Abstract Syntax Trees
&
Top-Down Parsing

Review of Parsing

» Given a language L(G), a parser consumes a
sequence of tokens s and produces a parse tree
- Issues:
- How do we recognize that s € L(G) ?
- A parse tree of s describes how s € L(G)

- Ambiguity: more than one parse tree (possible
interpretation) for some string s

- Error: no parse tree for some string s
- How do we construct the parse tree?

Abstract Syntax Trees

+ So far, a parser traces the derivation of a
sequence of tokens

* The rest of the compiler needs a structural
representation of the program

+ Abstract syntax trees

- Like parse trees but ignore some details
- Abbreviated as AST

Abstract Syntax Trees (Cont.)

» Consider the grammar
E—>int|(E)|E+E

* And the string
5+ (2 + 3)

+ After lexical analysis (a list of tokens)
ints '+ '("int, '+ int3 ')

* During parsing we build a parse tree ...

Example of Parse Tree

- - Traces the operation
T of the parser
E * E » Captures the nesting
‘ /////r\\\\ structure
in-|-5 (E) + But too much info
- Parentheses
/’\ - Single-successor nodes
E * E

Example of Abstract Syntax Tree

PLUS|

5 2 3

+ Also captures the nesting structure

+ But abstracts from the concrete syntax
— more compact and easier to use

* An important data structure in a compiler

Semantic Actions

- This is what we will use to construct ASTs

+ Each grammar symbol may have attributes

- An attribute is a property of a programming
language construct

- For terminal symbols (lexical tokens) attributes can
be calculated by the lexer

» Each production may have an action
- Writtenas: X -V, .. Y, { action}
- That can refer to or compute symbol attributes

Semantic Actions: An Example

» Consider the grammar
E—>int|E+E|(E)
» For each symbol X define an attribute X.val
- For terminals, val is the associated lexeme
- For non-terminals, val is the expression's value
(which is computed from values of subexpressions)
+ We annotate the grammar with actions:

E - int { E.val = int.val }
| E;+E, { E.val = E,.val + E,.val }
| (E1) { E.val = EI.VGI }

Semantic Actions: An Example (Cont.)

. String: 5+ (2 + 3)
+ Tokens: ints '+ '("int, '+ int5 ")

Productions Equations
E >E +E, E.val = E,.val + E,.val
E; — ints E,.val = intgs.val = 5
E, — (E3) E,.val = E;.val
E; > E,+E; E;.val = E,.val + Es.val
E, — int, E,.val = int,.val = 2
Es — int, Es.val = int5.val = 3

Semantic Actions: Dependencies

Semantic actions specify a system of equations
- Order of executing the actions is not specified

* Example:
E;.val = E,.val + Eg.val
- Must compute E,.val and E;.val before E.val
- We say that E;.val depends on E,.val and Es.val

» The parser must find the order of evaluation

10

Dependency Graph

+ Each node labeled with
E |-+~ \ a hon-terminal E has
“u one slot for its val
E,| \ + E, || attribute
I A\ Note the dependencies
in1'5 5 (E3) R + N)
T r
int, | 2 ,

int; | 3

11

Evaluating Attributes

» An attribute must be computed after all its
successors in the dependency graph have been
computed

- In the previous example attributes can be
computed bottom-up

* Such an order exists when there are no cycles
- Cyclically defined attributes are not legal

12

Semantic Actions: Notes (Cont.)

» Synthesized attributes

- Calculated from attributes of descendents in the
parse free

- E.val is a synthesized attribute
- Can always be calculated in a bottom-up order

* Grammars with only synthesized attributes
are called S-attributed grammars

- Most frequent kinds of grammars

13

Inherited Attributes

- Another kind of attributes

» Calculated from attributes of the parent
node(s) and/or siblings in the parse tree

+ Example: a line calculator

14

A Line Calculator

» Each line contains an expression

E—>int | E+E
» Each line is terminated with the = sign
Lo>E=| +E-=

» In the second form, the value of evaluation of
the previous line is used as starting value

» A program is a sequence of lines
P> ¢ | PL

15

Attributes for the Line Calculator

* Each E has a synthesized attribute val
- Calculated as before

» Each L has a synthesized attribute val
Lo>E-= { L.val = E.val }
| +E= {L.al =E.val + L.prev}
* We need the value of the previous line
+ We use an inherited attribute L.prev

16

Attributes for the Line Calculator (Cont.)

» Each P has a synthesized attribute val
- The value of its last line
P ¢ {Pval=0}
| P,L { P.val = L.val;
L.prev = P,.val }
* Each L has an inherited attribute prev
- L.prev is inherited from sibling P;.val

+ Example ...

