
Introduction to Parsing
Ambiguity and Syntax Errors

2

Outline

•

Regular languages revisited

•

Parser overview

•

Context-free grammars (CFG’s)

• Derivations

• Ambiguity

• Syntax errors

3

Languages and Automata

•

Formal languages are very important in CS
–

Especially in programming languages and compilers

•

Regular languages
–

The weakest formal languages widely used

–

Many applications

•

We will also study context-free languages

4

Limitations of Regular Languages

Intuition:

A finite automaton that runs long
enough must repeat states

•

A finite automaton cannot remember number
of times it has visited a particular state

•

because a finite automaton has finite memory
–

Only enough to store in which state it is

–

Cannot count, except up to a finite limit
•

Many languages are not regular

•

E.g., the language of balanced parentheses is
not regular: { (i

)i

| i ≥

0}

5

The Functionality of the Parser

•

Input: sequence of tokens from lexer

•

Output: parse tree of the program

6

Example

•

If-then-else statement
if (x == y) then z = 1; else z = 2;

•

Parser input
IF (ID == ID) THEN ID = INT; ELSE ID = INT;

•

Possible parser output
IF-THEN-ELSE

==

ID ID

=

ID INT

=

ID INT

7

Comparison with Lexical Analysis

Phase Input Output

Lexer Sequence of
characters

Sequence of
tokens

Parser Sequence of
tokens

Parse tree

8

The Role of the Parser

•

Not all sequences of tokens are programs ...
•

Parser must distinguish between valid and
invalid sequences of tokens

•

We need
–

A language for describing valid sequences of tokens

–

A method for distinguishing valid from invalid
sequences of tokens

9

Context-Free Grammars

•

Many programming language constructs have a
recursive structure

•

E.g. A STMT is of the form
if COND then STMT else STMT , or
while COND do STMT , or
…

•

Context-free grammars are a natural notation
for this recursive structure

10

CFGs (Cont.)

A CFG consists of
–

A set of terminals T

–

A set of non-terminals N
–

A start symbol S (a non-terminal)

–

A set of productions

Assuming

X

∈ N the productions are of the form
X → ε

, or

X → Y1

Y2

... Yn

where

Yi

∈ N ∪T

11

Notational Conventions

•

In these lecture notes
–

Non-terminals are written upper-case

–

Terminals are written lower-case
–

The start symbol is the left-hand side of the first
production

Example: A small fragment of our language:

STMT →

if COND then STMT else STMT
⏐

while COND do STMT

⏐

id

= int

12

One More Example

Grammar for simple arithmetic expressions:

E →

E * E
⏐

E + E

⏐

(E)
⏐

id

13

The Language of a CFG

Read productions as replacement rules:

X →

Y1

... Yn
Means X

can be replaced by Y1

... Yn

(in this order)
X → ε

Means X

can be erased (replaced with empty string)

14

Key Idea

(1) Begin with a string consisting of the start
symbol “S”

(2) Replace any non-terminal X

in the string by
the right-hand side of some production

X → Y1

... Yn

(3) Repeat (2) until there are no non-terminals in
the string

15

The Language of a CFG (Cont.)

More formally, we write

if there is a production

We write

if

in 0 or more steps

1 1 1 1 1i n i m i nX X X X X Y Y X X− +→L L L L L

1 i mX Y Y→ L

1 1n mX X Y Y∗→L L

1 1n mX X Y Y→ → →L L L L

16

The Language of a CFG

Let G be a context-free grammar with start
symbol S. Then the language of G is:

{ }1 1| and every is a terminaln n ia a S a a a∗→K K

17

Terminals

•

Terminals are called so because there are no
rules for replacing them

•

Once generated, terminals are permanent

•

Terminals ought to be tokens of the language

18

Examples

L(G) is the language of the CFG G

Strings of balanced parentheses

Two equivalent ways of writing the grammar G:

()S S
S ε

→
→

()
|

S S
ε

→

{ }() | 0i i i ≥

or

19

Example

A fragment of our example language (simplified):

STMT →

if COND then STMT
⏐

if COND then STMT else STMT

⏐

while COND do STMT
⏐

id

= int

COND →

(id

== id)
⏐

(id

!= id)

20

Example (Cont.)

Some elements of the our language

id = int
if (id == id) then id = int else id = int
while (id != id) do id = int
while (id == id) do while (id != id) do id = int
if (id != id) then if (id == id) then id = int else id = int

21

Arithmetic Example

Simple arithmetic expressions:

Some elements of the language:

E E+E | E E | (E) | id→ ∗

id id + id
(id) id id
(id) id id (id)

∗
∗ ∗

22

Notes

The idea of a CFG is a big step.
But:

•

Membership in a language is just “yes”

or “no”;
we also need the parse tree of the input

•

Must handle errors gracefully

•

Need an implementation of CFG’s
–

e.g.,

yacc/bison/ML-yacc/...

