline

- Global flow analysis
- Global constant propagation
- Liveness analysis
Local Optimization

Recall the simple basic-block optimizations:
- Constant propagation.
- Dead code elimination.

\[x := 42 \]
\[y := z \times w \]
\[q := y + x \]

\[x := 42 \]
\[y := z \times w \]
\[q := y + 42 \]

\[x := 42 \]
\[y := z \times w \]
\[q := y + 42 \]
These optimizations can be extended to an entire control-flow graph.
Global Optimization

These optimizations can be extended to an entire control-flow graph.

\[x := 42 \]
\[b > 0 \]
\[y := z \times w \]
\[y := 0 \]
\[q := y + x \]
Global Optimization

These optimizations can be extended to an entire control-flow graph.
Correctness

- How do we know whether it is OK to globally propagate constants?
- There are situations where it is incorrect:

```
x := 42
b > 0
y := z * w
x := 54
```

```
y := 0
q := y + x
```
Correctness (Cont.)

To replace a use of x by a constant k we must know that the following property ** holds:

$$\text{On every path to the use of } x, \text{ the last assignment to } x \text{ is } x := k \quad **$$
Example 1 Revisited

\[x := 42 \]
\[b > 0 \]
\[y := z \times w \]
\[y := 0 \]
\[q := y + x \]
Example 2 Revisited

\[x := 42 \]
\[b > 0 \]
\[y := z \times w \]
\[x := 54 \]
\[y := 0 \]
\[q := y + x \]
Discussion

- The correctness condition is not trivial to check.

- “All paths” includes paths around loops and through branches of conditionals.

- Checking the condition requires global analysis.
 - An analysis that determines how data flows over the entire control-flow graph of a function/method.
Global Analysis

Global optimization tasks share several traits:

- The optimization depends on knowing a property P at a particular point in program execution.
- Proving P at any point requires knowledge of the entire function body.
- Property P is typically undecidable!
- It is OK to be conservative: If the optimization requires P to be true, then want to know either:
 - that P is definitely true, or
 - that we don’t know whether P is true.
- It is always safe to say “don’t know”.
 (But goal is to try to say “don’t know” as rarely as possible.)
Global Analysis (Cont.)

- *Global dataflow analysis* is a standard technique for solving problems with these characteristics.

- Global constant propagation is one example of an optimization that requires global dataflow analysis.
Global Constant Propagation

- *On every path to the use of* x, *the last assignment to* x *is* $x := k$

- Global constant propagation can be performed at any point where property ** holds.

- Consider the case of computing ** for a single variable x at all program points.
Global Constant Propagation (Cont.)

• To make the problem precise, we associate one of the following values with x at every program point:

<table>
<thead>
<tr>
<th>value</th>
<th>interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>This statement never executes</td>
</tr>
<tr>
<td>c_i</td>
<td>$x = constant ; c_i$</td>
</tr>
<tr>
<td>*</td>
<td>Don't know whether x is a constant</td>
</tr>
</tbody>
</table>
Example

- $x := 42$
- $b > 0$
- $y := z \times w$
- $x := 54$
- $y := 0$
- $q := y + x$
Using the Information

• Given global constant information, it is easy to perform the optimization.
 - Simply inspect the $x = ?$ associated with a statement using x.
 - If x is constant at that point replace that use of x by the constant.

• But how do we compute the properties $x = ?$
The Analysis Idea

The analysis of a (complicated) program can be expressed as a combination of simple rules relating the change in information between adjacent statements.
The idea is to “push” or “transfer” information from one statement to the next.

For each statement \(s \), we compute information about the value of \(x \) immediately before and after \(s \)

\[
\begin{align*}
C_{in}(x,s) &= \text{value of } x \text{ before } s \\
C_{out}(x,s) &= \text{value of } x \text{ after } s
\end{align*}
\]
Transfer Functions

• Define a transfer function that transfers information from one statement to another.

• In the following rules, let statement \(s \) have as immediate predecessors statements \(p_1, \ldots, p_n \).
Rule 1

If $C_{\text{out}}(x, p_i) = *$ for any i, then $C_{\text{in}}(x, s) = *$
Rule 2

If $C_{out}(x, p_i) = c$ and $C_{out}(x, p_j) = d$ and $d \neq c$ then $C_{in}(x, s) = *$
Rule 3

If $C_{out}(x, p_i) = c$ or $\#$ for all i, then $C_{in}(x, s) = c$
Rule 4

If $C_{\text{out}}(x, p_i) = \# \text{ for all } i,$
then $C_{\text{in}}(x, s) = \#$
The Other Half

• Rules 1-4 relate the *out* of one statement to the *in* of the successor statement.
 - They propagate information **forward** across CFG edges.

