Abstract Syntax Trees & Top-Down Parsing

Review of Parsing

- Given a language L(G), a parser consumes a sequence of tokens s and produces a parse tree
- · Issues:
 - How do we recognize that $s \in L(G)$?
 - A parse tree of s describes $how s \in L(G)$
 - Ambiguity: more than one parse tree (possible interpretation) for some string s
 - Error: no parse tree for some string s
 - How do we construct the parse tree?

Abstract Syntax Trees

- So far, a parser traces the derivation of a sequence of tokens
- The rest of the compiler needs a structural representation of the program
- Abstract syntax trees
 - Like parse trees but ignore some details
 - Abbreviated as AST

Abstract Syntax Trees (Cont.)

Consider the grammar

$$E \rightarrow int | (E) | E + E$$

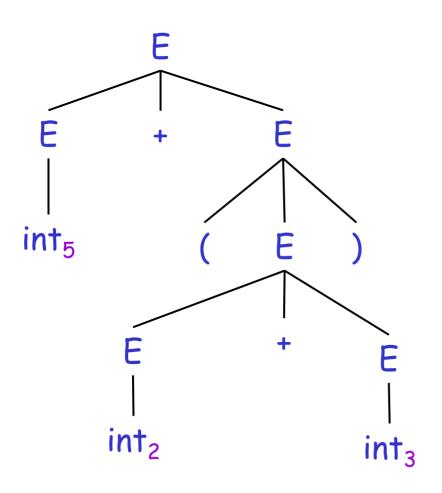
And the string

$$5 + (2 + 3)$$

After lexical analysis (a list of tokens)

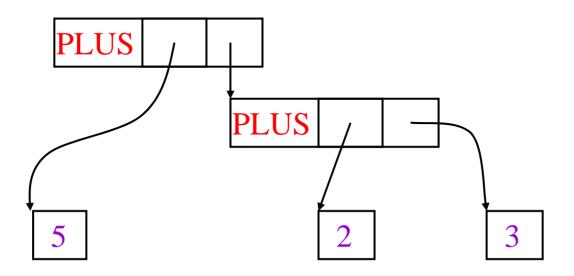
During parsing we build a parse tree ...

Example of Parse Tree



- Traces the operation of the parser
- Captures the nesting structure
- But too much info
 - Parentheses
 - Single-successor nodes

Example of Abstract Syntax Tree



- Also captures the nesting structure
- But <u>abstracts</u> from the concrete syntax \mapsto more compact and easier to use
- An important data structure in a compiler

Semantic Actions

- This is what we will use to construct ASTs
- Each grammar symbol may have <u>attributes</u>
 - An attribute is a property of a programming language construct
 - For terminal symbols (lexical tokens) attributes can be calculated by the lexer
- Each production may have an <u>action</u>
 - Written as: $X \rightarrow Y_1 \dots Y_n$ { action }
 - That can refer to or compute symbol attributes

Semantic Actions: An Example

Consider the grammar

$$E \rightarrow int \mid E + E \mid (E)$$

- For each symbol X define an attribute X.val
 - For terminals, val is the associated lexeme
 - For non-terminals, val is the expression's value (which is computed from values of subexpressions)
- We annotate the grammar with actions:

```
E \rightarrow int \qquad \{ E.val = int.val \} 
| E_1 + E_2 \qquad \{ E.val = E_1.val + E_2.val \} 
| (E_1) \qquad \{ E.val = E_1.val \}
```

Semantic Actions: An Example (Cont.)

