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Outline

•
 

Regular languages revisited

•
 

Parser overview

•
 

Context-free grammars (CFG’s)

• Derivations

• Ambiguity

• Syntax errors
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Languages and Automata

•
 

Formal languages are very important in CS
–

 
Especially in programming languages and compilers

•
 

Regular languages
–

 
The weakest formal languages widely used

–
 

Many applications

•
 

We will also study context-free languages
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Limitations of Regular Languages

Intuition:
 

A finite automaton that runs long 
enough must repeat states

•
 

A finite automaton cannot remember number 
of times it has visited a particular state

•
 

because a finite automaton has finite memory
–

 
Only enough to store in which state it is  

–
 

Cannot count, except up to a finite limit
•

 
Many languages are not regular

•
 

E.g., the language of balanced parentheses is 
not regular: { (i

 
)i

 
| i ≥

 
0}
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The Functionality of the Parser

•
 

Input: sequence of tokens from lexer

•
 

Output: parse tree of the program
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Example

•
 

If-then-else statement
if (x == y) then z = 1; else z = 2;

•
 

Parser input
IF (ID == ID) THEN ID = INT; ELSE ID = INT;

•
 

Possible parser output
IF-THEN-ELSE

==

ID ID

=

ID INT

=

ID INT
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Comparison with Lexical Analysis

Phase Input Output

Lexer Sequence of 
characters

Sequence of 
tokens

Parser Sequence of 
tokens

Parse tree
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The Role of the Parser

•
 

Not all sequences of tokens are programs ...
•

 
Parser must distinguish between valid and 
invalid sequences of tokens

•
 

We need
–

 
A language for describing valid sequences of tokens

–
 

A method for distinguishing valid from invalid 
sequences of tokens
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Context-Free Grammars

•
 

Many programming language constructs have a 
recursive structure

•
 

E.g. A STMT is of the form
if COND then STMT else STMT       , or
while COND do STMT                       , or
…

•
 

Context-free grammars are a natural notation 
for this recursive structure
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CFGs (Cont.)

A CFG consists of
–

 
A set of terminals T

–
 

A set of non-terminals N
–

 
A start symbol S (a non-terminal)

–
 

A set of productions 

Assuming
 

X
 

∈ N the productions are of the form
X → ε

 
, or

X → Y1
 

Y2
 

... Yn
 

where
 

Yi
 

∈ N ∪T
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Notational Conventions

•
 

In these lecture notes
–

 
Non-terminals are written upper-case

–
 

Terminals are written lower-case
–

 
The start symbol is the left-hand side of the first 
production

Example: A small fragment of our language:

STMT →
 

if COND then STMT else STMT
⏐

 
while COND do STMT

⏐
 

id
 

= int



12

One More Example

Grammar for simple arithmetic expressions:

E →
 

E * E
⏐

 
E + E

⏐
 

( E )
⏐

 
id
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The Language of a CFG

Read productions as replacement rules:

X →
 

Y1
 

... Yn
Means  X

 
can be replaced by Y1

 

... Yn
 

(in this order)
X → ε

Means  X
 

can be erased (replaced with empty string)



14

Key Idea

(1) Begin with a string consisting of the start 
symbol “S”

(2) Replace any non-terminal X
 

in the string by 
the right-hand side of some production

X → Y1
 

... Yn

(3) Repeat (2) until there are no non-terminals in 
the string
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The Language of a CFG (Cont.)

More formally, we write

if there is a production

We write

if

in 0 or more steps

1 1 1 1 1i n i m i nX X X X X Y Y X X− +→L L L L L

1  i mX Y Y→ L

1 1n mX X Y Y∗→L L

1 1n mX X Y Y→ → →L L L L
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The Language of a CFG

Let G be a context-free grammar with start 
symbol S. Then the language of G is:

{ }1 1|  and every  is a terminaln n ia a S a a a∗→K K
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Terminals

•
 

Terminals are called so because there are no 
rules for replacing them

•
 

Once generated, terminals are permanent

•
 

Terminals ought to be tokens of the language  
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Examples

L(G) is the language of the CFG G

Strings of balanced parentheses

Two equivalent ways of writing the grammar G:

( )S S
S ε

→
→

( )
|

S S
ε

→

{ }( ) | 0i i i ≥

or
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Example

A fragment of our example language (simplified):

STMT →
 

if COND then STMT
⏐

 
if COND then STMT else STMT

⏐
 

while COND do STMT
⏐

 
id

 
= int

COND →
 

(id
 

== id)
⏐

 
(id

 
!= id)
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Example (Cont.)