17

Example of Inherited Attributes

- val synthesized

P | ~<L
S I R e - ; * prev inherited
— :
: /N
I v T >
4 4 El 17 + \\

& 10 /X\ S » All can be

4 Ny computed in
depth-first
order

18

Semantic Actions: Notes (Cont.)

- Semantic actions can be used to build ASTs

* And many other things as well
- Also used for type checking, code generation, ...

* Process is called syntax-directed translation

- Substantial generalization over CFGs

19

Constructing an AST

* We first define the AST data type

» Consider an abstract tree type with two

constructors:

mkleaf(n) =

mkplus(,) =

N

PLUS|

A

A

Constructing a Parse Tree

+ We define a synthesized attribute ast
- Values of ast values are ASTs

- We assume that int.lexval is the value of the
integer lexeme

- Computed using semantic actions

E — int { E.ast = mkleaf(int.lexval) }
| E;+E, { E.ast = mkplus(E;.ast, E,.ast) }
| (El) { E.ast = EI.GST }

21

Parse Tree Example

* Consider the string ints '+ (" int, '+ int; ")
* A bottom-up evaluation of the ast attribute:

E.ast = mkplus(mkleaf(5),
mkplus(mkleaf(2), mkleaf(3))

PLUS| |

Review of Abstract Syntax Trees

* We can specify language syntax using CFG
» A parser will answer whether s € L(G)

» ... and will build a parse tree

* ... which we convert to an AST

* ...and pass on to the rest of the compiler

- Next two & a half lectures:
- How do we answer s € L(G) and build a parse tree?

+ After that: from AST to assembly language

23

Second-Half of Lecture: Outline

* Implementation of parsers
» Two approaches
- Top-down
- Bottom-up
* These slides: Top-Down
- Easier to understand and program manually
* Then: Bottom-Up
- More powerful and used by most parser generators

24

Introduction to Top-Down Parsing

- Terminals are seen in order of
appearance in the token
sStream:

T, 5 To Tg 19

* The parse tree is constructed

- From the top
- From left to right

Recursive Descent Parsing: Example

» Consider the grammar
E>T+E | T
T>(E) |int | int*T
+ Token stream is: ints * int,
+ Start with top-level non-terminal E

* Try the rules for E in order

26

Recursive Descent Parsing: Example (Cont.)

Try Eo > T +E, Token stream: ints * int
Then try arule for T, — (E;)

- But (does not match input token int;

Try T; — int . Token matches.

- But + after T, does not match input token *

Try Ti—> int * T,

- This will match and will consume the two tokens.

* Try T, — int (matches) but + after T, will be unmatched
* Try T, — int * T, but * does not match with end-of-input

Has exhausted the choices for T,
- Backtrack to choice for Ej EST+E| T

T—(E) [int]int*T

Recursive Descent Parsing: Example (Cont.)

- TryE; > T, Token stream: ints * int2

» Follow same steps as before for T,
- And succeed with T, —» int; * T, and T, — int,
- With the following parse tree

EO
|
/-I,_l\
Int; = T,

| EST+E | T
int, T (E) |int]int* T

28

Recursive Descent Parsing: Notes

» Easy to implement by hand
+ Somewhat inefficient (due to backtracking)

* But does not always work ...

29

When Recursive Descent Does Not Work

» Consider a production S - S a
bool S,() { return S() && term(a); }
bool S() { return S,(); }

* S() will get into an infinite loop

* A left-recursive grammar has a hon-terminal S
S —>* Sa for some a

- Recursive descent does not work in such cases
- It goes into an infinite loop

30

Elimination of Left Recursion

» Consider the left-recursive grammar
S—>Salp

* S generates all strings starting with a 3 and
followed by any number of o's

+ The grammar can be rewritten using right-
recursion

S—>BS
S>aS|¢

31

More Elimination of Left-Recursion

* In generdl
S>Soy|.lSo,|B|.|B,

» All strings derived from S start with one of
B1,....B, and continue with several instances of

Ol1,e0,0p

+ Rewrite as
S>p;S|..|B,S
S>>, S|..|la,S ¢

32

General Left Recursion

* The grammar
S>Aalsd
A—>SP

is also left-recursive because

S—>*"SPa
- This left-recursion can also be eliminated

[See a Compilers book for a general algorithm]

33

Summary of Recursive Descent

+ Simple and general parsing strategy
- Left-recursion must be eliminated first
- ... but that can be done automatically

