
Global Optimization

2

Lecture Outline

•

Global flow analysis

•

Global constant propagation

•

Liveness analysis

3

Local Optimization

Recall the simple basic-block optimizations
–

Constant propagation

–

Dead code elimination

x := 42

y := z * w

q := y + x

x := 42

y := z * w

q := y + 42

y := z * w

q := y + 42

4

Global Optimization

These optimizations can be extended to an
entire control-flow graph

x := 42

b > 0

y := z * w y := 0

q := y + x

5

Global Optimization

These optimizations can be extended to an
entire control-flow graph

x := 42

b > 0

y := z * w y := 0

q := y + x

6

Global Optimization

These optimizations can be extended to an
entire control-flow graph

x := 42

b > 0

y := z * w y := 0

q := y + 42

7

Correctness

•

How do we know whether it is OK to globally
propagate constants?

•

There are situations where it is incorrect:

x := 42

b > 0

y := z * w

x := 54

y := 0

q := y + x

8

Correctness (Cont.)

To replace a use of x

by a constant k we must
know that the following property ** holds:

On every path to the use of x,
the last assignment to x is x := k **

9

Example 1 Revisited

x := 42

b > 0

y := z * w y := 0

q := y + x

10

Example 2 Revisited

x := 42

b > 0

y := z * w

x := 54

y := 0

q := y + x

11

Discussion

•

The correctness condition is not trivial to
check

•

“All paths”

includes paths around loops and
through branches of conditionals

•

Checking the condition requires global analysis
–

An analysis that determines how data flows over
the entire control-flow graph of a function/method

12

Global Analysis

Global optimization tasks share several traits:
–

The optimization depends on knowing a property P
at a particular point in program execution

–

Proving P

at any point requires knowledge of the
entire function body

–

Property P

is typically undecidable

!
–

It is OK to be conservative: If the optimization
requires P

to be true, then want to know either

•

that P

is definitely true, or
•

that we don’t know whether P

is true

–

It is always safe to say “don’t know”
•

We try to say do not know as rarely as possible

13

Global Analysis (Cont.)

•

Global dataflow analysis is a standard
technique for solving problems with these
characteristics

•

Global constant propagation is one example of
an optimization that requires global dataflow
analysis

14

Global Constant Propagation

•

On every path to the use of x,
the last assignment to x is x := k **

•

Global constant propagation can be performed
at any point where property **

holds

•

Consider the case of computing **

for a single
variable x

at all program points

15

Global Constant Propagation (Cont.)

•

To make the problem precise, we associate
one of the following values with x

at every

program point

Don’t know whether

x

is a constant*

x

= constant cc
This statement never executes#

interpretationvalue

16

Example

x = *
x = 42

x = 42

x = 42
x = 54

x = *

x := 42

b > 0

y := z * w

x := 54

y := 0

q := y + x

x = 42

x = 42

x = *

17

Using the Information

•

Given global constant information, it is easy to
perform the optimization
–

Simply inspect the x = ?

associated with a

statement using x
–

If x

is constant at that point replace that use of x

 by the constant

•

But how do we compute the properties x = ?

18

The Analysis Idea

The analysis of a (complicated) program can be
expressed as a combination of simple rules
relating the change in information between

adjacent statements

19

Explanation

•

The idea is to “push”

or “transfer”

information
from one statement to the next

•

For each statement s, we compute information
about the value of x

immediately before and

after s
Cin

(x,s)

= value of x

before s
Cout

(x,s)

= value of x

after s

20

Transfer Functions

•

Define a transfer function

that transfers
information from one statement to another

•

In the following rules, let statement s

have as
immediate predecessors statements p1

,…,pn

21

Rule 1

if Cout

(x, pi

) = *

for any i, then Cin

(x, s) = *

s

x = *

x = *

x = ?x = ?x = ?

22

Rule 2

If

Cout

(x, pi

) = c and

Cout

(x, pj

) = d and

d ≠

c
then Cin

(x, s) = *

s

x = d

x = *

x = ?x = ?x = c

23

Rule 3

if Cout

(x, pi

) = c or # for all i,
then Cin

(x, s) = c

s

x = c

x = c

x = #x = # x = c

24

Rule 4

if Cout

(x, pi

) =

for all i,
then Cin

(x, s) = #

s

x = #

x = #

x = #x = # x = #

25

The Other Half

•

Rules 1-4 relate the out of one statement to
the in of the successor statement
–

they propagate information forward

across CFG

edges

•

We also need rules relating the in of a
statement to the out

of the same statement

–

to propagate information across statements

26

Rule 5

Cout

(x, s) =

if Cin

(x, s) = #

s
x = #

x = #

27

Rule 6

Cout

(x, x := c) =

c if c

is a constant

x := c
x = ?

x = c

28

Rule 7

Cout

(x, x := f(…)) =

*

x := f(…)
x = ?

x = *

This rule says that we do not perform inter-procedural
analysis (i.e. we do not look at what other functions do)

where f

is a function other than the one being analyzed

29

Rule 8

Cout

(x, y := …) =

Cin

(x, y := …) if

x ≠

y

y := . . .
x = a

x = a

30

An Algorithm

1.

For every entry s

to the function, set
Cin

(x, s) = *

2.

Set Cin

(x, s) = Cout

(x, s) = #

everywhere else

3.

Repeat until all points satisfy 1-8:
Pick s

not satisfying 1-8 and update using the

appropriate rule

31

The Value #

To understand why we need #, look at a loop

x := 42

b > 0

y := z * w y := 0

q := y + x

q < b

x = *
x = 42

x = 42

x = 42

x = 42

32

Discussion

•

Consider the statement y := 0
•

To compute whether x

is constant at this

point, we need to know whether x

is constant
at the two predecessors
–

x := 42

–

q := y + x

•

But information for q := y + x

depends on its
predecessors, including y := 0!