- String: 5 + (2 + 3)
- Tokens: int₅ '+' '(' int₂ '+' int₃ ')'

Productions

$$E \rightarrow E_1 + E_2$$

$$E_1 \rightarrow int_5$$

$$E_2 \rightarrow (E_3)$$

$$E_3 \rightarrow E_4 + E_5$$

$$E_4 \rightarrow int_2$$

$$E_5 \rightarrow int_3$$

Equations

E.val =
$$E_1$$
.val + E_2 .val
 E_1 .val = int_5 .val = 5
 E_2 .val = E_3 .val
 E_3 .val = E_4 .val + E_5 .val
 E_4 .val = int_2 .val = 2
 E_5 .val = int_3 .val = 3

Semantic Actions: Dependencies

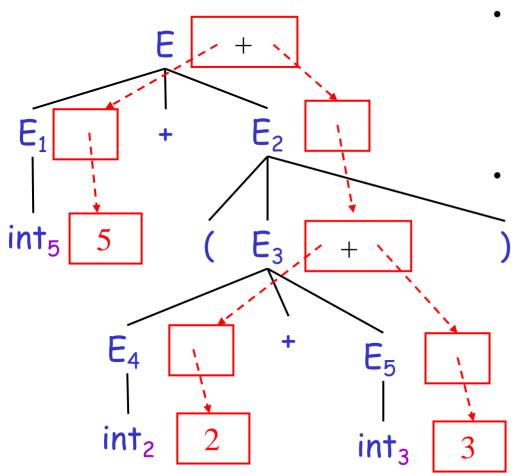
Semantic actions specify a system of equations

- Order of executing the actions is not specified
- · Example:

```
E_3.val = E_4.val + E_5.val
```

- Must compute E_4 .val and E_5 .val before E_3 .val
- We say that E_3 .val depends on E_4 .val and E_5 .val
- The parser must find the order of evaluation

Dependency Graph



- Each node labeled with a non-terminal E has one slot for its val attribute
 - Note the dependencies

Evaluating Attributes

- An attribute must be computed after all its successors in the dependency graph have been computed
 - In the previous example attributes can be computed bottom-up
- · Such an order exists when there are no cycles
 - Cyclically defined attributes are not legal

Semantic Actions: Notes (Cont.)

- Synthesized attributes
 - Calculated from attributes of descendents in the parse tree
 - E.val is a synthesized attribute
 - Can always be calculated in a bottom-up order
- Grammars with only synthesized attributes are called <u>S-attributed</u> grammars
 - Most frequent kinds of grammars

Inherited Attributes

- Another kind of attributes
- Calculated from attributes of the parent node(s) and/or siblings in the parse tree
- · Example: a line calculator

A Line Calculator

Each line contains an expression

$$E \rightarrow int \mid E + E$$

Each line is terminated with the = sign

$$L \rightarrow E = | + E =$$

- In the second form, the value of evaluation of the previous line is used as starting value
- A program is a sequence of lines

$$P \rightarrow \epsilon \mid P \perp$$

Attributes for the Line Calculator

- Each E has a synthesized attribute val
 - Calculated as before
- Each L has a synthesized attribute val

```
L \rightarrow E = \{ L.val = E.val \}
 | + E = \{ L.val = E.val + L.prev \}
```

- · We need the value of the previous line
- We use an inherited attribute L.prev

Attributes for the Line Calculator (Cont.)

- Each P has a synthesized attribute val
 - The value of its last line

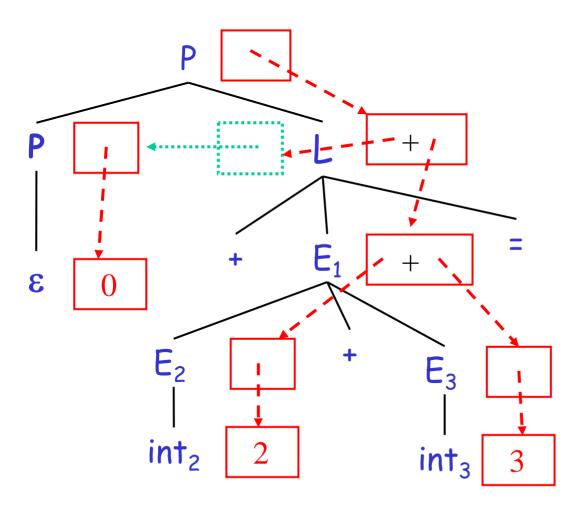
```
P \rightarrow \epsilon { P.val = 0 }

| P<sub>1</sub> L { P.val = L.val;

| L.prev = P<sub>1</sub>.val }
```

- Each L has an inherited attribute prev
 - L.prev is inherited from sibling P₁.val
- · Example ...

