
Global Optimization
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Lecture Outline

•
 

Global flow analysis

•
 

Global constant propagation

•
 

Liveness analysis
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Local Optimization

Recall the simple basic-block optimizations
–

 
Constant propagation

–
 

Dead code elimination

x := 42

y := z * w

q := y + x

x := 42

y := z * w

q := y + 42

y := z * w

q := y + 42



4

Global Optimization

These optimizations can be extended to an 
entire control-flow graph

x := 42

b > 0

y := z * w y := 0

q := y + x
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Global Optimization

These optimizations can be extended to an 
entire control-flow graph
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y := z * w y := 0

q := y + x
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Global Optimization

These optimizations can be extended to an 
entire control-flow graph

x := 42

b > 0

y := z * w y := 0

q := y + 42
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Correctness

•
 

How do we know whether it is OK to globally 
propagate constants?

•
 

There are situations where it is incorrect:

x := 42

b > 0

y := z * w

x := 54

y := 0

q := y + x
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Correctness (Cont.)

To replace a use of x
 

by a constant k we must 
know that the following property ** holds:

On every path to the use of x,                    
the last assignment to x is x := k    **
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Example 1 Revisited

x := 42

b > 0

y := z * w y := 0

q := y + x
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Example 2 Revisited

x := 42

b > 0

y := z * w

x := 54

y := 0

q := y + x
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Discussion

•
 

The correctness condition is not trivial to 
check

•
 

“All paths”
 

includes paths around loops and 
through branches of conditionals

•
 

Checking the condition requires global analysis
–

 
An analysis that determines how data flows over 
the entire control-flow graph of a function/method
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Global Analysis

Global optimization tasks share several traits:
–

 
The optimization depends on knowing a property P 
at a particular point in program execution

–
 

Proving P
 

at any point requires knowledge of the 
entire function body

–
 

Property P
 

is typically undecidable
 

!
–

 
It is OK to be conservative:  If the optimization 
requires P

 
to be true, then want to know either

•
 

that P
 

is definitely true, or
•

 
that we don’t know whether P

 
is true

–
 

It is always safe to say “don’t know”
•

 
We try to say do not know as rarely as possible
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Global Analysis (Cont.)

•
 

Global dataflow analysis is a standard 
technique for solving problems with these 
characteristics

•
 

Global constant propagation is one example of 
an optimization that requires global dataflow 
analysis
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Global Constant Propagation

•
 

On every path to the use of x,                         
the last assignment to x is x := k    **

•
 

Global constant propagation can be performed 
at any point where property **

 
holds

•
 

Consider the case of computing **
 

for a single 
variable x

 
at all program points
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Global Constant Propagation (Cont.)

•
 

To make the problem precise, we associate 
one of the following values with x

 
at every 

program point

Don’t know whether
 

x
 

is a constant*

x
 

= constant cc
This statement never executes#

interpretationvalue
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Example

x = *
x = 42

x = 42

x = 42
x = 54

x = *

x := 42

b > 0

y := z * w

x := 54

y := 0

q := y + x

x = 42

x = 42

x = *
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Using the Information

•
 

Given global constant information, it is easy to 
perform the optimization
–

 
Simply inspect the x = ?

 
associated with a 

statement using x
–

 
If x

 
is constant at that point replace that use of x

 by the constant

•
 

But how do we compute the properties x = ?
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The Analysis Idea

The analysis of a (complicated) program can be 
expressed as a combination of simple rules 
relating the change in information between 

adjacent statements
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Explanation

•
 

The idea is to “push”
 

or “transfer”
 

information 
from one statement to the next

•
 

For each statement s, we compute information 
about the value of x

 
immediately before and 

after s
Cin

 

(x,s)
 

= value of x
 

before s
Cout

 

(x,s)
 

= value of x
 

after s
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Transfer Functions

•
 

Define a transfer function
 

that transfers 
information from one statement to another

•
 

In the following rules, let statement s
 

have as 
immediate predecessors statements p1

 

,…,pn
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Rule 1

if Cout
 

(x, pi
 

) = *
 

for any i, then Cin
 

(x, s) = *

s

x = *

x = *

x = ?x = ?x = ?
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Rule 2

If
 

Cout
 

(x, pi
 

) = c  and
 

Cout
 

(x, pj
 

) = d  and
 

d ≠
 

c 
then Cin

 

(x, s) = *

s

x = d

x = *

x = ?x = ?x = c
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Rule 3

if Cout
 

(x, pi
 

) = c  or  # for all i,
then Cin

 

(x, s) = c

s

x = c

x = c

x = #x = # x = c
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Rule 4

if Cout
 

(x, pi
 

) =
 

# for all i,
then Cin

 

(x, s) = #

s

x = #

x = #

x = #x = # x = #
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The Other Half

•
 

Rules 1-4 relate the out of one statement to 
the in of the successor statement
–

 
they propagate information forward

 
across CFG 

edges

•
 

We also need rules relating the in  of a 
statement to the out

 
of the same statement

–
 

to propagate information across statements
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Rule 5

Cout
 

(x, s) =
 

# if Cin
 

(x, s) = #

s
x = #

x = #
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Rule 6

Cout
 

(x, x := c) =
 

c if c
 

is a constant

x := c
x = ?

x = c
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Rule 7

Cout
 

(x, x := f(…)) =
 

*

x := f(…)
x = ?

x = *

This rule says that we do not perform inter-procedural 
analysis (i.e. we do not look at what other functions do)

where f
 

is a function other than the one being analyzed
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Rule 8

Cout
 

(x, y := …) =
 

Cin
 

(x, y := …)  if
 

x ≠
 

y

y := . . .
x = a

x = a
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An Algorithm

1.
 

