Introduction to Lexical Analysis

Lexical Analysis

- What do we want to do? Example:

```
    if (i == j)
    then
        z = 0;
    else
        z = 1;
```

- The input is just a string of characters:
if $(i==j) \backslash n t h e n \backslash n \backslash t z=0 ; \backslash n \backslash t e l s e \backslash n \backslash t \backslash t z=1$;
- Goal: Partition input string into substrings
- where the substrings are tokens
- and classify them according to their role

Outline

- Informal sketch of lexical analysis
- Identifies tokens in input string
- Issues in lexical analysis
- Lookahead
- Ambiguities
- Specifying lexical analyzers (lexers)
- Regular expressions
- Examples of regular expressions

What's a Token?

- A syntactic category
- In English:
noun, verb, adjective, ...
- In a programming language:

Identifier, Integer, Keyword, Whitespace, ..

Tokens

- Tokens correspond to sets of strings
- these sets depend on the programming language
- Identifier: strings of letters or digits, starting with a letter
- Integer: a non-empty string of digits
- Keyword: "else" or "if" or "begin" or ...
- Whitespace: a non-empty sequence of blanks, newlines, and tabs

What are Tokens Used for?

- Classify program substrings according to role
- Output of lexical analysis is a stream of tokens...
- . . . which is input to the parser
- Parser relies on token distinctions
- An identifier is treated differently than a keyword

Designing a Lexical Analyzer: Step 1

- Define a finite set of tokens
- Tokens describe all items of interest
- Choice of tokens depends on language, design of parser
- Recall

```
if (i == j)\nthen\n\tz = 0; \n\telse\n\t\tz = 1;
```

- Useful tokens for this expression:

Integer, Keyword, Relation, Identifier, Whitespace, (,), $=$,;

Designing a Lexical Analyzer: Step 2

- Describe which strings belong to each token
- Recall:
- Identifier: strings of letters or digits, starting with a letter
- Integer: a non-empty string of digits
- Keyword: "else" or "if" or "begin" or ...
- Whitespace: a non-empty sequence of blanks, newlines, and tabs

Lexical Analyzer: Implementation

An implementation must do two things:

1. Recognize substrings corresponding to tokens
2. Return the value or lexeme of the token

- The lexeme is the substring

Why do Lexical Analysis?

- Dramatically simplify parsing
- The lexer usually discards "uninteresting" tokens that don't contribute to parsing
- E.g. Whitespace, Comments
- Converts data early
- Separate out logic to read source files
- Potentially an issue on multiple platforms
- Can optimize reading code independently of parser

Example

- Recall:

$$
\text { if }(i==j) \backslash n t h e n \backslash n \backslash t z=0 ; \backslash n \backslash t e l s e \backslash n \backslash \dagger \backslash t z=1 ;
$$

- Token-lexeme groupings:
- Identifier: i, j, z
- Keyword: if, then, else
- Relation: ==
- Integer: 0,1
- (, $)_{, ~=, ~ ; ~ s i n g l e ~ c h a r a c t e r ~ o f ~ t h e ~ s a m e ~ n a m e ~}^{\text {a }}$

True Crimes of Lexical Analysis

- Is it as easy as it sounds?
- Not quite!
- Look at some programming language history .

Lexical Analysis in FORTRAN

- FORTRAN rule: Whitespace is insignificant
- E.g., VAR1 is the same as VA R1

FORTRAN whitespace rule was motivated by inaccuracy of punch card operators

A terrible design! Example

- Consider
- DO 5 I = 1,25
- DO 5 I = 1.25
- The first is DO $5 \mathrm{I}=1,25$
- The second is $\mathrm{DO} 5 \mathrm{I}=1.25$
- Reading left-to-right, the lexical analyzer cannot tell if DO5l is a variable or a DO statement until after "," is reached

Lexical Analysis in FORTRAN. Lookahead.
Two important points:

1. The goal is to partition the string

- This is implemented by reading left-to-right, recognizing one token at a time

2. "Lookahead" may be required to decide where one token ends and the next token begins

- Even our simple example has lookahead issues

$$
\begin{aligned}
& \text { i vs. if } \\
& \text { = vs. == }
\end{aligned}
$$

Another Great Moment in Scanning History

PL/1: Keywords can be used as identifiers:

```
IF THEN THEN THEN = ELSE; ELSE ELSE = IF
```

can be difficult to determine how to label lexemes

More Modern True Crimes in Scanning

Review

- The goal of lexical analysis is to
- Partition the input string into lexemes (the smallest program units that are individually meaningful)
- Identify the token of each lexeme
- Left-to-right scan \Rightarrow lookahead sometimes required

Next

- We still need
- A way to describe the lexemes of each token
- A way to resolve ambiguities
- Is if two variables i and f?
- Is == two equal signs = =?