33

The Value # (Cont.)

•

Because of cycles, all points must have values
at all times

•

Intuitively, assigning some initial value allows
the analysis to break cycles

•

The initial value # means “So far as we know,
control never reaches this point”

34

Example

x := 42

b > 0

y := z * w y := 0

q := x + y

q < b

x = *
x = 42

x = 42

x = 42

x = 42

x = #

x = #

x = #

35

Example

x := 42

b > 0

y := z * w y := 0

q := x + y

q < b

x = *
x = 42

x = 42

x = 42

x = 42

x = #

x = #

x = 42

36

Example

x := 42

b > 0

y := z * w y := 0

q := x + y

q < b

x = *
x = 42

x = 42

x = 42

x = 42

x = #

x = 42

x = 42

37

Example

x := 42

b > 0

y := z * w y := 0

q := x + y

q < b

x = *
x = 42

x = 42

x = 42

x = 42

x = 42

x = 42

x = 42

38

Orderings

•

We can simplify the presentation of the
analysis by ordering the values

<

c <

*

•

Drawing a picture with “lower”

values drawn
lower, we get

#

*

-1 0 1

39

Orderings (Cont.)

•

*

is the greatest value, #

is the least
–

All constants are in between and incomparable

•

Let lub be the least-upper bound in this
ordering

•

Rules 1-4 can be written using lub:
Cin(x, s) = lub { Cout(x, p) | p is a predecessor of s }

40

Termination

•

Simply saying “repeat until nothing changes”
 doesn’t guarantee that eventually we reach a

point where nothing changes

•

The use of lub

explains why the algorithm
terminates
–

Values start as #

and only increase

–

#

can change to a constant, and a constant to *
–

Thus, C_(x, s)

can change at most twice

41

Termination (Cont.)

Thus the algorithm is linear in program size

Number of steps = // worst case
Number of C_(….)

values computed * 2 =

Number of program statements * 4

42

Liveness Analysis

Once constants have been globally propagated,
we would like to eliminate dead code

After constant propagation, x := 42 is dead
(assuming x is not used elsewhere)

x := 42

b > 0

y := z * w y := 0

q := y + x

43

Live and Dead Variables

•

The first value of x

is
dead (never used)

•

The second value of x is
live (may be used)

•

Liveness is an important
concept for the compiler

x := 17

x := 42

y := x

44

Liveness

A variable

x

is live at statement s

if
–

There exists a statement s’

that uses x

–

There is a path from s

to s’

–

That path has no intervening assignment to x

45

Global Dead Code Elimination

•

A statement x := …

is dead code if x

is dead
after the assignment

•

Dead statements can be deleted from the
program

•

But we need liveness information first . . .

46

Computing Liveness

•

We can express liveness in terms of
information transferred between adjacent
statements, just as in copy propagation

•

Liveness is simpler than constant propagation,
since it is a boolean

property (true or false)

47

Liveness Rule 1

Lout

(x, p) = ∨

{ Lin

(x, s) | s a successor of

p }

p

x = true

x = true

x = ?x = ?x = ?

48

Liveness Rule 2

Lin

(x, s) =

true if s

refers to x

on the RHS

…:= f(x)
x = true

x = ?

49

Liveness Rule 3

Lin

(x, x := e) =

false if e does not refer to

x

x := e
x = false

x = ?

50

Liveness Rule 4

Lin

(x, s) =

Lout

(x, s)

if s

does not refer to

x

s
x = a

x = a

51

Algorithm

1.

Let all L_(…) = false

initially

2.

Repeat until all statements s

satisfy rules 1-4
Pick s

where one of 1-4 does not hold and

update using the appropriate rule

52

Termination

•

A value can change from false

to true, but not
the other way around

•

Each value can change only once, so
termination is guaranteed

•

Once the analysis information is computed, it
is simple to eliminate dead code

53

Forward vs. Backward Analysis

We have seen two kinds of analysis:

•

An analysis that enables constant propagation:
–

this is a forwards analysis: information is pushed
from inputs to outputs

•

An analysis that calculates variable liveness:
–

this is a backwards analysis: information is pushed
from outputs back towards inputs

54

Global Flow Analyses

•

There are many other global flow analyses

•

Most can be classified as either forward or
backward

•

Most also follow the methodology of local
rules relating information between adjacent
program points

	Global Optimization
	Lecture Outline
	Local Optimization
	Global Optimization
	Global Optimization
	Global Optimization
	Correctness
	Correctness (Cont.)
	Example 1 Revisited
	Example 2 Revisited
	Discussion
	Global Analysis
	Global Analysis (Cont.)
	Global Constant Propagation
	Global Constant Propagation (Cont.)
	Example
	Using the Information
	The Analysis Idea
	Explanation
	Transfer Functions
	Rule 1
	Rule 2
	Rule 3
	Rule 4
	The Other Half
	Rule 5
	Rule 6
	Rule 7
	Rule 8
	An Algorithm
	The Value #
	Discussion
	The Value # (Cont.)
	Example
	Example
	Example
	Example
	Orderings
	Orderings (Cont.)
	Termination
	Termination (Cont.)
	Liveness Analysis
	Live and Dead Variables
	Liveness
	Global Dead Code Elimination
	Computing Liveness
	Liveness Rule 1
	Liveness Rule 2
	Liveness Rule 3
	Liveness Rule 4
	Algorithm
	Termination
	Forward vs. Backward Analysis
	Global Flow Analyses