24

Derivations and Parse Trees

A derivation is a sequence of productions

A derivation can be drawn as a tree
–

Start symbol is the tree’s root

–

For a production add children
to node

S → → →L L L

1 nX Y Y→ L
X 1 nY YL

25

Derivation Example

•

Grammar

•

String

E E+E | E E | (E) | id→ ∗

id id + id∗

26

Derivation Example (Cont.)

E
E+E
E E+E
id E + E
id id + E
id id + id

→
→ ∗
→ ∗
→ ∗
→ ∗

E

E

E E

E+

id*

idid

Ε → E+E | E*E | (E) | id

27

Derivation in Detail (1)

E

E

Ε → E+E | E*E | (E) | id

28

Derivation in Detail (2)

E
E+E→

E

E E+

Ε → E+E | E*E | (E) | id

29

Derivation in Detail (3)

E E

E
E+E
E +→ ∗

→

E

E

E E

E+

*

Ε → E+E | E*E | (E) | id

30

Derivation in Detail (4)

E
E+E
E E+E
id E + E→ ∗

→
→ ∗

E

E

E E

E+

*

id

Ε → E+E | E*E | (E) | id

31

Derivation in Detail (5)

E
E+E
E E+E
id E +
id id +

E
E→ ∗

→
→ ∗
→ ∗

E

E

E E

E+

*

idid

Ε → E+E | E*E | (E) | id

32

Derivation in Detail (6)

E
E+E
E E+E
id E + E
id id + E
id id + id

→
→ ∗
→ ∗
→
→ ∗

∗

E

E

E E

E+

id*

idid

Ε → E+E | E*E | (E) | id

33

Notes on Derivations

•

A parse tree has
–

Terminals at the leaves

–

Non-terminals at the interior nodes

•

An in-order traversal of the leaves is the
original input

•

The parse tree shows the association of
operations; the input string does not !

34

Left-most and Right-most Derivations

•

What was shown before
was a left-most derivation
–

At each step, we replaced
the left-most non-terminal

•

There is an equivalent
notion of a right-most
derivation
–

Shown on the right

E
E+E
E+id
E E + id
E id + id
id id + id

→
→
→ ∗
→ ∗
→ ∗

Ε → E+E | E*E | (E) | id

35

Right-most Derivation in Detail (1)

E

E

Ε → E+E | E*E | (E) | id

36

Right-most Derivation in Detail (2)

E
E+E→

E

E E+

Ε → E+E | E*E | (E) | id

37

Right-most Derivation in Detail (3)

id

E
E+E
E+→

→

E

E E+

id

Ε → E+E | E*E | (E) | id

38

Right-most Derivation in Detail (4)

E
E+E
E+id
E E + id

→

∗
→
→

E

E

E E

E+

id*

Ε → E+E | E*E | (E) | id

39

Right-most Derivation in Detail (5)

E
E+E
E+id
E E
E

+ id
id + id

→
→
→

∗
∗

→

E

E

E E

E+

id*

id

Ε → E+E | E*E | (E) | id

40

Right-most Derivation in Detail (6)

E
E+E
E+id
E E + id
E id + id
id id + id→ ∗

→
→
→ ∗
→ ∗

E

E

E E

E+

id*

idid

Ε → E+E | E*E | (E) | id

41

Derivations and Parse Trees

•

Note that:
–

right-most and left-most derivations have the same
parse tree

–

for each parse tree, there is a right-most and a
left-most derivation

•

The difference is just in the order in which
branches are added

42

Summary of Derivations

•

We are not just interested in whether
s ∈ L(G)

–

We need a parse tree for s

•

A derivation defines a parse tree
–

But one parse tree may have many derivations

•

Left-most and right-most derivations are
important in parser implementation

43

Ambiguity

•

Grammar:
E →

E + E | E * E | (E) | int

•

The string int * int

+ int

has two parse trees

E

E

E E

E*

int +

intint

E

E

E E

E+

int*

intint

44

Ambiguity (Cont.)

•

A grammar is ambiguous if it has more than
one parse tree for some string
–

Equivalently, if there is more than one right-most
or left-most derivation for some string

•

Ambiguity is bad

in programming languages
–

Leaves meaning of some programs ill-defined

•

Ambiguity is common

in programming languages
–

Arithmetic expressions

–

IF-THEN-ELSE

45

Dealing with Ambiguity

•

There are several ways to handle ambiguity

•

Most direct method is to rewrite the grammar
unambiguously

E →

T + E | T
T →

int * T | int | (E)

•

This grammar enforces precedence of *

over +

46

Ambiguity: The Dangling Else

•

Consider the following grammar

S →

if C then S
| if C then S else S
| OTHER

•

This grammar is also ambiguous

47

The Dangling Else: Example

•

The expression
if C1

then if C2

then S3

else S4

has two parse trees

if

C1 if

C2 S3 S4

if

C1 if

C2 S3

S4

•

Typically we want the second form

48

The Dangling Else: A Fix

•

else

should match the closest unmatched then
•

We can describe this in the grammar

S →

MIF /* all then

are matched */
| UIF /* some then

are unmatched */

MIF →

if C then MIF else MIF
| OTHER

UIF →

if C then S
| if C then MIF else UIF

•

Describes the same set of strings

49

The Dangling Else: Example Revisited

•

The expression if C1

then if C2

then S3

else S4

if

C1 if

C2 S3 S4

if

C1 if

C2 S3

S4

•

Not valid because the
then

expression is not

a MIF

•

A valid parse tree
(for a UIF)

