
Code Generation

2

The Main Idea of Today’s Lecture

We can emit stack-machine-style code for
expressions via recursion

(We will use MIPS assembly as our target language)

3

Lecture Outline

•

What are stack machines?
•

The MIPS assembly language

•

A simple source language (“Mini Bar”)
•

A stack machine implementation of the simple
language

4

Stack Machines

•

A simple evaluation model
•

No variables or registers

•

A stack of values for intermediate results
•

Each instruction:
–

Takes its operands from the top of the stack

–

Removes those operands from the stack
–

Computes the required operation on them

–

Pushes the result onto the stack

5

Example of Stack Machine Operation

The addition operation on a stack machine

5

7

9
…

pop

⊕

add

12
9
…

push

5
7
9
…

6

Example of a Stack Machine Program

•

Consider two instructions
–

push i

-

place the integer i

on top of the stack

–

add

-

pop topmost two elements, add them
and put the result back onto the stack

•

A program to compute 7 + 5:
push 7

push 5
add

7

Why Use a Stack Machine?

•

Each operation takes operands from the same
place and puts results in the same place

•

This means a uniform compilation scheme

•

And therefore a simpler compiler

8

Why Use a Stack Machine?

•

Location of the operands is implicit
–

Always on the top of the stack

•

No need to specify operands explicitly
•

No need to specify the location of the result

•

Instruction is “add”

as opposed to “add r1

, r2

”
 (or “add rd

ri1

ri2

”)
⇒ Smaller encoding of instructions
⇒ More compact programs

•

This is one of the reasons why Java Bytecode
 uses a stack evaluation model

9

Optimizing the Stack Machine

•

The add

instruction does 3 memory operations
–

Two reads and one write to the stack

–

The top of the stack is frequently accessed
•

Idea: keep the top of the stack in a dedicated
register (called the “accumulator”)
–

Register accesses are faster (why?)

•

The “add”

instruction is now
acc ← acc + top_of_stack

–

Only one memory operation!

10

Stack Machine with Accumulator

Invariants
•

The result of computing an expression is
always placed in the accumulator

•

For an operation op(e1

,…,en

)

compute each ei
 and then push the accumulator (= the result of

evaluating ei

) onto the stack
•

After the operation pop n-1 values

•

After computing an expression the stack is as
before

11

Stack Machine with Accumulator: Example

Compute 7 + 5

using an accumulator

…

acc

stack

5

7
…

acc ← 5

12

…

⊕

acc ← acc + top_of_stack
pop

…

7

acc ← 7
push acc

7

?

12

A Bigger Example: 3 + (7 + 5)

Code Acc Stack
? <init>

acc ← 3 3 <init>
push

acc 3 3, <init>

acc ← 7 7 3, <init>
push

acc 7 7, 3, <init>

acc ← 5 5 7, 3, <init>
acc ← acc + top_of_stack 12 7, 3, <init>
pop

12 3, <init>

acc ← acc + top_of_stack 15 3, <init>
pop

15 <init>

13

Notes

•

It is very important that the stack is
preserved across the evaluation of a
subexpression
–

Stack before the evaluation of 7 + 5

is 3, <init>

–

Stack after the evaluation of 7 + 5

is 3, <init>
–

The first operand is on top of the stack

14

From Stack Machines to MIPS

•

The compiler generates code for a stack
machine with accumulator

•

We want to run the resulting code on the
MIPS processor (or simulator)

•

We simulate the stack machine instructions
using MIPS instructions and registers

15

Simulating a Stack Machine on the MIPS…

•

The accumulator is kept in MIPS register $a0
•

The stack is kept in memory

•

The stack grows towards lower addresses
–

Standard convention on the MIPS architecture

•

The address of the next location on the stack
is kept in MIPS register $sp
–

Guess: what does “sp”

stand for?