Regular Languages

- There are several formalisms for specifying tokens
- Regular languages are the most popular
- Simple and useful theory
- Easy to understand
- Efficient implementations

Def. Let Σ be a set of characters. A language Λ over Σ is a set of strings of characters drawn from Σ
(Σ is called the alphabet of Λ)

Examples of Languages

Alphabet $=$ English characters	Alphabet $=$ ASCII
- Language $=$ English sentences	Language $=C$ programs
- Not every string on English characters is an English sentence	Note: ASCII character set is different from English character set

- Alphabet = ASCII
- Language $=C$ programs
- Note: ASCII character set is different from English character se \dagger

Notation

- Languages are sets of strings
- Need some notation for specifying which sets of strings we want our language to contain
- The standard notation for regular languages is regular expressions

Atomic Regular Expressions

- Single character

$$
'^{\prime}=\{" c "\}
$$

- Epsilon

$$
\varepsilon=\{" ' \prime\}
$$

- Union

$$
A+B=\{s \mid s \in A \text { or } s \in B\}
$$

- Concatenation

$$
A B=\{a b \mid a \in A \text { and } b \in B\}
$$

- Iteration
$A^{*}=\bigcup_{i \geq 0} A^{i}$ where $A^{i}=A . . . i$ times ... A

Syntax vs. Semantics

- To be careful, we should distinguish syntax and semantics (meaning) of regular expressions

$$
\begin{array}{ll}
L(\varepsilon) & =\{" "\} \\
L\left('^{\prime} c^{\prime}\right) & =\left\{" c^{\prime \prime}\right\} \\
L(A+B) & =L(A) \cup L(B) \\
L(A B) & =\{a b \mid a \in L(A) \text { and } b \in L(B)\} \\
L\left(A^{*}\right) & =\bigcup_{i \geq 0} L\left(A^{i}\right)
\end{array}
$$

- Def. The regular expressions over Σ are the smallest set of expressions including
\mathcal{E}
' c ' where $c \in \sum$
$A+B \quad$ where A, B are rexp over \sum
AB " " "
$A^{*} \quad$ where A is a rexp over \sum

Example: Keyword

Keyword: "else" or "if" or "begin" or ...
'else' + 'if' + 'begin' + ...

Example: Integers

Integer: a non-empty string of digits
digit = '0'+'1'+'2'+'3'+'4'+'5'+'6'+'7'+'8'+'9'
integer $=$ digit digit ${ }^{*}$

Abbreviation: $A^{+}=A A^{*}$

Example: Identifier

Identifier: strings of letters or digits, starting with a letter

$$
\begin{array}{ll}
\text { letter } & =\text { 'A' }+\ldots+\text { 'Z' }+ \text { 'a' }+\ldots+\text { 'z' } \\
\text { identifier } & =\text { letter (letter }+ \text { digit) }
\end{array}
$$

Is (letter* ${ }^{*}$ digit *) the same?

Example: Whitespace

Whitespace: a non-empty sequence of blanks, newlines, and tabs

$$
\left({ }^{\prime} \quad+\quad \backslash n^{\prime}+\prime \backslash t^{\prime}\right)^{+}
$$

Example 1: Phone Numbers

- Regular expressions are all around you!
- Consider +46(0)18-471-1056

$$
\begin{array}{ll}
\Sigma & =\text { digits } \cup\{+,-,(,)\} \\
\text { country } & =\text { digit digit } \\
\text { city } & \text { = digit digit } \\
\text { univ } & \text { = digit digit digit } \\
\text { extension } & =\text { digit digit digit digit } \\
\text { phone_num } & =\text { '+'country'('0')'city'-'univ'-'extension }
\end{array}
$$

Example 2: Email Addresses

```
- Consider kostis@it.uu.se
\Sigma= letters \cup{.,@}
name = letter }\mp@subsup{}{}{+
address = name '@' name '.' name '.' name
```

