Abstract Syntax Trees

 \&Top-Down Parsing

Review of Parsing

- Given a language $L(G)$, a parser consumes a sequence of tokens s and produces a parse tree
- Issues:
- How do we recognize that $s \in L(G)$?
- A parse tree of s describes how $s \in L(G)$
- Ambiguity: more than one parse tree (possible interpretation) for some string s
- Error: no parse tree for some string s
- How do we construct the parse tree?

Abstract Syntax Trees

- So far, a parser traces the derivation of a sequence of tokens
- The rest of the compiler needs a structural representation of the program
- Abstract syntax trees
- Like parse trees but ignore some details
- Abbreviated as AST

Abstract Syntax Trees (Cont.)

- Consider the grammar

$$
E \rightarrow \operatorname{int}|(E)| E+E
$$

- And the string

$$
5+(2+3)
$$

- After lexical analysis (a list of tokens)

$$
\text { int }_{5}{ }^{\prime}++^{\prime}\left(\text { int }_{2}{ }^{\prime}+\text { ' int }_{3}{ }^{\prime}\right) \text { ' }
$$

- During parsing we build a parse tree ...

- Traces the operation of the parser
- Captures the nesting structure
- But too much info
- Parentheses
- Single-successor nodes

Semantic Actions

- This is what we will use to construct ASTs
- Each grammar symbol may have attributes
- An attribute is a property of a programming language construct
- For terminal symbols (lexical tokens) attributes can be calculated by the lexer
- Each production may have an action
- Written as: $X \rightarrow Y_{1} \ldots Y_{n} \quad\{$ action $\}$
- That can refer to or compute symbol attributes

- Also captures the nesting structure
- But abstracts from the concrete syntax
\mapsto more compact and easier to use
- An important data structure in a compiler

Semantic Actions: An Example

- Consider the grammar

$$
E \rightarrow \operatorname{int}|E+E|(E)
$$

- For each symbol X define an attribute X.val
- For terminals, val is the associated lexeme
- For non-terminals, val is the expression's value (which is computed from values of subexpressions)
- We annotate the grammar with actions:

```
E int
            {E.val = int.val }
            | E + E E
    {E.val = E 1.val + E 2.val }
    | ( E 1 ) {E.val = E E val }
```

- String: $5+(2+3)$
- Tokens: int 5 '+' (' $\mathrm{int}_{2}{ }^{\text {' }}$ ' int_{3} ')'

Productions

$$
\begin{aligned}
& E \rightarrow E_{1}+E_{2} \\
& \mathrm{E}_{1} \rightarrow \mathrm{int}_{5} \\
& \mathrm{E}_{2} \rightarrow\left(\mathrm{E}_{3}\right) \\
& \mathrm{E}_{3} \rightarrow \mathrm{E}_{4}+\mathrm{E}_{5} \\
& \mathrm{E}_{4} \rightarrow \mathrm{int}_{2} \\
& \mathrm{E}_{5} \rightarrow \mathrm{int}_{3} \\
& \text { E.val }=E_{1} \cdot \text { val }+E_{2} \cdot \text { val } \\
& \mathrm{E}_{1} \cdot \mathrm{val}=\mathrm{int}_{5} \cdot \mathrm{val}=5 \\
& E_{2} \cdot \mathrm{val}=E_{3} \cdot \mathrm{val} \\
& \mathrm{E}_{3} \cdot \mathrm{val}=\mathrm{E}_{4} \cdot \mathrm{val}+\mathrm{E}_{5} \cdot \mathrm{val} \\
& \mathrm{E}_{4} \cdot \mathrm{val}=\mathrm{int}_{2} \cdot \mathrm{val}=2 \\
& \mathrm{E}_{5} . \mathrm{val}=\mathrm{int}_{3} . \mathrm{val}=3
\end{aligned}
$$

Semantic actions specify a system of equations

- Order of executing the actions is not specified
- Example:

$$
E_{3} \cdot \mathrm{val}=E_{4} \cdot \mathrm{val}+E_{5} \cdot \mathrm{val}
$$

- Must compute $E_{4 . v a l}$ and $E_{5 . v a l}$ before $E_{3 . v a l}$
- We say that $E_{3 . v a l}$ depends on $E_{4 . v a l}$ and $E_{5 . v a l}$
- The parser must find the order of evaluation

Evaluating Attributes

- An attribute must be computed after all its successors in the dependency graph have been computed
- In the previous example attributes can be computed bottom-up
- Such an order exists when there are no cycles
- Cyclically defined attributes are not legal
- Synthesized attributes
- Calculated from attributes of descendents in the parse tree
- E.val is a synthesized attribute
- Can always be calculated in a bottom-up order
- Grammars with only synthesized attributes are called S-attributed grammars
- Most frequent kinds of grammars