–

The top of the stack is at address $sp + 4

16

MIPS Assembly

MIPS architecture
–

Prototypical Reduced Instruction Set Computer
(RISC) architecture

–

Arithmetic operations use registers for operands
and results

–

Must use load

and store

instructions to use
operands and store results in memory

–

32 general purpose registers (32 bits each)
•

We will use $sp, $a0

and $t1

(a temporary register)

Read the SPIM documentation for more details

17

A Sample of MIPS Instructions

–

lw

reg1

offset(reg2

)

“load word”
•

Load 32-bit word from address reg2

+ offset

into reg1

–

add

reg1

reg2

reg3

•

reg1

←

reg2

+ reg3

–

sw

reg1

offset(reg2

)

“store word”
•

Store 32-bit word in reg1

at address reg2

+ offset

–

addiu

reg1

reg2

imm

“add immediate”
•

reg1

←

reg2

+ imm

•

“u”

means overflow is not checked
–

li reg imm

“load immediate”

•

reg

←

imm

18

MIPS Assembly: Example

•

The stack-machine code for 7 + 5

in MIPS:

acc ← 7
push

acc

acc ← 5
acc ← acc + top_of_stack

pop

li $a0 7

sw $a0 0($sp)

addiu $sp $sp -4

li $a0 5

lw $t1 4($sp)

add $a0 $a0 $t1
addiu $sp $sp 4

•

We now generalize this to a simple language…

19

A Small Language

•

A language with only integers and integer
operations (“Mini Bar”)

P →

F P | F
F →

id(ARGS) begin E end

ARGS →

id, ARGS | id
E →

int

| id | if E1

= E2

then E3

else E4
| E1

+ E2

| E1

– E2

| id(ES)
ES →

E, ES | E

20

A Small Language (Cont.)

•

The first function definition f

is the “main”
 routine

•

Running the program on input i

means
computing f(i)

•

Program for computing the Fibonacci numbers:
fib(x)
begin

if x = 1 then 0 else
if x = 2 then 1 else fib(x - 1) + fib(x – 2)

end

21

Code Generation Strategy

•

For each expression e

we generate MIPS code
that:
–

Computes the value of e

in $a0

–

Preserves $sp

and the contents of the stack

•

We define a code generation function cgen(e)
 whose result is the

code generated for

e

–

cgen(e)

will be recursive

22

Code Generation for Constants

•

The code to evaluate an integer constant
simply copies it into the accumulator:

cgen(int) = li $a0

int

•

Note that this also preserves the stack, as
required

23

Code Generation for Addition

cgen(e1

+ e2

) =
cgen(e1

)

; $a0 ← value of e1

sw

$a0 0($sp)

; push that value

addiu

$sp $sp –4

; onto the stack
cgen(e2

)

; $a0 ← value of e2

lw

$t1 4($sp)

; grab value of e1

add $a0 $t1 $a0

; do the addition
addiu

$sp $sp 4

; pop the stack

Possible optimization:
Put the result of e1

directly in register $t1?

24

Code Generation for Addition: Wrong Attempt!

Optimization: Put the result of e1

directly in $t1?

cgen(e1

+ e2

) =
cgen(e1

)

; $a0 ← value of e1

move $t1 $a0

; save that value in $t1

cgen(e2

)

; $a0 ← value of e2

; may clobber $t1
add $a0 $t1 $a0

; perform the addition

Try to generate code for : 3 + (7 + 5)

25

Code Generation Notes

•

The code for e1

+ e2

is a template with “holes”
 for code for evaluating e1

and e2
•

Stack machine code generation is recursive

•

Code for e1

+ e2

consists of code for e1

and e2
 glued together

•

Code generation can be written as a recursive-
 descent of the AST

–

At least for (arithmetic) expressions

26

Code Generation for Subtraction and Constants

New instruction: sub reg1

reg2 reg3

Implements

reg1

←

reg2

- reg3

cgen(e1

- e2

) =
cgen(e1

)

; $a0 ← value of e1

sw

$a0 0($sp)

; push that value
addiu

$sp $sp –4

; onto the stack

cgen(e2

)

; $a0 ← value of e2

lw

$t1 4($sp)

; grab value of e1

sub $a0 $t1 $a0

; do the subtraction

addiu

$sp $sp 4

; pop the stack

27

Code Generation for Conditional

•

We need flow control instructions

•

New MIPS instruction: beq

reg1

reg2

label
–

Branch to label

if reg1

= reg2

•

New MIPS instruction: j label
–

Unconditional jump to label

28

Code Generation for If (Cont.)

