Implementation of Lexical Analysis
Outline

- Specifying lexical structure using regular expressions

- Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)

- Implementation of regular expressions
 \[\text{RegExp} \Rightarrow \text{NFA} \Rightarrow \text{DFA} \Rightarrow \text{Tables} \]
Notation

• For convenience, we will use a variation (we will allow user-defined abbreviations) in regular expression notation

• Union: \(A + B \) \(\equiv \) \(A \mid B \)

• Option: \(A + \varepsilon \) \(\equiv \) \(A? \)

• Range: ‘a’+‘b’+…+‘z’ \(\equiv \) \([a-z] \)

• Excluded range: complement of \([a-z] \) \(\equiv \) \([^a-z] \)
Regular Expressions in Lexical Specification

• Last lecture: a specification for the predicate $s \in L(R)$

• But a yes/no answer is not enough!

• Instead: partition the input into tokens

• We will adapt regular expressions to this goal
Regular Expressions ⇒ Lexical Spec. (1)

1. Select a set of tokens
 • Integer, Keyword, Identifier, OpenPar, ...

2. Write a regular expression (pattern) for the lexemes of each token
 • Integer = digit +
 • Keyword = 'if' + 'else' + ...
 • Identifier = letter (letter + digit)*
 • OpenPar = '('
 • ...

Regular Expressions ⇒ Lexical Spec. (2)

3. Construct R, a regular expression matching all lexemes for all tokens

$$R = \text{Keyword} + \text{Identifier} + \text{Integer} + \ldots$$
$$= R_1 + R_2 + R_3 + \ldots$$

Facts: If $s \in L(R)$ then s is a lexeme
- Furthermore $s \in L(R_i)$ for some “i”
- This “i” determines the token that is reported
Regular Expressions \Rightarrow Lexical Spec. (3)

4. Let input be $x_1 \ldots x_n$
 - ($x_1 \ldots x_n$ are characters)
 - For $1 \leq i \leq n$ check
 $$x_1 \ldots x_i \in L(R) ?$$

5. It must be that
 $$x_1 \ldots x_i \in L(R_j) \text{ for some } j$$
 (if there is a choice, pick a smallest such j)

6. Remove $x_1 \ldots x_i$ from input and go to previous step
How to Handle Spaces and Comments?

1. We could create a token \textit{Whitespace}

 \[
 \text{Whitespace} = ('' + \backslash n + \backslash t)^+ \\
 \]
 • We could also add comments in there
 • An input " \t\n 5555 " is transformed into \textit{Whitespace Integer Whitespace}

2. Lexer skips spaces (preferred)
 • Modify step 5 from before as follows:
 It must be that \(x_k \ldots x_i \in L(R_j) \) for some \(j \) such that \(x_1 \ldots x_{k-1} \in L(\text{Whitespace}) \)
 • Parser is not bothered with spaces
Ambiguities (1)

• There are ambiguities in the algorithm

• How much input is used? What if
 • $x_1 \ldots x_i \in L(R)$ and also
 • $x_1 \ldots x_K \in L(R)$
 - Rule: Pick the longest possible substring
 - The “maximal munch”
Ambiguities (2)

- Which token is used? What if
 - \(x_1 \ldots x_i \in L(R_j) \) and also
 - \(x_1 \ldots x_i \in L(R_k) \)
 - Rule: use rule listed first \((j \text{ if } j < k)\)

- Example:
 - \(R_1 = \text{Keyword and } R_2 = \text{Identifier} \)
 - “if” matches both
 - Treats “if” as a keyword not an identifier
Error Handling

• What if
 No rule matches a prefix of input?
• Problem: Can’t just get stuck ...
• Solution:
 – Write a rule matching all “bad” strings
 – Put it last
• Lexer tools allow the writing of:
 $R = R_1 + ... + R_n + \text{Error}$
 – Token Error matches if nothing else matches
Summary

• Regular expressions provide a concise notation for string patterns
• Use in lexical analysis requires small extensions
 – To resolve ambiguities
 – To handle errors
• Good algorithms known (next)
 – Require only single pass over the input
 – Few operations per character (table lookup)
Regular Languages & Finite Automata

Basic formal language theory result:

Regular expressions and finite automata both define the class of regular languages.