Example of Inherited Attributes



· val synthesized

prev inherited

 All can be computed in depth-first order

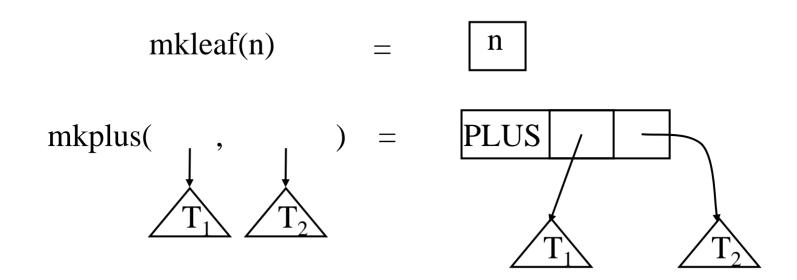
Semantic Actions: Notes (Cont.)

Semantic actions can be used to build ASTs

- And many other things as well
 - Also used for type checking, code generation, ...
- Process is called <u>syntax-directed translation</u>
 - Substantial generalization over CFGs

Constructing an AST

- · We first define the AST data type
- Consider an abstract tree type with two constructors:



Constructing a Parse Tree

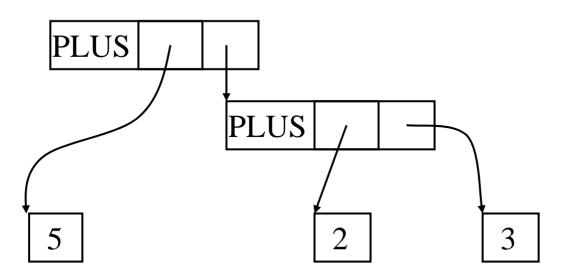
- · We define a synthesized attribute ast
 - Values of ast values are ASTs
 - We assume that int.lexval is the value of the integer lexeme
 - Computed using semantic actions

```
\begin{array}{ll} E \rightarrow int & \left\{ \begin{array}{ll} E.ast = mkleaf(int.lexval) \right\} \\ \mid E_1 + E_2 & \left\{ \begin{array}{ll} E.ast = mkplus(E_1.ast, E_2.ast) \right\} \\ \mid \left( E_1 \right) & \left\{ \begin{array}{ll} E.ast = E_1.ast \right\} \end{array} \end{array}
```

Parse Tree Example

- Consider the string int₅ '+' '(' int₂ '+' int₃ ')'
- A bottom-up evaluation of the ast attribute:

```
E.ast = mkplus(mkleaf(5),
mkplus(mkleaf(2), mkleaf(3))
```



Review of Abstract Syntax Trees

- We can specify language syntax using CFG
- A parser will answer whether s ∈ L(G)
- · ... and will build a parse tree
- · ... which we convert to an AST
- · ... and pass on to the rest of the compiler
- Next two & a half lectures:
 - How do we answer $s \in L(G)$ and build a parse tree?
- After that: from AST to assembly language

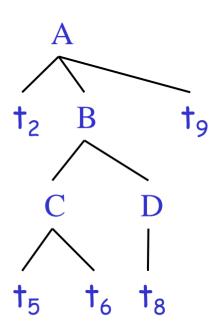
Second-Half of Lecture: Outline

- Implementation of parsers
- Two approaches
 - Top-down
 - Bottom-up
- · These slides: Top-Down
 - Easier to understand and program manually
- Then: Bottom-Up
 - More powerful and used by most parser generators

Introduction to Top-Down Parsing

 Terminals are seen in order of appearance in the token stream:

- · The parse tree is constructed
 - From the top
 - From left to right



Recursive Descent Parsing: Example

Consider the grammar

```
E \rightarrow T + E \mid T

T \rightarrow (E) \mid int \mid int * T
```

- Token stream is: int₅ * int₂
- Start with top-level non-terminal E
- Try the rules for E in order

Recursive Descent Parsing: Example (Cont.)