Inherited Attributes

- Another kind of attributes
- Calculated from attributes of the parent node(s) and/or siblings in the parse tree
- Example: a line calculator

A Line Calculator

- Each line contains an expression

$$
E \rightarrow \operatorname{int} \mid E+E
$$

- Each line is terminated with the = sign

$$
L \rightarrow E=1+E=
$$

- In the second form, the value of evaluation of the previous line is used as starting value
- A program is a sequence of lines

$$
P \rightarrow \varepsilon \mid P L
$$

Attributes for the Line Calculator

- Each E has a synthesized attribute val
- Calculated as before
- Each L has a synthesized attribute val $L \rightarrow E=\{$ L.val $=E$. .val $\}$

I $+E=$ \{L.val $=$ E.val + L.prev $\}$

- We need the value of the previous line
- We use an inherited attribute L.prev

Attributes for the Line Calculator (Cont.)

- Each P has a synthesized attribute val
- The value of its last line

$$
\begin{array}{ll}
P \rightarrow \varepsilon & \{\text { P.val }=0\} \\
\mid P_{1} L & \{P . v a l=L . \text { val; } \\
& \text { L.prev } \left.=P_{1} \cdot \text { val }\right\}
\end{array}
$$

- Each L has an inherited attribute prev
- L.prev is inherited from sibling P_{1}.val
- Example ...

Example of Inherited Attributes

- val synthesized

- prev inherited

- All can be computed in depth-first order

Semantic Actions: Notes (Cont.)

- Semantic actions can be used to build ASTs
- And many other things as well
- Also used for type checking, code generation, ...
- Process is called syntax-directed translation
- Substantial generalization over CFGs

Constructing an AST

- We first define the AST data type
- Consider an abstract tree type with two constructors:

Constructing a Parse Tree

- We define a synthesized attribute ast
- Values of ast values are ASTs
- We assume that int.lexval is the value of the integer lexeme
- Computed using semantic actions

$$
\begin{aligned}
E \rightarrow \text { int } & \text { \{E.ast }=m \text { kleaf(int.lexval) }\} \\
\mid E_{1}+E_{2} & \left\{\text { E.ast }=m k p l u s\left(E_{1} \cdot \text { ast }, E_{2} \cdot \text { ast }\right)\right\} \\
\mid\left(E_{1}\right) & \left\{\text { E.ast }=E_{1} \cdot a s t\right\}
\end{aligned}
$$

Parse Tree Example

- Consider the string int 5 '+' (' $\mathrm{int}_{2}{ }^{\text {'t' }} \mathrm{int}_{3}$ ')'
- A bottom-up evaluation of the ast attribute:
E.ast $=$ mkplus(mkleaf(5),
mkplus(mkleaf(2), mkleaf(3))

Review of Abstract Syntax Trees

- We can specify language syntax using CFG
- A parser will answer whether $s \in L(G)$
- ... and will build a parse tree
- ... which we convert to an AST
- ... and pass on to the rest of the compiler
- Next two \& a half lectures:
- How do we answer $s \in L(G)$ and build a parse tree?
- After that: from AST to assembly language

Second-Half of Lecture: Outline

- Implementation of parsers
- Two approaches
- Top-down
- Bottom-up
- These slides: Top-Down
- Easier to understand and program manually
- Then: Bottom-Up
- More powerful and used by most parser generators

Introduction to Top-Down Parsing

- Terminals are seen in order of appearance in the token stream:

$$
t_{2} t_{5} t_{6} t_{8} t_{9}
$$

- The parse tree is constructed
- From the top
- From left to right

Recursive Descent Parsing: Example

- Consider the grammar

$$
\begin{aligned}
& E \rightarrow T+E \mid T \\
& T \rightarrow(E) \mid \text { int } \mid \text { int * } T
\end{aligned}
$$

- Token stream is: int_{5} * int_{2}
- Start with top-level non-terminal E
- Try the rules for E in order

Recursive Descent Parsing: Example (Cont.)