* Unpopular because of backtracking
- Thought to be too inefficient

* In practice, backtracking is eliminated by
restricting the grammar

34

Predictive Parsers

» Like recursive-descent but parser can
"predict” which production to use

- By looking at the next few tokens
- No backtracking

» Predictive parsers accept LL(k) grammars
- L means “left-to-right" scan of input
- L means "leftmost derivation”
- k means "predict based on k tokens of lookahead"

* Inpractice, LL(1) is used

35

LL(1) Languages

+ In recursive-descent, for each non-terminal
and input token there may be a choice of
productions

+ LL(1) means that for each non-terminal and
token there is only one production that could
lead to success

» Can be specified via 2D tables
- One dimension for current non-terminal to expand
- One dimension for next token
- A table entry contains one production

36

Predictive Parsing and Left Factoring

* Recall the grammar for arithmetic expressions
E-T+E | T
T>(E) | int | int*T

* Hard to predict because
- For T two productions start with int
- For E it is not clear how to predict

* A grammar must be left-factored before it is
used for predictive parsing

37

Left-Factoring Example

» Recall the grammar
E>T+E | T
T>(E) | int | int*T

* Factor out common prefixes of productions

E>TX
X—>+E | ¢
T>(E) | intVY
Yo>*T | ¢

* This grammar is equivalent to the original one

38

LL(1) Parsing Table Example

+ Left-factored grammar
E—->TX X—>+E | ¢
T—>(E) | intY YoS>*T | ¢

+ The LL(1) parsing table ($ is the end marker):

int * + () $
E T X TX
X +E g g
T int Y (E)
Y *T £ £ €

LL(1) Parsing Table Example (Cont.)

- Consider the [E, int] entry

- "When current non-terminal is E and next input is
int, use production E—> T X"

- This production can generate an int in the first
place
* Consider the [Y,+] entry

- "When current non-terminal is Y and current token
is +, get rid of Y"

- Y can be followed by + only in a derivation in which
Yo ¢

40

LL(1) Parsing Tables: Errors

- Blank entries indicate error situations
- Consider the [E,*] entry

- "There is no way to derive a string starting with *
from non-terminal E"

41

Using Parsing Tables

* Method similar to recursive descent, except

- For each non-terminal X
- We look at the next token a
- And choose the production shown at [X,a]

* We use a stack to keep track of pending non-
terminals

* We reject when we encounter an error state
+ We accept when we encounter end-of-input

42

LL(1) Parsing Algorithm

initialize stack « <S $> and next
repeat
case stack of
<X, rest> - 1f T[X,*next] == Y,.Y,
then stack « <Y,.Y, rest>;
else error();
<t, rest> - 1T t == *next++
then stack « <rest>;
else error();
until stack == <>

43

LL(1) Parsing Example

Stack Input Action
E$ int *int $ T X
TX$ int * int $ int Y
intY X $ int * int $ terminal
YX$ *int $ * T
*TXS$ *int $ terminal
TX$ int $ int Y
intY X $ int $ terminal
YX$ $ g

X$ $ g

$ $ ACCEPT

int

T X

T X

int Y

(E)

<L|H|IX|m

Constructing Parsing Tables

» LL(1) languages are those defined by a parsing
table for the LL(1) algorithm

* where no table entry is multiply defined

* Once we have the table
- The parsing is simple and fast
- No backtracking is necessary

+ We want to generate parsing tables from CFG

45

Constructing Parsing Tables (Cont.)

+ If A —> o, where in the line of A do we place o ?
* In the column of + where t can start a string
derived from o
-oa—> 1P
- We say that t € First(a)
» In the column of tif o is ¢ and T can follow an A
-S>"BAtHS
- We say t € Follow(A)

46

Computing First Sets

Definition
First(X)={t | X>"ta}u{e | X >" ¢}

Algorithm sketch
1. First(t)={1t}
2. ¢ € First(X) if X - ¢is a production
3. e € First(X) if X—> A, .. A,
and ¢ € First(A,) foreach1<i<n
4. First(a) < First(X) if X > A; .. A, «a
and ¢ € First(A.) foreach1<i<n

47

Computing First Sets

Definition
First(X)={t | X>"ta}u{e | X >" ¢}

More constructive algorithm
1. First(t)={t)
2. For all productions X —> A; .. A,

Add First(A;) - {e} to First(X). Stop if ¢ ¢ First(A,).
Add First(A,) - {e} to First(X). Stop if ¢ ¢ First(A,).

Add First(A,) - {e} o First(X). Stop if & ¢ First(A,).
Add {c} to First(X).

