Outline

• Specifying lexical structure using regular expressions

• Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)

• Implementation of regular expressions
 RegExp \(\Rightarrow \) NFA \(\Rightarrow \) DFA \(\Rightarrow \) Tables

Notation

• For convenience, we will use a variation (we will allow user-defined abbreviations) in regular expression notation

• Union: \(A + B \) \(\equiv \) \(A \mid B \)

• Option: \(A + \varepsilon \) \(\equiv \) \(A? \)

• Range: \('a'+'b'+...+'z'\) \(\equiv \) \([a-z]\)

• Excluded range: complement of \([a-z]\) \(\equiv \) \([^a-z]\)

Regular Expressions in Lexical Specification

• Last lecture: a specification for the predicate \(s \in L(R) \)

• But a yes/no answer is not enough!

• Instead: partition the input into tokens

• We will adapt regular expressions to this goal
1. Select a set of tokens
 • Integer, Keyword, Identifier, OpenPar, ...

2. Write a regular expression (pattern) for the lexemes of each token
 • Integer = digit +
 • Keyword = 'if' + 'else' + ...
 • Identifier = letter (letter + digit)*
 • OpenPar = '('
 • ...

3. Construct R, a regular expression matching all lexemes for all tokens

 $$R = \text{Keyword} + \text{Identifier} + \text{Integer} + ...$$

 $$= R_1 + R_2 + R_3 + ...$$

Facts: If $s \in L(R)$ then s is a lexeme
 - Furthermore $s \in L(R_i)$ for some "i"
 - This "i" determines the token that is reported

4. Let input be $x_1...x_n$
 • ($x_1 ... x_n$ are characters)
 • For $1 \leq i \leq n$ check $x_1...x_i \in L(R)$?

5. It must be that $x_1...x_i \in L(R_j)$ for some j
 (if there is a choice, pick a smallest such j)

6. Remove $x_1...x_i$ from input and go to previous step

How to Handle Spaces and Comments?

1. We could create a token WhiteSpace

 WhiteSpace = (' ' + '\n' + '\t')*

 • We could also add comments in there
 • An input " \t\n 5555 " is transformed into WhiteSpace Integer WhiteSpace

2. Lexer skips spaces (preferred)
 • Modify step 5 from before as follows:
 It must be that $x_k ... x_i \in L(R_j)$ for some j such that $x_1 ... x_{k-1} \in L(\text{Whitespace})$
 • Parser is not bothered with spaces
Ambiguities (1)

- There are ambiguities in the algorithm
- How much input is used? What if
 - $x_1...x_i \in L(R)$ and also
 - $x_1...x_K \in L(R)$
 - Rule: Pick the longest possible substring
 - The “maximal munch”

Ambiguities (2)

- Which token is used? What if
 - $x_1...x_i \in L(R_j)$ and also
 - $x_1...x_i \in L(R_k)$
 - Rule: use rule listed first (j if $j < k$)

- Example:
 - $R_1 = \text{Keyword}$ and $R_2 = \text{Identifier}$
 - “if” matches both
 - Treats “if” as a keyword not an identifier

Error Handling

- What if
 - No rule matches a prefix of input?
- Problem: Can’t just get stuck ...
- Solution:
 - Write a rule matching all “bad” strings
 - Put it last
- Lexer tools allow the writing of:
 - $R = R_1 + \ldots + R_n + \text{Error}$
 - Token Error matches if nothing else matches

Summary

- Regular expressions provide a concise notation for string patterns
- Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors
- Good algorithms known (next)
 - Require only single pass over the input
 - Few operations per character (table lookup)
Regular Languages & Finite Automata

Basic formal language theory result:

Regular expressions and finite automata both define the class of regular languages.

Thus, we are going to use:
- Regular expressions for specification
- Finite automata for implementation (automatic generation of lexical analyzers)

Finite Automata

A finite automaton is a *recognizer* for the strings of a regular language

A finite automaton consists of
- A finite input alphabet Σ
- A set of states S
- A start state s_0
- A set of accepting states $F \subseteq S$
- A set of transitions $s \rightarrow a \rightarrow s'$

Finite Automata State Graphs

- A state
- The start state
- An accepting state
- A transition
A Simple Example

- A finite automaton that accepts only “1”

Another Simple Example

- A finite automaton accepting any number of 1’s followed by a single 0
- Alphabet: {0,1}

And Another Example

- Alphabet {0,1}
- What language does this recognize?

And Another Example

- Alphabet still { 0, 1 }
- The operation of the automaton is not completely defined by the input
 - On input “11” the automaton could be in either state
Epsilon Moves

• Another kind of transition: ε-moves

A ε B

• Machine can move from state A to state B without reading input

Deterministic and Non-Deterministic Automata

• Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No ε-moves

• Non-deterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves

• Finite automata have finite memory
 - Enough to only encode the current state

Execution of Finite Automata

• A DFA can take only one path through the state graph
 - Completely determined by input

• NFAs can choose
 - Whether to make ε-moves
 - Which of multiple transitions for a single input to take

Acceptance of NFAs

• An NFA can get into multiple states

• Input: 1 0 1

• Rule: NFA accepts an input if it can get in a final state
NFA vs. DFA (1)

- NFAs and DFAs recognize the same set of languages (regular languages)
- DFAs are easier to implement
 - There are no choices to consider

NFA vs. DFA (2)

- For a given language the NFA can be simpler than the DFA

Regular Expressions to Finite Automata

- High-level sketch

Regular Expressions to NFA (1)

- For each kind of reg. expr, define an NFA
 - Notation: NFA for regular expression M
 - i.e. our automata have one start and one accepting state
 - For ε
 - For input a
Regular Expressions to NFA (2)

• For AB

\[\varepsilon \]

• For $A + B$

Regular Expressions to NFA (3)

• For A^*

Example of Regular Expression → NFA conversion

• Consider the regular expression $(1+0)^*1$

• The NFA is

NFA to DFA. The Trick

• Simulate the NFA
• Each state of DFA
 = a non-empty subset of states of the NFA
• Start state
 = the set of NFA states reachable through ε-moves from NFA start state
• Add a transition $S \rightarrow^a S'$ to DFA iff
 - S' is the set of NFA states reachable from any state in S after seeing the input a
 • considering ε-moves as well
NFA to DFA. Remark

• An NFA may be in many states at any time

• How many different states?

• If there are N states, the NFA must be in some subset of those N states

• How many subsets are there?
 - \(2^N - 1\) = finitely many

Implementation

• A DFA can be implemented by a 2D table \(T\)
 - One dimension is “states”
 - Other dimension is “input symbols”
 - For every transition \(S_i \rightarrow^a S_k\) define \(T[i,a] = k\)

• DFA “execution”
 - If in state \(S_i\) and input \(a\), read \(T[i,a] = k\) and skip to state \(S_k\)
 - Very efficient

Table Implementation of a DFA

\[
\begin{array}{|c|c|c|}
\hline
\text{State} & 0 & 1 \\
\hline
S & T & U \\
T & T & U \\
U & T & U \\
\hline
\end{array}
\]
Implementation (Cont.)

• NFA → DFA conversion is at the heart of tools such as lex, ML-Lex or flex

• But, DFAs can be huge

• In practice, lex/ML-Lex/flex-like tools trade off speed for space in the choice of NFA and DFA representations

Theory vs. Practice

Two differences:

• DFAs recognize lexemes. A lexer must return a type of acceptance (token type) rather than simply an accept/reject indication.

• DFAs consume the complete string and accept or reject it. A lexer must find the end of the lexeme in the input stream and then find the next one, etc.