Summary

- Regular expressions describe many useful languages
- Regular languages are a language specification
- We still need an implementation
- Next: Given a string s and a regular expression R, is

$$
s \in L(R) ?
$$

- A yes/no answer is not enough!
- Instead: partition the input into tokens
- We will adapt regular expressions to this goal

Outline

- Specifying lexical structure using regular expressions
- Finite automata
- Deterministic Finite Automata (DFAs)
- Non-deterministic Finite Automata (NFAs)
- Implementation of regular expressions

$$
\text { RegExp } \Rightarrow \text { NFA } \Rightarrow \text { DFA } \Rightarrow \text { Tables }
$$

Notation

- For convenience, we will use a variation (we will allow user-defined abbreviations) in regular expression notation
- Union: $A+B$
$\equiv A \mid B$
- Option: $A+\varepsilon$
$\equiv A$?
- Range: 'a'+'b'+...'z' $\equiv[a-z]$
- Excluded range:

$$
\text { complement of }[a-z] \equiv[\wedge a-z]
$$

Regular Expressions \Rightarrow Lexical Specifications

1. Select a set of tokens

- Integer, Keyword, Identifier, LeftPar, ...

2. Write a regular expression (pattern) for the lexemes of each token

- Integer = digit +
- Keyword = 'if' + 'else' + ...
- Identifier $=$ letter (letter + digit)*
- LeftPar = '('
- ...

Regular Expressions \Rightarrow Lexical Specifications

3. Construct R, a regular expression matching all lexemes for all tokens

$$
\begin{aligned}
R & =\text { Keyword }+ \text { Identifier }+ \text { Integer }+\ldots \\
& =R_{1}+R_{2}+R_{3}+\ldots
\end{aligned}
$$

Facts: If $s \in L(R)$ then s is a lexeme

- Furthermore $s \in L\left(R_{j}\right)$ for some " j "
- This " j " determines the token that is reported

Regular Expressions \Rightarrow Lexical Specifications

4. Let input be $x_{1} \ldots x_{n}$

- ($x_{1} \ldots x_{n}$ are characters in the language alphabet)
- For $1 \leq i \leq n$ check

$$
x_{1} \ldots x_{i} \in L(R) ?
$$

5. It must be that

$$
\begin{aligned}
& x_{1 \ldots} x_{i} \in L\left(R_{j}\right) \text { for some } i \text { and } j \\
& \text { (if there is a choice, pick a smallest such } j \text {) }
\end{aligned}
$$

6. Report token j, remove $\times 1 \ldots x_{i}$ from input and go to step 4

How to Handle Spaces and Comments?

1. We could create a token Whitespace

Whitespace $=\left({ }^{\prime} \quad+\quad \backslash n^{\prime}+' \backslash t^{\prime}\right)^{+}$

- We could also add comments in there
- An input " $\backslash t \backslash n 555$ " is transformed into Whitespace Integer Whitespace

2. Lexical analyzer skips spaces (preferred)

- Modify step 5 from before as follows:

It must be that $x_{k} \ldots x_{i} \in L\left(R_{j}\right)$ for some j such that $x_{1} \ldots x_{k-1} \in L$ (Whitespace)

- Parser is not bothered with spaces

Ambiguities (1)

- There are ambiguities in the algorithm
- How much input is used? What if

$$
\text { - } x_{1} \ldots x_{i} \in L(R) \text { and also } x_{1} \ldots x_{K} \in L(R)
$$

- The "maximal munch" rule: Pick the longest possible substring that matches R

Ambiguities (2)

- Which token is used? What if
- $x_{1} \ldots x_{i} \in L\left(R_{j}\right)$ and also $x_{1} . . x_{i} \in L\left(R_{k}\right)$
- Rule: use rule listed first (j if $\mathrm{j}<\mathrm{k}$)
- Example:
- $R_{1}=$ Keyword and $R_{2}=$ Identifier
- "if" matches both
- Treats "if" as a keyword not an identifier

Error Handling

- What if

No rule matches a prefix of input?