48

First Sets: Example

* Recall the grammar
E>TX
T>(E)|intY

+ First sets
First(() ={(}
First())={)}
First(int)= {int}
First(+)={+}
First(*)={"*}

X—>+E|¢
Yo>*T|¢

First(T)={int, (}
First(E) ={int, (}
First (X)={+, ¢}
First(Y)={%*, ¢}

49

Computing Follow Sets

+ Definition
Follow(X)={t| S >"BXt5}

- Intuition
- If X > A B then First(B) < Follow(A)
and Follow(X) < Follow(B)
- Also if B —" ¢ then Follow(X) < Follow(A)
- If Sis the start symbol then $ < Follow(S)

50

Computing Follow Sets (Cont.)

Algorithm sketch
1. $ € Follow(S)
2. First(B) - {¢} = Follow(X)

For each production A — a X 3

3. Follow(A) < Follow(X)
For each production A — o X 3 where ¢ € First(p)

51

Computing Follow Sets (Cont.)

Definition
Follow(X)={t|S—>"B X135}

More constructive algorithm
1. First compute the First sets for all hon-terminals
2. If Sisthe start symbol, add $ to Follow(S)
3. Forall productionsY — .. X A, .. A,
+ Add First(A,) - {¢} to Follow(X). Stop if ¢ ¢ First(A,).
Add First(A,) - {e} to Follow(X). Stop if ¢ ¢ First(A,).

Add First(A,) - {¢} to Follow(X). Stop if ¢ ¢ First(A,).
Add Follow(Y) to Follow(X).

52

Follow Sets: Example

* Recall the grammar

» Fol
Fo
Fo
Fo
Fo
Fo

E>TX

T>(E)]|intVY

ow sets
ow(+)={int,(} Fol
ow(()={int,(} Fo
ow(X)={%,)} Fo

ow(int)={*,+),%}

X—>+E|c¢
Yo>*T|e

ow(*)={int, (}
low(E)={), $}
low(T)={+).%}

ow())={+),$} Follow(¥Y)={+), %]}

53

Constructing LL(1) Parsing Tables

» Construct a parsing table T for CFG G

* For each production A — o in G do:
- For each terminal t € First(a) do
T[A, t] = a
- If ¢ € First(a), for each t € Follow(A) do
T[A, t] =
- If ¢ € First(a) and $ < Follow(A) do
T[A, $]=«a

54

Notes on LL(1) Parsing Tables

» If any entry is multiply defined then G is not
LL(1)
- If G is ambiguous
- If G is left recursive
- If G is not left-factored
- And in other cases as well

* Most programming language grammars are hot
LL(1)

+ There are tools that build LL(1) tables

55

Review

* For some grammars there is a simple parsing
strategy

Predictive parsing (LL(1))

* Next time: a more powerful parsing strategy

56

	Abstract Syntax Trees�&�Top-Down Parsing
	Review of Parsing
	Abstract Syntax Trees
	Abstract Syntax Trees (Cont.)
	Example of Parse Tree
	Example of Abstract Syntax Tree
	Semantic Actions
	Semantic Actions: An Example
	Semantic Actions: An Example (Cont.)
	Semantic Actions: Dependencies
	Dependency Graph
	Evaluating Attributes
	Semantic Actions: Notes (Cont.)
	Inherited Attributes
	A Line Calculator
	Attributes for the Line Calculator
	Attributes for the Line Calculator (Cont.)
	Example of Inherited Attributes
	Semantic Actions: Notes (Cont.)
	Constructing an AST
	Constructing a Parse Tree
	Parse Tree Example
	Review of Abstract Syntax Trees
	Second-Half of Lecture: Outline
	Introduction to Top-Down Parsing
	Recursive Descent Parsing: Example
	Recursive Descent Parsing: Example (Cont.)
	Recursive Descent Parsing: Example (Cont.)
	Recursive Descent Parsing: Notes
	When Recursive Descent Does Not Work
	Elimination of Left Recursion
	More Elimination of Left-Recursion
	General Left Recursion
	Summary of Recursive Descent
	Predictive Parsers
	LL(1) Languages
	Predictive Parsing and Left Factoring
	Left-Factoring Example
	LL(1) Parsing Table Example
	LL(1) Parsing Table Example (Cont.)
	LL(1) Parsing Tables: Errors
	Using Parsing Tables
	LL(1) Parsing Algorithm
	LL(1) Parsing Example
	Constructing Parsing Tables
	Constructing Parsing Tables (Cont.)
	Computing First Sets
	Computing First Sets
	First Sets: Example
	Computing Follow Sets
	Computing Follow Sets (Cont.)
	Computing Follow Sets (Cont.)
	Follow Sets: Example
	Constructing LL(1) Parsing Tables
	Notes on LL(1) Parsing Tables
	Review