cgen(if e1

= e2

then e3 else e4

) =
cgen(e1

)
sw $a0 0($sp)

addiu $sp $sp -4

cgen(e2

)
lw $t1 4($sp)

addiu $sp $sp 4

beq $a0 $t1 true_branch

false_branch:
cgen(e4

)
j end_if

true_branch:
cgen(e3

)
end_if:

29

Meet The Activation Record

•

Code for function calls and function
definitions depends on the layout of the
activation record (or “AR”)

•

A very simple AR suffices for this language:
–

The result is always in the accumulator

•

No need to store the result in the AR
–

The activation record holds actual parameters

•

For f(x1

,…,xn

)

push the arguments xn

,…,x1

onto the stack
•

These are the only variables in this language

30

Meet The Activation Record (Cont.)

•

The stack discipline guarantees that on
function exit, $sp

is the same as it was before

the args

got pushed (i.e., before function call)
•

We need the return address

•

It’s also handy to have a pointer to the
current activation
–

This pointer lives in register $fp

(frame pointer)

–

Reason for frame pointer will be clear shortly
(at least I hope!)

31

Layout of the Activation Record

Summary:

For this language, an AR with the
caller’s frame pointer, the actual parameters,
and the return address suffices

Picture:

Consider a call to f(x,y), the AR will be:

y
x

old FP

SP

FP

AR of f

32

Code Generation for Function Call

•

The calling sequence is the sequence of
instructions (of both caller and callee) to set
up a function invocation

•

New instruction: jal

label
–

Jump to label, save address of next instruction in
special register $ra

–

On other architectures the return address is
stored on the stack by the “call”

instruction

33

Code Generation for Function Call (Cont.)

cgen(f(e1

,…,en

)) =
sw $fp 0($sp)
addiu $sp $sp -4
cgen(en

)
sw $a0 0($sp)
addiu $sp $sp -4
…
cgen(e1

)
sw $a0 0($sp)
addiu $sp $sp -4
jal f_entry

•

The caller saves the value
of the frame pointer

•

Then it pushes the actual
parameters in reverse
order

•

The caller’s jal

puts the
return address in register
$ra

•

The AR so far is 4*n+4
 bytes long

34

Code Generation for Function Definition

•

New MIPS instruction: jr

reg
–

Jump to address in register

reg

cgen(f(x1

,…,xn

) begin e end) =
f_entry:
move $fp $sp
sw $ra 0($sp)
addiu $sp $sp -4
cgen(e)
lw $ra 4($sp)
addiu $sp $sp frame_size
lw $fp 0($sp)
jr $ra

•

Note: The frame pointer
points to the top, not
bottom of the frame

•

Callee saves old return
address, evaluates its
body, pops the return
address, pops the
arguments, and then
restores $fp

•

frame_size

= 4*n + 8

35

Calling Sequence: Example for f(x,y)

Before call On entry After body After call

SP

FP1

y
x

FP1

SP

FP1

SP

FP1

SP
RA

y
x

FP1

FP2

36

Code Generation for Variables/Parameters

•

Variable references are the last construct
•

The “variables”

of a function are just its

parameters
–

They are all in the AR

–

Pushed by the caller

•

Problem: Because the stack grows when
intermediate results are saved, the variables
are not at a fixed offset from $sp

37

Code Generation for Variables/Parameters

•

Solution: use the frame pointer
–

Always points to the return address on the stack

–

Since it does not move, it can be used to find the
variables

•

Let xi

be the ith

(i = 1,…,n) formal parameter of
the function for which code is being
generated

cgen(xi

) = lw $a0

offset($fp)

(offset = 4*i

)

38

Code Generation for Variables/Parameters

•

Example: For a function

f(x,y) begin e end
 the activation and frame pointer are set up as

follows (when evaluating e):

y
x

RA

old FP
•

x

is at $fp

+ 4

•

y

is at $fp

+ 8
FP

SP

39

Activation Record & Code Generation Summary

•

The activation record must be designed
together with the code generator

•

Code generation can be done by recursive
traversal of the AST

40

Discussion

•

Production compilers do different things
–

Emphasis is on keeping values (esp. current stack
frame) in registers

–

Intermediate results are laid out in the AR, not
pushed and popped from the stack

–

As a result, code generation is often performed in
synergy with register allocation

Next time: code generation for temporaries and
a deeper look into parameter passing
mechanisms