- Try $E_{0} \rightarrow T_{1}+E_{2}$

Token stream: int5 * int2

- Then try a rule for $T_{1} \rightarrow\left(E_{3}\right)$
- But (does not match input token int ${ }_{5}$
- Try $\mathrm{T}_{1} \rightarrow$ int. Token matches.
- But + after T_{1} does not match input token*
- Try $\mathrm{T}_{1} \rightarrow$ int * T_{2}
- This will match and will consume the two tokens.
- Try $T_{2} \rightarrow$ int (matches) but + after T_{1} will be unmatched
- Try $T_{2} \rightarrow$ int * T_{3} but * does not match with end-of-input
- Has exhausted the choices for T_{1}
- Backtrack to choice for E_{0}

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \mid \mathrm{T} \\
& \mathrm{~T} \rightarrow(\mathrm{E}) \mid \text { int } \mid \text { int } * \mathrm{~T}
\end{aligned}
$$

Recursive Descent Parsing: Example (Cont.)

- Try $E_{0} \rightarrow T_{1}$

Token stream: int5 * int 2

- Follow same steps as before for T_{1}
- And succeed with $T_{1} \rightarrow$ int $_{5}$ * $_{2}$ and $T_{2} \rightarrow$ int $_{2}$
- With the following parse tree

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}+\mathrm{E} \mid \mathrm{T} \\
& \mathrm{~T} \rightarrow(\mathrm{E}) \mid \text { int } \mid \text { int } * \mathrm{~T}
\end{aligned}
$$

Recursive Descent Parsing: Notes

- Easy to implement by hand
- Somewhat inefficient (due to backtracking)
- But does not always work ...

When Recursive Descent Does Not Work

- Consider a production $S \rightarrow S$ a

```
    bool S1() { return S() && term(a); }
    bool S() { return S1(); }
```

- $S()$ will get into an infinite loop
- A left-recursive grammar has a non-terminal S $S \rightarrow+$ S α for some α
- Recursive descent does not work in such cases
- It goes into an infinite loop

More Elimination of Left-Recursion

- In general

$$
S \rightarrow S \alpha_{1}|\ldots| S \alpha_{n}\left|\beta_{1}\right| \ldots \mid \beta_{m}
$$

- All strings derived from S start with one of $\beta_{1}, \ldots, \beta_{m}$ and continue with several instances of $\alpha_{1}, \ldots, \alpha_{n}$
- Rewrite as

$$
\begin{aligned}
& S \rightarrow \beta_{1} S^{\prime}|\ldots| \beta_{m} S^{\prime} \\
& S^{\prime} \rightarrow \alpha_{1} S^{\prime}|\ldots| \alpha_{n} S^{\prime} \mid \varepsilon
\end{aligned}
$$

General Left Recursion

- The grammar

$$
\begin{aligned}
& S \rightarrow A \alpha \mid \delta \\
& A \rightarrow S \beta
\end{aligned}
$$

is also left-recursive because

$$
S \rightarrow^{+} S \beta \alpha
$$

- This left-recursion can also be eliminated
[See a Compilers book for a general algorithm]

Predictive Parsers

- Like recursive-descent but parser can "predict" which production to use
- By looking at the next few tokens
- No backtracking
- Predictive parsers accept $L L(k)$ grammars
- L means "left-to-right" scan of input
- L means "leftmost derivation"
- k means "predict based on k tokens of lookahead"
- In practice, $L L(1)$ is used

Summary of Recursive Descent

- Simple and general parsing strategy
- Left-recursion must be eliminated first
- ... but that can be done automatically
- Unpopular because of backtracking
- Thought to be too inefficient
- In practice, backtracking is eliminated by restricting the grammar

LL(1) Languages

- In recursive-descent, for each non-terminal and input token there may be a choice of productions
- LL(1) means that for each non-terminal and token there is only one production that could lead to success
- Can be specified via 2D tables
- One dimension for current non-terminal to expand
- One dimension for next token
- A table entry contains one production

Predictive Parsing and Left Factoring

- Recall the grammar for arithmetic expressions

$$
\begin{aligned}
& E \rightarrow T+E \mid T \\
& T \rightarrow(E) \mid \text { int } \mid \text { int * } T
\end{aligned}
$$

- Hard to predict because
- For T two productions start with int
- For E it is not clear how to predict
- A grammar must be left-factored before it is used for predictive parsing

Left-Factoring Example

- Recall the grammar

$$
\begin{aligned}
& E \rightarrow T+E \mid T \\
& T \rightarrow(E) \mid \text { int } \mid \text { int* } T
\end{aligned}
$$

- Factor out common prefixes of productions

$$
\begin{aligned}
& E \rightarrow T X \\
& X \rightarrow+E \mid \varepsilon \\
& T \rightarrow(E) \mid \operatorname{int} Y \\
& Y \rightarrow * T \mid \varepsilon
\end{aligned}
$$

- This grammar is equivalent to the original one

LL(1) Parsing Table Example

- Left-factored grammar

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \text { int } Y & Y \rightarrow * T \mid \varepsilon
\end{array}
$$

- The LL(1) parsing table (\$ is the end marker):

	int	$*$	+	$($	$)$	$\$$
E	TX			TX		
X			+E		ε	ε
T	int Y			(E)		
Y		$* \mathrm{~T}$	ε		ε	ε

LL(1) Parsing Table Example (Cont.)