Some elements of the our language

id = int
if (id == id) then id = int else id = int
while (id != id) do id = int
while (id == id) do while (id != id) do id = int
if (id != id) then if (id == id) then id = int else id = int
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Arithmetic Example

Simple arithmetic expressions:

Some elements of the language:

E E+E | E E | (E) | id→ ∗

id id + id
(id) id  id
(id)  id id  (id)

∗
∗ ∗



22

Notes

The idea of a CFG is a big step.
But:

•
 

Membership in a language is just “yes”
 

or “no”; 
we also need the parse tree of the input

•
 

Must handle errors gracefully

•
 

Need an implementation of CFG’s
–

 
e.g.,

 
yacc/bison/ML-yacc/...
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Derivations and Parse Trees

A derivation is a sequence of productions

A derivation can be drawn as a tree
–

 
Start symbol is the tree’s root

–
 

For a production                        add children            
to node   

S → → →L L L

1 nX Y Y→ L
X 1  nY YL
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Derivation Example

•
 

Grammar

•
 

String

E E+E | E E | (E) | id→ ∗

id  id + id∗
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Derivation Example (Cont.)

E
E+E
E E+E
id E + E
id id + E
id id + id

→
→ ∗
→ ∗
→ ∗
→ ∗

E

E

E E

E+

id*

idid

Ε → E+E | E*E | (E) | id
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Derivation in Detail (1)

E

E

Ε → E+E | E*E | (E) | id
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Derivation in Detail (2)

E
E+E→

E

E E+

Ε → E+E | E*E | (E) | id
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Derivation in Detail (3)

E E

E
E+E
E +→ ∗

→

E

E

E E

E+

*

Ε → E+E | E*E | (E) | id
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Derivation in Detail (4)

E
E+E
E E+E
id E + E→ ∗

→
→ ∗

E

E

E E

E+

*

id

Ε → E+E | E*E | (E) | id
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Derivation in Detail (5)

E
E+E
E E+E
id E + 
id id + 

E
E→ ∗

→
→ ∗
→ ∗

E

E

E E

E+

*

idid

Ε → E+E | E*E | (E) | id
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Derivation in Detail (6)

E
E+E
E E+E
id E + E
id id + E
id id + id

→
→ ∗
→ ∗
→
→ ∗

∗

E

E

E E

E+

id*

idid

Ε → E+E | E*E | (E) | id
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Notes on Derivations

•
 

A parse tree has
–

 
Terminals at the leaves

–
 

Non-terminals at the interior nodes

•
 

An in-order traversal of the leaves is the 
original input

•
 

The parse tree shows the association of 
operations; the input string does not !
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Left-most and Right-most Derivations

•
 

What was shown before 
was a left-most derivation
–

 
At each step, we replaced 
the left-most non-terminal

•
 

There is an equivalent 
notion of a right-most 
derivation
–

 
Shown on the right

E
E+E
E+id
E E + id
E id + id
id id + id

→
→
→ ∗
→ ∗
→ ∗

Ε → E+E | E*E | (E) | id
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Right-most Derivation in Detail (1)

E

E

Ε → E+E | E*E | (E) | id
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Right-most Derivation in Detail (2)

E
E+E→

E

E E+

Ε → E+E | E*E | (E) | id
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Right-most Derivation in Detail (3)

id

E
E+E
E+→

→

E

E E+

id

Ε → E+E | E*E | (E) | id
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Right-most Derivation in Detail (4)

E
E+E
E+id
E E + id

→

∗
→
→

E

E

E E

E+

id*

Ε → E+E | E*E | (E) | id
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Right-most Derivation in Detail (5)

E
E+E
E+id
E E 
E

+ id
id + id

→
→
→

∗
∗

→

E

E

E E

E+

id*

id

Ε → E+E | E*E | (E) | id
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Right-most Derivation in Detail (6)

E
E+E
E+id
E E + id
E id + id
id id + id→ ∗

→
→
→ ∗
→ ∗

E

E

E E

E+

id*

idid

Ε → E+E | E*E | (E) | id
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Derivations and Parse Trees

•
 

Note that:
–

 
right-most and left-most derivations have the same 
parse tree

–
 

for each parse tree, there is a right-most and a 
left-most derivation

•
 

The difference is just in the order in which 
branches are added
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Summary of Derivations

•
 

We are not just interested in whether              
s ∈ L(G)

–
 

We need a parse tree for s

•
 

A derivation defines a parse tree
–

 
But one parse tree may have many derivations

•
 

Left-most and right-most derivations are 
important in parser implementation
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Ambiguity

•
 

Grammar:
E →

 
E + E | E * E |  ( E ) | int

•
 

The string int * int
 

+ int
 

has two parse trees

E

E

E E

E*

int +

intint

E

E

E E

E+

int*

intint
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Ambiguity (Cont.)