50

Ambiguity

•

No general techniques for handling ambiguity

•

Impossible to convert automatically an
ambiguous grammar to an unambiguous one

•

Used with care, ambiguity can simplify the
grammar
–

Sometimes allows more natural definitions

–

However, we need disambiguation mechanisms

51

Precedence and Associativity Declarations

•

Instead of rewriting the grammar
–

Use the more natural (ambiguous) grammar

–

Along with disambiguating declarations

•

Most tools allow precedence and associativity
declarations

to disambiguate grammars

•

Examples …

52

Associativity Declarations

•

Consider the grammar E

→

E + E | int
•

Ambiguous: two parse trees of int + int + int

E

E

E E

E+

int +

intint

E

E

E E

E+

int+

intint

•

Left associativity declaration: %left +

53

Precedence Declarations

•

Consider the grammar E

→

E + E | E * E | int
And the string int + int * int

E

E

E E

E+

int *

intint

E

E

E E

E*

int+

intint

•

Precedence declarations: %left +
%left *

54

Error Handling

•

Purpose of the compiler is
–

To detect non-valid programs

–

To translate the valid ones
•

Many kinds of possible errors (e.g. in C)

Error kind Example Detected by …
Lexical

…

$ …

Lexer

Syntax

… x *% …

Parser
Semantic

…

int x; y = x(3); …

Type checker

Correctness

your favorite program

Tester/User

55

Syntax Error Handling

•

Error handler should
–

Report errors accurately and clearly

–

Recover from an error quickly
–

Not slow down compilation of valid code

•

Good error handling is not easy to achieve

56

Approaches to Syntax Error Recovery

•

From simple to complex
–

Panic mode

–

Error productions
–

Automatic local or global correction

•

Not all are supported by all parser generators

57

Error Recovery: Panic Mode

•

Simplest, most popular method

•

When an error is detected:
–

Discard tokens until one with a clear role is found

–

Continue from there

•

Such tokens are called synchronizing

tokens
–

Typically the statement or expression terminators

58

Syntax Error Recovery: Panic Mode (Cont.)

•

Consider the erroneous expression
(1 + +

2) + 3

•

Panic-mode recovery:
–

Skip ahead to next integer and then continue

•

(ML)-Yacc: use the special terminal error to
describe how much input to skip

E

→

int | E + E | (E) | error int | (error)

59

Syntax Error Recovery: Error Productions

•

Idea: specify some recovery rules in the
grammar based on known common mistakes

•

Essentially promotes common errors to
alternative syntax

•

Example:
–

Write 5 x

instead of 5 * x

–

Add the production E → … | E E
•

Disadvantage
–

Complicates the grammar

60

Syntax Error Recovery: Past and Present

•

(Distant) Past
–

Slow recompilation cycle (even once a day)

–

Find as many errors in one cycle as possible
–

Researchers could not let go of the topic

•

Present
–

Quick recompilation cycle

–

Users tend to correct one error/cycle
–

Complex error recovery is needed less

–

Panic-mode seems enough

	Introduction to Parsing Ambiguity and Syntax Errors
	Outline
	Languages and Automata
	Limitations of Regular Languages
	The Functionality of the Parser
	Example
	Comparison with Lexical Analysis
	The Role of the Parser
	Context-Free Grammars
	CFGs (Cont.)
	Notational Conventions
	One More Example
	The Language of a CFG
	Key Idea
	The Language of a CFG (Cont.)
	The Language of a CFG
	Terminals
	Examples
	Example
	Example (Cont.)
	Arithmetic Example
	Notes
	Derivations and Parse Trees
	Derivation Example
	Derivation Example (Cont.)
	Derivation in Detail (1)
	Derivation in Detail (2)
	Derivation in Detail (3)
	Derivation in Detail (4)
	Derivation in Detail (5)
	Derivation in Detail (6)
	Notes on Derivations
	Left-most and Right-most Derivations
	Right-most Derivation in Detail (1)
	Right-most Derivation in Detail (2)
	Right-most Derivation in Detail (3)
	Right-most Derivation in Detail (4)
	Right-most Derivation in Detail (5)
	Right-most Derivation in Detail (6)
	Derivations and Parse Trees
	Summary of Derivations
	Ambiguity
	Ambiguity (Cont.)
	Dealing with Ambiguity
	Ambiguity: The Dangling Else
	The Dangling Else: Example
	The Dangling Else: A Fix
	The Dangling Else: Example Revisited
	Ambiguity
	Precedence and Associativity Declarations
	Associativity Declarations
	Precedence Declarations
	Error Handling
	Syntax Error Handling
	Approaches to Syntax Error Recovery
	Error Recovery: Panic Mode
	Syntax Error Recovery: Panic Mode (Cont.)
	Syntax Error Recovery: Error Productions
	Syntax Error Recovery: Past and Present