- Consider the [E, int] entry
- "When current non-terminal is E and next input is int, use production $E \rightarrow T X$ "
- This production can generate an int in the first place
- Consider the [$Y,+$] entry
- "When current non-terminal is Y and current token is + , get rid of $\mathrm{Y}^{\prime \prime}$
- Y can be followed by + only in a derivation in which Y $\rightarrow \varepsilon$

LL(1) Parsing Tables: Errors

- Blank entries indicate error situations
- Consider the $\left[E,{ }^{*}\right]$ entry
- "There is no way to derive a string starting with * from non-terminal E"

Using Parsing Tables

- Method similar to recursive descent, except
- For each non-terminal X
- We look at the next token a
- And choose the production shown at [X,a]
- We use a stack to keep track of pending nonterminals
- We reject when we encounter an error state
- We accept when we encounter end-of-input

LL(1) Parsing Algorithm

```
initialize stack \leftarrow <S $> and next
repeat
    case stack of
        <X, rest> : if T[X,*next] == Y Y ... Y n
            then stack \leftarrow<< (...Y rest>;
            else error();
        <t, rest> : if t == *next++
            then stack \leftarrow <rest>;
            else error();
until stack == <>
```


LL(1) Parsing Example

Stack	Input	Action					
E \$	int * int \$	TX					
TX \$	int * int \$	int Y					
int Y X \$	int * int \$	terminal					
Y \times \$	* int \$	* T					
* TX \$	* int \$	terminal					
TX \$	int \$	int Y					
int Y X \$	int \$	terminal					
$\mathrm{Y} \times$ \$	\$	ε					
X \$	\$	ε					
\$	\$	ACCEPT	*	+	()	\$
		E TX			TX		
		\times		+E		ε	8
		T-int Y			(E)		
		Y	* ${ }^{\text {r }}$	ε		ε	:

Constructing Parsing Tables

- LL(1) languages are those defined by a parsing table for the LL(1) algorithm
- where no table entry is multiply defined
- Once we have the table
- The parsing is simple and fast
- No backtracking is necessary
- We want to generate parsing tables from CFG

Computing First Sets

Definition

$$
\operatorname{First}(X)=\left\{\dagger \mid X \rightarrow^{*} \dagger \alpha\right\} \cup\left\{\varepsilon \mid X \rightarrow^{*} \varepsilon\right\}
$$

Algorithm sketch

1. $\operatorname{First}(t)=\{\dagger\}$
2. $\varepsilon \in \operatorname{First}(X)$ if $X \rightarrow \varepsilon$ is a production
3. $\varepsilon \in$ First (X) if $X \rightarrow A_{1} \ldots A_{n}$ and $\varepsilon \in$ First $\left(A_{i}\right)$ for each $1 \leq i \leq n$
4. First $(\alpha) \subseteq$ First (X) if $X \rightarrow A_{1} \ldots A_{n} \alpha$
and $\varepsilon \in \operatorname{First}\left(A_{i}\right)$ for each $1 \leq i \leq n$

Constructing Parsing Tables (Cont.)

- If $A \rightarrow \alpha$, where in the line of A do we place α ?
- In the column of \dagger where \dagger can start a string derived from α
$-\alpha \rightarrow{ }^{*}+\beta$
- We say that $\dagger \in$ First (α)
- In the column of \dagger if α is ε and \dagger can follow an A
$-S \rightarrow{ }^{*} \beta A+\delta$
- We say $\dagger \in$ Follow(A)
,

Computing First Sets

Definition

$$
\text { First }(X)=\left\{\dagger \mid X \rightarrow^{\star} \dagger \alpha\right\} \cup\left\{\varepsilon \mid X \rightarrow^{\star} \varepsilon\right\}
$$

More constructive algorithm

1. $\operatorname{First}(t)=\{\dagger\}$
2. For all productions $X \rightarrow A_{1} \ldots A_{n}$

- Add First $\left(A_{1}\right)-\{\varepsilon\}$ to First (X). Stop if $\varepsilon \notin$ First $\left(A_{1}\right)$.
- Add First $\left(A_{2}\right)-\{\varepsilon\}$ to First (X). Stop if $\varepsilon \notin$ First $\left(A_{2}\right)$.
- Add First $\left(A_{n}\right)-\{\varepsilon\}$ to First (X). Stop if $\varepsilon \notin$ First $\left(A_{n}\right)$.
- Add $\{\varepsilon\}$ to First (X).