• Try $E_0 \rightarrow T_1 + E_2$

Token stream: int5 * int2

- Then try a rule for $T_1 \rightarrow (E_3)$
 - But (does not match input token int₅
- Try $T_1 \rightarrow int$. Token matches.
 - But + after T₁ does not match input token *
- Try $T_1 \rightarrow int * T_2$
 - This will match and will consume the two tokens.
 - Try $T_2 \rightarrow int$ (matches) but + after T_1 will be unmatched
 - Try $T_2 \rightarrow int * T_3$ but * does not match with end-of-input
- Has exhausted the choices for T_1
 - Backtrack to choice for E₀

$$E \rightarrow T + E \mid T$$

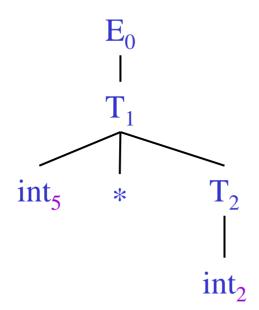
 $T \rightarrow (E) \mid int \mid int * T$

Recursive Descent Parsing: Example (Cont.)

• Try $E_0 \rightarrow T_1$

Token stream: ints * int2

- Follow same steps as before for T_1
 - And succeed with $T_1 \rightarrow int_5 * T_2$ and $T_2 \rightarrow int_2$
 - With the following parse tree



$$E \rightarrow T + E \mid T$$

 $T \rightarrow (E) \mid int \mid int * T$

Recursive Descent Parsing: Notes

- Easy to implement by hand
- Somewhat inefficient (due to backtracking)
- · But does not always work ...

When Recursive Descent Does Not Work

• Consider a production $5 \rightarrow 5$ a

```
bool S_1() { return S() && term(a); } bool S() { return S_1(); }
```

- S() will get into an infinite loop
- A <u>left-recursive grammar</u> has a non-terminal $S \rightarrow 5 \rightarrow 5 \alpha$ for some α
- Recursive descent does not work in such cases
 - It goes into an infinite loop

Elimination of Left Recursion

Consider the left-recursive grammar

$$S \rightarrow S \alpha \mid \beta$$

- 5 generates all strings starting with a β and followed by any number of α 's
- The grammar can be rewritten using rightrecursion

$$S \rightarrow \beta S'$$

 $S' \rightarrow \alpha S' \mid \epsilon$

More Elimination of Left-Recursion

In general

$$S \rightarrow S \alpha_1 \mid ... \mid S \alpha_n \mid \beta_1 \mid ... \mid \beta_m$$

- All strings derived from 5 start with one of $\beta_1,...,\beta_m$ and continue with several instances of $\alpha_1,...,\alpha_n$
- Rewrite as

$$S \rightarrow \beta_1 S' \mid \dots \mid \beta_m S'$$

 $S' \rightarrow \alpha_1 S' \mid \dots \mid \alpha_n S' \mid \epsilon$

General Left Recursion

The grammar

$$\begin{array}{c|c} \textbf{5} \to \textbf{A} \ \alpha \ | \ \delta \\ \\ \textbf{A} \to \textbf{5} \ \beta \\ \\ \textbf{is also left-recursive because} \end{array}$$

$$S \rightarrow^+ S \beta \alpha$$

This left-recursion can also be eliminated

[See a Compilers book for a general algorithm]

Summary of Recursive Descent

- Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - ... but that can be done automatically
- Unpopular because of backtracking
 - Thought to be too inefficient
- In practice, backtracking is eliminated by restricting the grammar

Predictive Parsers

- Like recursive-descent but parser can "predict" which production to use
 - By looking at the next few tokens
 - No backtracking
- Predictive parsers accept LL(k) grammars
 - L means "left-to-right" scan of input
 - L means "leftmost derivation"
 - k means "predict based on k tokens of lookahead"
- In practice, LL(1) is used

LL(1) Languages

- In recursive-descent, for each non-terminal and input token there may be a choice of productions
- LL(1) means that for each non-terminal and token there is only one production that could lead to success
- · Can be specified via 2D tables
 - One dimension for current non-terminal to expand
 - One dimension for next token
 - A table entry contains one production