Thus, we are going to use:

• Regular expressions for specification
• Finite automata for implementation
 (automatic generation of lexical analyzers)
Finite Automata

A finite automaton is a *recognizer* for the strings of a regular language

A finite automaton consists of
- A finite input alphabet Σ
- A set of states S
- A start state q_0
- A set of accepting states $F \subseteq S$
- A set of transitions $\delta : S \times \Sigma \rightarrow S$
Finite Automata

• Transition

\[s_1 \xrightarrow{a} s_2 \]

• Is read

In state \(s_1 \) on input “a” go to state \(s_2 \)

• If end of input (or no transition possible)
 - If in accepting state \(\Rightarrow \) accept
 - Otherwise \(\Rightarrow \) reject
Finite Automata State Graphs

• A state

• The start state

• An accepting state

• A transition
A Simple Example

• A finite automaton that accepts only “1”
Another Simple Example

- A finite automaton accepting any number of 1's followed by a single 0
- Alphabet: \(\{0,1\} \)
And Another Example

- Alphabet \{0,1\}
- What language does this recognize?
And Another Example

• Alphabet still \{ 0, 1 \}

• The operation of the automaton is not completely defined by the input
 - On input “11” the automaton could be in either state
Epsilon Moves

- Another kind of transition: \(\varepsilon \)-moves

- Machine can move from state A to state B without reading input
Deterministic and Non-Deterministic Automata

- **Deterministic Finite Automata (DFA)**
 - One transition per input per state
 - No ε-moves

- **Non-deterministic Finite Automata (NFA)**
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves

- Finite automata have finite memory
 - Enough to only encode the current state
Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input

- NFAs can choose
 - Whether to make ε-moves
 - Which of multiple transitions for a single input to take
Acceptance of NFAs

- An NFA can get into multiple states

- Input: \(1 \ 0 \ 1 \)

- Rule: NFA accepts an input if it can get in a final state
NFA vs. DFA (1)

• NFAs and DFAs recognize the same set of languages (regular languages)

• DFAs are easier to implement
 - There are no choices to consider
NFA vs. DFA (2)

- For a given language the NFA can be simpler than the DFA

- DFA can be exponentially larger than NFA
Regular Expressions to Finite Automata

- High-level sketch

```
Regular expressions
    ↓
Lexical Specification
```

```
NFA
    ↓
DFA
```

```
Table-driven Implementation of DFA
```

27
Regular Expressions to NFA (1)

- For each kind of reg. expr, define an NFA
 - Notation: NFA for regular expression M

 ![Diagram of a start state and an accepting state](image)

 i.e. our automata have one start and one accepting state

- For ε

 ![Diagram of an ε transition](image)

- For input a

 ![Diagram of an a transition](image)
Regular Expressions to NFA (2)

• For AB

ϵ

• For $A + B$
Regular Expressions to NFA (3)

- For A^*
Example of Regular Expression → NFA conversion

- Consider the regular expression
 \((1+0)^*1\)
- The NFA is
NFA to DFA. The Trick

• Simulate the NFA

• Each state of DFA
 = a non-empty subset of states of the NFA

• Start state
 = the set of NFA states reachable through ε-moves from NFA start state

• Add a transition $S \rightarrow a S'$ to DFA iff
 - S' is the set of NFA states reachable from any state in S after seeing the input a
 • considering ε-moves as well
NFA to DFA. Remark

• An NFA may be in many states at any time

• How many different states?

• If there are N states, the NFA must be in some subset of those N states

• How many subsets are there?
 - $2^N - 1 = \text{finitely many}$
NFA to DFA Example
Implementation

• A DFA can be implemented by a 2D table T
 - One dimension is “states”
 - Other dimension is “input symbols”
 - For every transition $S_i \rightarrow^a S_k$ define $T[i,a] = k$

• DFA “execution”
 - If in state S_i and input a, read $T[i,a] = k$ and skip to state S_k
 - Very efficient
Table Implementation of a DFA

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>U</td>
<td>T</td>
<td>U</td>
</tr>
</tbody>
</table>
Implementation (Cont.)

• NFA → DFA conversion is at the heart of tools such as lex, ML-Lex or flex

• But, DFAs can be huge

• In practice, lex/ML-Lex/flex-like tools trade off speed for space in the choice of NFA and DFA representations
Theory vs. Practice

Two differences:

- DFAs *recognize* lexemes. A lexer must return a *type of acceptance* (token type) rather than simply an accept/reject indication.

- DFAs consume the complete string and accept or reject it. A lexer must *find* the end of the lexeme in the input stream and then find the next one, etc.