Outline

- Specifying lexical structure using regular expressions
- Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)
- Implementation of regular expressions
 \(\text{RegExp} \Rightarrow \text{NFA} \Rightarrow \text{DFA} \Rightarrow \text{Tables} \)

Notation

- For convenience, we will use a variation (we will allow user-defined abbreviations) in regular expression notation

- Union: \(A + B \equiv A \mid B \)
- Option: \(A + \varepsilon \equiv A? \)
- Range: \('a'+'b'+...+'z' \equiv [a-z] \)
- Excluded range: \(\text{complement of } [a-z] \equiv [^a-z] \)

Regular Expressions in Lexical Specification

- Last lecture: a specification for the predicate \(s \in L(R) \)
- But a yes/no answer is not enough!
- Instead: partition the input into tokens
- We will adapt regular expressions to this goal
Regular Expressions ⇒ Lexical Specifications

1. Select a set of tokens
 - Integer, Keyword, Identifier, LeftPar, ...

2. Write a regular expression (pattern) for the lexemes of each token
 - Integer = digit +
 - Keyword = 'if' + 'else' + ...
 - Identifier = letter (letter + digit)*
 - LeftPar = '('
 - ...

3. Construct R, a regular expression matching all lexemes for all tokens

 \[
 R = \text{Keyword} + \text{Identifier} + \text{Integer} + \ldots
 \]

 \[
 = R_1 + R_2 + R_3 + \ldots
 \]

Facts: If $s \in L(R)$ then s is a lexeme
- Furthermore $s \in L(R_i)$ for some “i”
- This “i” determines the token that is reported

How to Handle Spaces and Comments?

1. We could create a token Whitespace

 \[
 \text{Whitespace} = (' + '\n' + '\t')^*
 \]
 - We could also add comments in there
 - An input " \t\n 555 " is transformed into
 - Whitespace Integer Whitespace

2. Lexical analyzer skips spaces (preferred)
 - Modify step 5 from before as follows:
 It must be that $x_k \ldots x_i \in L(R_j)$ for some j such that $x_1 \ldots x_{i-1} \in L(Whitespace)$
 - Parser is not bothered with spaces

4. Let input be $x_1 \ldots x_n$
 - ($x_1 \ldots x_n$ are characters)
 - For $1 \leq i \leq n$ check $x_1 \ldots x_i \in L(R)$?

5. It must be that
 - $x_1 \ldots x_i \in L(R_j)$ for some j
 - (if there is a choice, pick a smallest such j)

6. Remove $x_1 \ldots x_i$ from input and go to previous step
Ambiguities (1)

- There are ambiguities in the algorithm
- How much input is used? What if
 - \(x_1 \ldots x_i \in L(R) \) and also
 - \(x_1 \ldots x_K \in L(R) \)
 - Rule: Pick the longest possible substring
 - The “maximal munch”

Ambiguities (2)

- Which token is used? What if
 - \(x_1 \ldots x_i \in L(R_j) \) and also
 - \(x_1 \ldots x_i \in L(R_k) \)
 - Rule: use rule listed first (j if j < k)

- Example:
 - \(R_1 = \text{Keyword} \) and \(R_2 = \text{Identifier} \)
 - “if” matches both
 - Treats “if” as a keyword not an identifier

Error Handling

- What if
 No rule matches a prefix of input?
- Problem: Can’t just get stuck ...
- Solution:
 - Write a rule matching all “bad” strings
 - Put it last
- Lexical analysis tools allow the writing of:
 \(R = R_1 + \ldots + R_n + \text{Error} \)
 - Token Error matches if nothing else matches

Summary

- Regular expressions provide a concise notation for string patterns
- Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors
- Good algorithms known (next)
 - Require only single pass over the input
 - Few operations per character (table lookup)
Regular Languages & Finite Automata

Basic formal language theory result:

Regular expressions and finite automata both define the class of regular languages.