Predictive Parsing and Left Factoring

Recall the grammar for arithmetic expressions

$$E \rightarrow T + E \mid T$$

 $T \rightarrow (E) \mid int \mid int * T$

- Hard to predict because
 - For T two productions start with int
 - For E it is not clear how to predict
- A grammar must be <u>left-factored</u> before it is used for predictive parsing

Left-Factoring Example

Recall the grammar

$$E \rightarrow T + E \mid T$$

 $T \rightarrow (E) \mid int \mid int * T$

Factor out common prefixes of productions

$$E \rightarrow TX$$

 $X \rightarrow + E \mid \epsilon$
 $T \rightarrow (E) \mid \text{int } Y$
 $Y \rightarrow * T \mid \epsilon$

This grammar is equivalent to the original one

LL(1) Parsing Table Example

Left-factored grammar

$$E \rightarrow TX$$
 $X \rightarrow + E \mid \epsilon$
 $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \epsilon$

The LL(1) parsing table (\$ is the end marker):

	int	*	+	()	\$
Е	ΤX			ΤX		
X			+ E		3	3
T	int Y			(E)		
У		* T	3		3	3

LL(1) Parsing Table Example (Cont.)

- Consider the [E, int] entry
 - "When current non-terminal is E and next input is int, use production $E \to T \, X$ "
 - This production can generate an int in the first place
- · Consider the [Y,+] entry
 - "When current non-terminal is Y and current token is +, get rid of Y"
 - Y can be followed by + only in a derivation in which $Y \rightarrow \epsilon$

LL(1) Parsing Tables: Errors

- Blank entries indicate error situations
 - Consider the [E,*] entry
 - "There is no way to derive a string starting with * from non-terminal E"

Using Parsing Tables

- Method similar to recursive descent, except
 - For each non-terminal X
 - We look at the next token a
 - And choose the production shown at [X,a]
- We use a stack to keep track of pending nonterminals
- · We reject when we encounter an error state
- We accept when we encounter end-of-input

LL(1) Parsing Algorithm

LL(1) Parsing Example

<u>Stack</u>	Input	Action
E\$	int * int \$	TX
TX\$	int * int \$	int Y
int Y X \$	int * int \$	terminal
Y X \$	* int \$	* T
* T X \$	* int \$	terminal
TX\$	int \$	int Y
int Y X \$	int \$	terminal
Y X \$	\$	3
X \$	\$	3
\$	\$	ACCEPT

	_					
	int	*	+	()	\$
Е	ΤX			ΤX		
X			+ E		3	3
Т	int Y			(E)		
У		* T	3		3	3

Constructing Parsing Tables

- LL(1) languages are those defined by a parsing table for the LL(1) algorithm
- · where no table entry is multiply defined
- · Once we have the table
 - The parsing is simple and fast
 - No backtracking is necessary
- We want to generate parsing tables from CFG

Constructing Parsing Tables (Cont.)

- If $A \rightarrow \alpha$, where in the line of A do we place α ?
- In the column of t where t can start a string derived from α
 - $\alpha \rightarrow^* \dagger \beta$
 - We say that $t \in First(\alpha)$
- In the column of t if α is ε and t can follow an A
 - $S \rightarrow^* \beta A \dagger \delta$
 - We say $t \in Follow(A)$

Computing First Sets

Definition

First(X) = {
$$t \mid X \rightarrow^* t\alpha$$
} \cup { $\epsilon \mid X \rightarrow^* \epsilon$ }

Algorithm sketch

- 1. First(t) = { t }
- 2. $\varepsilon \in \text{First}(X)$ if $X \to \varepsilon$ is a production
- 3. $\varepsilon \in \text{First}(X)$ if $X \to A_1 \dots A_n$ and $\varepsilon \in \text{First}(A_i)$ for each $1 \le i \le n$
- 4. First(α) \subseteq First(X) if $X \to A_1 \dots A_n \alpha$ and $\epsilon \in$ First(A_i) for each $1 \le i \le n$