First Sets: Example

- Recall the grammar
$E \rightarrow T X$
$\mathrm{X} \rightarrow+\mathrm{E} \mid \varepsilon$
$T \rightarrow(E) \mid \operatorname{int} Y$
$\mathrm{Y} \rightarrow{ }^{*} \mathrm{~T} \mid \varepsilon$
- First sets

First(() = \{ ($\}$	First(T) $=$ \{ int, ($\}$
First()) = \{) \}	First(E) $=\{$ int, ($\}$
First (int $)=\{$ int $\}$	First (X) $=\{+, \varepsilon\}$
First (+) $=\{+\}$	First $(Y)=\{*, \varepsilon\}$
First(*) $=\{$ * $\}$	

Computing Follow Sets

- Definition

```
    Follow(X) = { t| S }\mp@subsup{->}{}{*}\beta\times+\delta
```


- Intuition

- If $X \rightarrow A B$ then First $(B) \subseteq$ Follow (A) and Follow $(X) \subseteq$ Follow (B)
- Also if $B \rightarrow{ }^{*} \varepsilon$ then Follow $(X) \subseteq$ Follow (A)
- If S is the start symbol then $\$ \in$ Follow(S)

Computing Follow Sets (Cont.)

Algorithm sketch

1. $\$ \in$ Follow(S)
2. First $(\beta)-\{\varepsilon\} \subseteq$ Follow (X)

For each production $A \rightarrow \alpha \times \beta$
3. Follow $(A) \subseteq$ Follow (X)

For each production $A \rightarrow \alpha \times \beta$ where $\varepsilon \in \operatorname{First}(\beta)$

Computing Follow Sets (Cont.)

Definition

$$
\text { Follow }(X)=\left\{\dagger \mid S \rightarrow^{*} \beta X+\delta\right\}
$$

More constructive algorithm

1. First compute the First sets for all non-terminals
2. If S is the start symbol, add $\$$ to Follow(S)
3. For all productions $Y \rightarrow \ldots \times A_{1} \ldots A_{n}$

- Add First $\left(A_{1}\right)-\{\varepsilon\}$ to Follow (X). Stop if $\varepsilon \notin$ First $\left(A_{1}\right)$.
- Add First $\left(A_{2}\right)-\{\varepsilon\}$ to Follow (X). Stop if $\varepsilon \notin$ First $\left(A_{2}\right)$.
- ...
- Add First $\left(A_{n}\right)-\{\varepsilon\}$ to Follow (X). Stop if $\varepsilon \notin$ First $\left(A_{n}\right)$.
- Add Follow(Y) to Follow(X).

Follow Sets: Example

- Recall the grammar

$$
\begin{array}{ll}
E \rightarrow T X & X \rightarrow+E \mid \varepsilon \\
T \rightarrow(E) \mid \text { int } Y & Y \rightarrow{ }^{*} T \mid \varepsilon
\end{array}
$$

- Follow sets

Follow(+) = \{int, ($\}$ Follow(*) $=\{$ int, ($\}$
Follow(() = \{int, ($\}$ Follow(E) $=\{), \$\}$
Follow $(X)=\{\$)$,$\} \quad Follow (T)=\{+),, \$\}$
Follow()) $=\{+$,), \$ $\}$ Follow (Y) $=\{+),, \$\}$
Follow(int) $=\left\{{ }^{*},+\right.$,) , \$ $\}$

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
- For each terminal $\dagger \in \operatorname{First}(\alpha)$ do

$$
T[A, t]=\alpha
$$

- If $\varepsilon \in$ First(α), for each $\dagger \in \operatorname{Follow}(A)$ do $T[A, \dagger]=\alpha$
- If $\varepsilon \in \operatorname{First}(\alpha)$ and $\$ \in \operatorname{Follow}(A)$ do $T[A, \$]=\alpha$

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
- If G is ambiguous
- If G is left recursive
- If G is not left-factored
- And in other cases as well
- Most programming language grammars are not LL(1)
- There are tools that build $\operatorname{LL}(1)$ tables

Review

- For some grammars there is a simple parsing strategy

Predictive parsing (LL(1))

- Next time: a more powerful parsing strategy

