
Lesson 1

Compiler Design I (Kompilatorteknik I) 2016

1 Lexical Analysis

Let L be a language of strings on Σ = {x, y} defined by L = {x, xxx, (xxxx)∗y}, that is {x, xxx}
∪
{x4ny|n ≥

0}.

1. Construct a DFA that accepts L. (Hint: Begin with an NFA and then convert it)

Answer:

The states have been labeled either with the token that would be emitted (accepting) or with a symbolic
name corresponding to the input that has been read so far (non-accepting). The error state has been
omitted.

∅start x xx xxx (xxxx)∗

(xxxx)∗x

(xxxx)∗xx

(xxxx)∗xxx(xxxx)∗y
y

x x x
x

x x

xx

y

2. Describe how the lexical analyzer will tokenize the following inputs:

• xx

Answer:

Reading two ’x’s, the lexical analyzer reaches state “xx”. The input ends in a non-accepting state,
so the analyzer backtracks to the most recent accepting state (“x”) and outputs the corresponding
token, consuming just one of the two ’x’s. Starting from scratch and reading the remaining ’x’
again, the analyzer reaches the “x” state again, and the input ends there so it emits a second “x”
token.

• xxxxxxxxy

Answer:

With the given input, the DFA reaches the “(xxxx)∗y” state. The input ends there, so the
analyzer emits just one token of type “(xxxx)∗y”.

1



• xxxxxxxxxxxxxy (13 x characters)

Answer:

The given input drives the DFA to the “(xxxx)∗x” state before the ’y’ is read, leading to the null
state. The analyzer backtracks, therefore, and emits the most recent acceptable token: “xxx”,
leaving the rest 10 ’x’s to be scanned again. Starting from scratch, the state “(xxxx)∗xx” is
reached before ’y’ is read, so the analyzer backtracks again, emitting a second “xxx” token and
leaving 7 ’x’s to be re-scanned. A third pass will reach state “(xxxx)∗xxx” before ’y’ again leads
to an error, so a third “xxx” token is emitted after backtracking, with 4 ’x’s remaining. Finally
the rest input leads to the accepting state “(xxxx)∗y”, which is the last token that the analyzer
will emit.

2


	Lexical Analysis