Thus, we are going to use:

- Regular expressions for specification
- Finite automata for implementation (automatic generation of lexical analyzers)

Finite Automata

A finite automaton is a recognizer for the strings of a regular language

A finite automaton consists of

- A finite input alphabet \(\Sigma \)
- A set of states \(S \)
- A start state \(n \)
- A set of accepting states \(F \subseteq S \)
- A set of transitions \(\text{state} \rightarrow \text{input} \text{state} \)

Finite Automata State Graphs

- A state
- The start state
- An accepting state
- A transition

\[s_1 \rightarrow^a s_2 \]

In state \(s_1 \) on input "a" go to state \(s_2 \)

If end of input (or no transition possible)

- If in accepting state \(\Rightarrow \) accept
- Otherwise \(\Rightarrow \) reject
A Simple Example

• A finite automaton that accepts only “1”

Another Simple Example

• A finite automaton accepting any number of 1’s followed by a single 0
 • Alphabet: {0,1}

And Another Example

• Alphabet {0,1}
• What language does this recognize?

And Another Example

• Alphabet still { 0, 1 }

• The operation of the automaton is not completely defined by the input
 - On input “11” the automaton could be in either state
Epsilon Moves

• Another kind of transition: \(\varepsilon\)-moves

\[\text{A} \xrightarrow{\varepsilon} \text{B} \]

• Machine can move from state A to state B without reading input

Deterministic and Non-Deterministic Automata

• Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No \(\varepsilon\)-moves

• Non-deterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have \(\varepsilon\)-moves

• Finite automata have finite memory
 - Enough to only encode the current state

Execution of Finite Automata

• A DFA can take only one path through the state graph
 - Completely determined by input

• NFAs can choose
 - Whether to make \(\varepsilon\)-moves
 - Which of multiple transitions for a single input to take

Acceptance of NFAs

• An NFA can get into multiple states

• Input:
 1 0 1

• Rule: NFA accepts an input if it \textbf{can} get in a final state
NFA vs. DFA (1)

- NFAs and DFAs recognize the same set of languages (regular languages)

- DFAs are easier to implement
 - There are no choices to consider

NFA vs. DFA (2)

- For a given language the NFA can be simpler than the DFA

- DFA can be exponentially larger than NFA (contrary to what is shown in the above example)

Regular Expressions to Finite Automata

- High-level sketch

 Regular expressions ➔ NFA
 NFA ➔ DFA
 DFA ➔ Lexical Specification
 Lexical Specification ➔ Table-driven Implementation of DFA

Regular Expressions to NFA (1)

- For each kind of reg. expr, define an NFA
 - Notation: NFA for regular expression M
 - i.e. our automata have one start and one accepting state

- For ϵ

- For input a
Regular Expressions to NFA (2)

- For AB

```
A ε B
```

- For $A + B$

```
A B ε ε ε ε
```

Regular Expressions to NFA (3)

- For A^*

```
A ε ε ε
```

Example of Regular Expression → NFA conversion

- Consider the regular expression $(1+0)^*1$

- The NFA is

```
A ε B ε C 1 ε E ε G H ε I 1 J
```

NFA to DFA. The Trick

- Simulate the NFA
- Each state of DFA
 = a non-empty subset of states of the NFA
- Start state
 = the set of NFA states reachable through $ε$-moves from NFA start state
- Add a transition $S \rightarrow^a S'$ to DFA iff
 - S' is the set of NFA states reachable from any state in S after seeing the input a
 - considering $ε$-moves as well
NFA to DFA. Remark

- An NFA may be in many states at any time
- How many different states?
- If there are N states, the NFA must be in some subset of those N states
- How many subsets are there?
 - $2^N - 1 = \text{finitely many}$

Implementation

- A DFA can be implemented by a 2D table T
 - One dimension is “states”
 - Other dimension is “input symbols”
 - For every transition $S_i \rightarrow a S_k$ define $T[i,a] = k$
- DFA “execution”
 - If in state S_i and input a, read $T[i,a] = k$ and skip to state S_k
 - Very efficient

Table Implementation of a DFA
Implementation (Cont.)

- NFA → DFA conversion is at the heart of tools such as lex, ML-Lex or flex

- But, DFAs can be huge

- In practice, lex/ML-Lex/flex-like tools trade off speed for space in the choice of NFA and DFA representations

Theory vs. Practice

Two differences:

- DFAs recognize lexemes. A lexer must return a type of acceptance (token type) rather than simply an accept/reject indication.

- DFAs consume the complete string and accept or reject it. A lexer must find the end of the lexeme in the input stream and then find the next one, etc.