•
 

A grammar is ambiguous if it has more than 
one parse tree for some string
–

 
Equivalently, if there is more than one right-most 
or left-most derivation for some string

•
 

Ambiguity is bad
 

in programming languages
–

 
Leaves meaning of some programs ill-defined

•
 

Ambiguity is common
 

in programming languages
–

 
Arithmetic expressions

–
 

IF-THEN-ELSE
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Dealing with Ambiguity

•
 

There are several ways to handle ambiguity

•
 

Most direct method is to rewrite the grammar 
unambiguously

E →
 

T + E | T
T →

 
int * T | int | ( E )

•
 

This grammar enforces precedence of *
 

over +
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Ambiguity: The Dangling Else

•
 

Consider the following grammar

S →
 

if C then S
|  if C then S else S
|  OTHER

•
 

This grammar is also ambiguous
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The Dangling Else: Example

•
 

The expression
if C1

 

then if C2
 

then S3
 

else S4

has two parse trees

if

C1 if

C2 S3 S4

if

C1 if

C2 S3

S4

•
 

Typically we want the second form
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The Dangling Else: A Fix

•
 

else
 

should match the closest unmatched then
•

 
We can describe this in the grammar 

S →
 

MIF                   /* all then
 

are matched */ 
|  UIF                   /* some then

 
are unmatched */

MIF →
 

if C then MIF else MIF    
|   OTHER

UIF →
 

if C then S
|  if C then MIF else UIF 

•
 

Describes the same set of strings
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The Dangling Else: Example Revisited

•
 

The expression if C1
 

then if C2
 

then S3
 

else S4

if

C1 if

C2 S3 S4

if

C1 if

C2 S3

S4

•
 

Not valid because the 
then

 
expression is not 

a MIF

•
 

A valid parse tree 
(for a UIF)
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Ambiguity

•
 

No general techniques for handling ambiguity

•
 

Impossible to convert automatically an 
ambiguous grammar to an unambiguous one

•
 

Used with care, ambiguity can simplify the 
grammar
–

 
Sometimes allows more natural definitions

–
 

However, we need disambiguation mechanisms
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Precedence and Associativity Declarations

•
 

Instead of rewriting the grammar
–

 
Use the more natural (ambiguous) grammar

–
 

Along with disambiguating declarations

•
 

Most tools allow precedence and associativity 
declarations

 
to disambiguate grammars

•
 

Examples …
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Associativity Declarations

•
 

Consider the grammar            E
 

→
 

E + E | int 
•

 
Ambiguous: two parse trees of int + int + int

E

E

E E

E+

int +

intint

E

E

E E

E+

int+

intint

•
 

Left associativity declaration: %left  +
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Precedence Declarations

•
 

Consider the grammar  E
 

→
 

E + E | E  * E | int 
And the string int + int * int

E

E

E E

E+

int *

intint

E

E

E E

E*

int+

intint

•
 

Precedence declarations: %left  +
%left  *
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Error Handling

•
 

Purpose of the compiler is
–

 
To detect non-valid programs

–
 

To translate the valid ones
•

 
Many kinds of possible errors (e.g. in C)

Error kind       Example                Detected by …
Lexical

 
…

 
$ …

 
Lexer

Syntax
 

… x *% …
 

Parser
Semantic

 
…

 
int x; y = x(3); …

 
Type checker

Correctness
 

your favorite program
 

Tester/User
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Syntax Error Handling

•
 

Error handler should
–

 
Report errors accurately and clearly

–
 

Recover from an error quickly
–

 
Not slow down compilation of valid code

•
 

Good error handling is not easy to achieve
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Approaches to Syntax Error Recovery

•
 

From simple to complex
–

 
Panic mode

–
 

Error productions
–

 
Automatic local or global correction

•
 

Not all are supported by all parser generators
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Error Recovery: Panic Mode

•
 

Simplest, most popular method

•
 

When an error is detected:
–

 
Discard tokens until one with a clear role is found

–
 

Continue from there

•
 

Such tokens are called synchronizing
 

tokens
–

 
Typically the statement or expression terminators
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Syntax Error Recovery: Panic Mode (Cont.)

•
 

Consider the erroneous expression
(1 + +

 
2) + 3

•
 

Panic-mode recovery:
–

 
Skip ahead to next integer and then continue

•
 

(ML)-Yacc: use the special terminal error to 
describe how much input to skip

E
 

→
 

int | E + E | ( E ) | error int | ( error )
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Syntax Error Recovery: Error Productions

•
 

Idea: specify some recovery rules in the 
grammar based on known common mistakes

•
 

Essentially promotes common errors to 
alternative syntax

•
 

Example: 
–

 
Write 5 x

 
instead of 5 * x

–
 

Add the production E → … | E E
•

 
Disadvantage
–

 
Complicates the grammar
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Syntax Error Recovery: Past and Present

•
 

(Distant) Past
–

 
Slow recompilation cycle (even once a day)

–
 

Find as many errors in one cycle as possible
–

 
Researchers could not let go of the topic

•
 

Present
–

 
Quick recompilation cycle

–
 

Users tend to correct one error/cycle
–

 
Complex error recovery is needed less

–
 

Panic-mode seems enough
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