- Problem: Can't just get stuck ...
- Solution:
- Write a rule matching all "bad" strings
- Put it last
- Lexical analysis tools allow the writing of:
$R=R_{1}+\ldots+R_{n}+$ Error
- Token Error matches if nothing else matches

Summary

- Regular expressions provide a concise notation for string patterns
- Use in lexical analysis requires small extensions
- To resolve ambiguities
- To handle errors
- Good algorithms known (next)
- Require only single pass over the input
- Few operations per character (table lookup)

Regular Languages \& Finite Automata

Basic formal language theory result:

Regular expressions and finite automata both

 define the class of regular languages.Thus, we are going to use:

- Regular expressions for specification
- Finite automata for implementation (automatic generation of lexical analyzers)

Finite Automata

A finite automaton is a recognizer for the strings of a regular language

A finite automaton consists of

- A finite input alphabet Σ
- A set of states S
- A start state n
- A set of accepting states $F \subseteq S$
- A set of transitions state \rightarrow input state

Finite Automata

- Transition

$$
s_{1} \rightarrow^{a} s_{2}
$$

- Is read

In state s_{1} on input "a" go to state s_{2}

- If end of input
- If in accepting state \Rightarrow accept
- Otherwise
- If no transition possible \Rightarrow rejec \dagger

Finite Automata State Graphs

- A state
- The start state
- An accepting state

- A transition

Another Simple Example

- A finite automaton accepting any number of 1's followed by a single 0
- Alphabet: $\{0,1\}$

A Simple Example

- A finite automaton that accepts only "1"

- A finite automaton accepts a string if we can follow transitions labeled with the characters in the string from the start to some accepting state

And Another Example

- Alphabet $\{0,1\}$
- What language does this recognize?

And Another Example

- Alphabet still $\{0,1\}$

- The operation of the automaton is not completely defined by the input
- On input "11" the automaton could be in either state

Deterministic and Non-Deterministic Automata

- Deterministic Finite Automata (DFA)
- One transition per input per state
- No ε-moves
- Non-deterministic Finite Automata (NFA)
- Can have multiple transitions for one input in a given state
- Can have ε-moves
- Finite automata have finite memory
- Enough to only encode the current state

Epsilon Moves

- Another kind of transition: ε-moves

- Machine can move from state A to state B without reading input

Execution of Finite Automata

- A DFA can take only one path through the state graph
- Completely determined by input
- NFAs can choose
- Whether to make ε-moves
- Which of multiple transitions for a single input to take

NFA vs. DFA (1)

- NFAs and DFAs recognize the same set of languages (regular languages)
- DFAs are easier to implement
- There are no choices to consider
- Input: $\quad 101$
- Rule: NFA accepts an input if it can get in a final state

Regular Expressions to Finite Automata

- High-level sketch

- DFA can be exponentially larger than NFA (contrary to what is shown in the above example)

Regular Expressions to NFA (1)

- For each kind of reg. expr, define an NFA
- Notation: NFA for regular expression M

i.e. our automata have one start and one accepting state
- For ε

- For input a

Regular Expressions to NFA (3)

- For A^{*}

Regular Expressions to NFA (2)

- For $A B$

- For $A+B$

Example of Regular Expression \rightarrow NFA conversion

- Consider the regular expression
$(1+0) \star 1$
- The NFA is

NFA to DFA. The Trick

- Simulate the NFA
- Each state of DFA
= a non-empty subset of states of the NFA
- Start state
= the set of NFA states reachable through ε-moves from NFA start state
- Add a transition $S \rightarrow \rightarrow^{a} S^{\prime}$ to DFA iff
- S' is the set of NFA states reachable from any state in S after seeing the input a
- considering ε-moves as well

NFA to DFA. Remark

- An NFA may be in many states at any time
- How many different states ?
- If there are N states, the NFA must be in some subset of those N states
- How many subsets are there?
- 2^{N} - 1 = finitely many

Implementation

- A DFA can be implemented by a 2D table T
- One dimension is "states"
- Other dimension is "input symbols"
- For every transition $S_{i} \rightarrow{ }^{a} S_{k}$ define $T[i, a]=k$
- DFA "execution"
- If in state S_{i} and input a, read $T[i, a]=k$ and skip to state S_{k}
- Very efficient

Table Implementation of a DFA

	0	1
S	T	U
T	T	U
U	T	U

Implementation (Cont.)

- NFA \rightarrow DFA conversion is at the heart of tools such as lex, ML-Lex, flex or jlex
- But, DFAs can be huge
- In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations

Theory vs. Practice
Two differences:

- DFAs recognize lexemes. A lexer must return a type of acceptance (token type) rather than simply an accept/reject indication.
- DFAs consume the complete string and accept or reject it. A lexer must find the end of the lexeme in the input stream and then find the next one, etc.