Computing First Sets

Definition

First(X) = {
$$t \mid X \rightarrow^* t\alpha$$
} \cup { $\varepsilon \mid X \rightarrow^* \varepsilon$ }

More constructive algorithm

- 1. First(t) = { t }
- 2. For all productions $X \rightarrow A_1 \dots A_n$
 - Add First(A_1) { ε } to First(X). Stop if $\varepsilon \notin \text{First}(A_1)$.
 - Add First(A_2) { ϵ } to First(X). Stop if $\epsilon \notin First(A_2)$.
 - •
 - Add First(A_n) $\{\epsilon\}$ to First(X). Stop if $\epsilon \notin \text{First}(A_n)$.
 - Add {ε} to First(X).

First Sets: Example

Recall the grammar

```
E \rightarrow TX

T \rightarrow (E) \mid int Y
```

 $X \rightarrow + E \mid \varepsilon$ $Y \rightarrow * T \mid \varepsilon$

First sets

```
First(() = {()
First()) = {)}
First(int) = {int}
First(+) = {+}
First(*) = {*}
```

```
First( T ) = { int, ( }
First( E ) = { int, ( }
First( X ) = { +, ε }
First( Y ) = { *, ε }
```

Computing Follow Sets

Definition

Follow(X) = {
$$t \mid S \rightarrow^* \beta X + \delta$$
 }

Intuition

- If $X \rightarrow A$ B then $First(B) \subseteq Follow(A)$ and $Follow(X) \subseteq Follow(B)$
- Also if $B \to^* \epsilon$ then $Follow(X) \subseteq Follow(A)$
- If S is the start symbol then \$ ∈ Follow(S)

Computing Follow Sets (Cont.)

Algorithm sketch

- 1. $\$ \in Follow(S)$
- 2. First(β) { ϵ } \subseteq Follow(X) For each production $A \to \alpha \times \beta$
- 3. Follow(A) \subseteq Follow(X) For each production $A \to \alpha \times \beta$ where $\epsilon \in \text{First}(\beta)$

Computing Follow Sets (Cont.)

Definition

Follow(X) = {
$$t \mid S \rightarrow^* \beta X + \delta$$
 }

More constructive algorithm

- 1. First compute the First sets for all non-terminals
- 2. If 5 is the start symbol, add \$ to Follow(5)
- 3. For all productions $Y \rightarrow ... \times A_1 ... A_n$
 - Add First(A_1) { ε } to Follow(X). Stop if $\varepsilon \notin First(A_1)$.
 - Add First(A_2) { ε } to Follow(X). Stop if $\varepsilon \notin First(A_2)$.
 - •
 - Add First(A_n) $\{\epsilon\}$ to Follow(X). Stop if $\epsilon \notin First(A_n)$.
 - Add Follow(Y) to Follow(X).

Follow Sets: Example

Recall the grammar

```
E \rightarrow TX X \rightarrow + E \mid \varepsilon

T \rightarrow (E) \mid \text{int } Y Y \rightarrow * T \mid \varepsilon
```

Follow sets

```
Follow(+) = { int, (} Follow(*) = { int, (} Follow(()) = { int, (} Follow(E) = { ), $ } Follow(X) = { $, ) } Follow(T) = { +, ), $ } Follow()) = { +, ), $ } Follow(Y) = { +, ), $ } Follow(int) = { *, +, ), $ }
```

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $t \in First(\alpha)$ do $T[A, t] = \alpha$
 - If $\varepsilon \in \text{First}(\alpha)$, for each $t \in \text{Follow}(A)$ do $T[A, t] = \alpha$
 - If $\varepsilon \in \text{First}(\alpha)$ and $\$ \in \text{Follow}(A)$ do $T[A, \$] = \alpha$

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
 - And in other cases as well
- Most programming language grammars are not LL(1)
- There are tools that build LL(1) tables

Review

 For some grammars there is a simple parsing strategy

Predictive parsing (LL(1))

· Next time: a more powerful parsing strategy