For every entry s
 

to the function,  set       
Cin

 

(x, s) = *

2.
 

Set Cin
 

(x, s) = Cout
 

(x, s) = #
 

everywhere else

3.
 

Repeat until all points satisfy 1-8:
Pick s

 
not satisfying 1-8 and update using the 

appropriate rule
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The Value #

To understand why we need #, look at a loop

x := 42

b > 0

y := z * w y := 0

q := y + x

q < b

x = *
x = 42

x = 42

x = 42

x = 42



32

Discussion

•
 

Consider the statement y := 0
•

 
To compute whether x

 
is constant at this 

point, we need to know whether x
 

is constant 
at the two predecessors
–

 
x := 42

–
 

q := y + x

•
 

But information for q := y + x
 

depends on its 
predecessors, including y := 0!
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The Value # (Cont.)

•
 

Because of cycles, all points must have values 
at all times

•
 

Intuitively, assigning some initial value allows 
the analysis to break cycles

•
 

The initial value # means “So far as we know, 
control never reaches this point”
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Example

x := 42

b > 0

y := z * w y := 0

q := x + y

q < b

x = *
x = 42

x = 42

x = 42

x = 42

x = #

x = #

x = #
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Example

x := 42

b > 0

y := z * w y := 0

q := x + y

q < b

x = *
x = 42

x = 42

x = 42

x = 42

x = #

x = #

x = 42
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Example

x := 42

b > 0

y := z * w y := 0

q := x + y

q < b

x = *
x = 42

x = 42

x = 42

x = 42

x = #

x = 42

x = 42
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Example

x := 42

b > 0

y := z * w y := 0

q := x + y

q < b

x = *
x = 42

x = 42

x = 42

x = 42

x = 42

x = 42

x = 42
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Orderings

•
 

We can simplify the presentation of the 
analysis by ordering the values

# <
 

c <
 

*

•
 

Drawing a picture with “lower”
 

values drawn 
lower, we get

#

*

-1 0 1 ......
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Orderings (Cont.)

•
 

*
 

is the greatest value, #
 

is the least
–

 
All constants are in between and incomparable

•
 

Let lub be the least-upper bound in this 
ordering

•
 

Rules 1-4 can be written using lub:
Cin(x, s) = lub { Cout(x, p) | p is a predecessor of s }
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Termination

•
 

Simply saying “repeat until nothing changes”
 doesn’t guarantee that eventually we reach a 

point where nothing changes

•
 

The use of lub
 

explains why the algorithm 
terminates
–

 
Values start as #

 
and only increase

–
 

#
 

can change to a constant, and a constant to *
–

 
Thus, C_(x, s)

 
can change at most twice
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Termination (Cont.)

Thus the algorithm is linear in program size

Number of steps = // worst case
Number of C_(….)

 
values computed * 2 =

Number of program statements * 4
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Liveness Analysis

Once constants have been globally propagated, 
we would like to eliminate dead code

After constant propagation, x := 42 is dead 
(assuming x is not used elsewhere)

x := 42

b > 0

y := z * w y := 0

q := y + x
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Live and Dead Variables

•
 

The first value of x
 

is 
dead (never used)

•
 

The second value of x is 
live (may be used)

•
 

Liveness is an important 
concept for the compiler

x := 17

x := 42

y := x
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Liveness

A variable
 

x
 

is live at statement s
 

if
–

 
There exists a statement s’

 
that uses x

–
 

There is a path from s
 

to s’

–
 

That path has no intervening assignment to x
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Global Dead Code Elimination

•
 

A statement x := …
 

is dead code if x
 

is dead 
after the assignment

•
 

Dead statements can be deleted from the 
program

•
 

But we need liveness information first . . .
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Computing Liveness

•
 

We can express liveness in terms of 
information transferred between adjacent 
statements, just as in copy propagation

•
 

Liveness is simpler than constant propagation, 
since it is a boolean

 
property (true or false)
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Liveness Rule 1

Lout
 

(x, p) =  ∨
 

{ Lin
 

(x, s) | s a successor of
 

p }

p

x = true

x = true

x = ?x = ?x = ?
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Liveness Rule 2

Lin
 

(x, s) =
 

true if s
 

refers to x
 

on the RHS

…:= f(x)
x = true

x = ?
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Liveness Rule 3

Lin
 

(x, x := e) =
 

false  if e does not refer to
 

x

x := e
x = false

x = ?
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Liveness Rule 4

Lin
 

(x, s) =
 

Lout
 

(x, s)
 

if s
 

does not refer to
 

x

s
x = a

x = a
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Algorithm

1.
 

Let all L_(…) = false
 

initially

2.
 

Repeat until all statements s
 

satisfy rules 1-4
Pick s

 
where one of 1-4 does not hold and          

update using the appropriate rule
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Termination

•
 

A value can change from false
 

to true, but not 
the other way around

•
 

Each value can change only once, so 
termination is guaranteed

•
 

Once the analysis information is computed, it 
is simple to eliminate dead code
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Forward vs. Backward Analysis

We have seen two kinds of analysis:

•
 

An analysis that enables constant propagation:
–

 
this is a forwards analysis: information is pushed 
from inputs to outputs

•
 

An analysis that calculates variable liveness:
–

 
this is a backwards analysis: information is pushed 
from outputs back towards inputs
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Global Flow Analyses

•
 

There are many other global flow analyses

•
 

Most can be classified as either forward or 
backward

•
 

Most also follow the methodology of local 
rules relating information between adjacent 
program points
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