• We also need rules relating the *in* of a statement to the *out* of the same statement.
 - To propagate information across statements.
Rule 5

\[C_{out}(x, s) = \# \text{ if } C_{in}(x, s) = \# \]
Rule 6

\[\text{Rule 6} \]

\[C_{\text{out}}(x, x := c) = c \text{ if } c \text{ is a constant} \]
Rule 7

This rule says that we do not perform inter-procedural analysis (i.e., we do not look at what other functions do).

\[C_{out}(x, x := f(...)) = * \]
Rule 8

\[C_{\text{out}}(x, y := ...) = C_{\text{in}}(x, y := ...) \text{ if } x \neq y \]
1. For every entry s to the function, set $C_{in}(x, s) = *$

2. Set $C_{in}(x, s) = C_{out}(x, s) = \#$ everywhere else

3. Repeat until all points satisfy 1-8:
 • pick an s not satisfying 1-8 and
 • update using the appropriate rule
The Value #

To understand why we need #, look at a loop

```
x := 42
b > 0
```

```
y := z * w
```

```
x = *
x = 42
```

```
x = 42
```

```
y := 0
```

```
x = 42
```

```
y := 0
```

```
q := y + x
q < b
```

```
q := y + x
q < b
```
Discussion

• Consider the statement $y := 0$
• To compute whether x is constant at this point, we need to know whether x is constant at the two predecessors
 - $x := 42$
 - $q := y + x$

• But information for $q := y + x$ depends on its predecessors, including $y := 0$!
The Value # (Cont.)

• Because of cycles, all points must have values at all times.

• Intuitively, assigning some initial value allows the analysis to break cycles.

• The initial value # means “So far as we know, control never reaches this point”.
Example

\[x := 42 \]
\[b > 0 \]
\[y := z \times w \]
\[y := 0 \]
\[q := x + y \]
\[q < b \]
Example

\[x := 42 \]
\[b > 0 \]

\[y := z \times w \]

\[q := x + y \]
\[q < b \]

\[y := 0 \]
Example

\[x := 42 \]
\[b > 0 \]
\[y := z \ast w \]
\[y := 0 \]
\[q := x + y \]
\[q < b \]
Example

\[x := 42 \]
\[b > 0 \]
\[y := z * w \]
\[y := 0 \]
\[q := x + y \]
\[q < b \]
Orderings

• We can simplify the presentation of the analysis by ordering the values
 \[\# < c_i < * \]

• Drawing a picture with “lower” values drawn lower, we get
Orderings (Cont.)

• * is the greatest value, # is the least.
 - All constants are in between and incomparable.

• Let lub be the least-upper bound in this ordering.

• Rules 1-4 can be written using lub:
 \[C_{in}(x, s) = \text{lub} \{ C_{out}(x, p) \mid p \text{ is a predecessor of } s \} \]
Termination

• Simply saying “repeat until nothing changes” does not guarantee that eventually we reach a point where nothing changes.

• The use of lub explains why the algorithm terminates.
 - Values start as # and only increase.
 - # can change to a constant, and a constant to *
 - Thus, $C_\&(x, s)$ can change at most twice.
Termination (Cont.)

Thus, the algorithm is linear in program size.

Number of steps = \(\text{Number of } C_{(...)} \text{ values computed} \times 2 = \text{Number of program statements} \times 4 \) \hspace{1cm} \text{\textit{// worst case}}
Liveness Analysis

Once constants have been globally propagated, we would like to eliminate dead code.

\[
x := 42
\]

\[
b > 0
\]

\[
y := z \times w
\]

\[
y := 0
\]

\[
q := y + x
\]

After constant propagation, \(x := 42 \) is dead (assuming \(x \) is not used elsewhere).
Live and Dead Variables

- The first value of x is *dead* (never used).
- The second value of x is *live* (may be used).
- Liveness is an important concept for the compiler.
Liveness

A variable \(x \) is live at statement \(s \) if

- There exists a statement \(s' \) that uses \(x \)

- There is a path from \(s \) to \(s' \)

- That path has no intervening assignment to \(x \)
Global Dead Code Elimination

• A statement $x := \ldots$ is dead code if x is dead after the assignment.

• Dead statements can be deleted from the program.

• But we need liveness information first . . .
Computing Liveness

• We can express liveness in terms of information transferred between adjacent statements, just as in constant propagation.

• Liveness is simpler than constant propagation, since it is a boolean property (true or false).
Liveness Rule 1

\[L_{out}(x, p) = \bigvee \{ L_{in}(x, s) \mid s \text{ a successor of } p \} \]
Liveness Rule 2

\[L_{in}(x, s) = \text{true} \quad \text{if} \quad s \text{ refers to } x \text{ on the RHS} \]
Liveness Rule 3

\[L_{in}(x, x := e) = \text{false} \text{ if } e \text{ does not refer to } x \]
Liveness Rule 4

\[L_{\text{in}}(x, s) = L_{\text{out}}(x, s) \text{ if } s \text{ does not refer to } x \]
Algorithm

1. Let all $L(...) = false$ initially

2. Repeat until all statements s satisfy rules 1-4
 - pick an s where one of 1-4 does not hold and
 - update using the appropriate rule
Termination

• A value can change from \textit{false} to \textit{true}, but not the other way around.

• Each value can change only once, so termination is guaranteed.

• Once the analysis information is computed, it is simple to eliminate dead code.
Forward vs. Backward Analysis

We have seen two kinds of analysis:

- **An analysis that enables constant propagation:**
 - This is a *forwards* analysis: information is pushed from inputs to outputs.

- **An analysis that calculates variable liveness:**
 - This is a *backwards* analysis: information is pushed from outputs back towards inputs.
Global Flow Analyses

- There are many other global flow analyses.

- Most can be classified as either forward or backward.

- Most also follow the methodology of local rules relating information between adjacent program points.