Humans in Complex Systems
Analyses of strategies and domain-specific knowledge
Anders Jansson

Formative analyses

- Vicente presents a structure for how to conduct a formative analysis. It contains four steps
 1. Identify conceptual differences
 2. Develop a set of methods
 3. Model the intrinsic constraints
 4. Go from analysis to design

Conceptual differences

- The first step in the formative analysis of socio-technical systems identifies five different conceptual levels
 - Work domain
 - Control- and sub-tasks
 - Operators strategies
 - Work organization and team-work
 - General cognitive characteristics and domain-specific competence and expertise
Data and conceptual levels

- Data collecting methods
 - Video analyses
 - Verbal protocols
 - Logging of interaction & activities
 - Questionnaires and interviews
- Same data on different conceptual levels
 - Domain-, task-, & strategy analyses

Model tool AH-DH 1

- Abstraction-hierarchy (AH)
 - Five levels of means-ends relations
 - From overall purpose to physical form and characteristics
- Decomposition-hierarchy (DH)
 - From the complete system to small components

Model tool AH-DH 2

- The tool is a problem space onto which you can describe actions from verbal protocols
- The verbal protocols give us information about the operators cognitive states in different situations
- The problem space is a “map” onto which we can situate the cognitive states
AH in process surveillance

- Functional purpose
 - Purpose behind the system design
- Abstract functions
 - The causal structure of the process
- General functions
 - The main functions you are aiming for
- Physical functions
 - Components and couplings and their behavior
- Physical form
 - Design and form of components and couplings

AH-DH för Duress II

- DH
 - System
 - The whole Duress II
 - Sub-systems for
 - Storage
 - Heating
 - Transportation
 - Components such as
 - Pumps
 - Valves
 - Heating
 - Reservoirs

- AH
 - Functional purposes
 - Volume, temperature, quality etc.
 - Abstract functions
 - Mass, energy, value, information etc.
 - General functions
 - Flow/time unit, volume, capacity, speed etc.
 - Physical functions
 - Parameter values, configurable parts
 - Physical form
 - Place, wear & tear, size etc.

Decision ladder 1

- Rasmussen's decision ladder is a model tool for analyzing tasks
- The decision ladder identifies the types of actions that must be conducted
- The decision ladder means identification of flexible working styles
- The decision ladder is adapted to well known cognitive levels within humans
Decision ladder vs AH-DH

- AH-DH
 - Work domain analysis
 - The system that activities will be directed towards
 - Must handle all situations
 - Structural means-ends analyses

- Decision ladder
 - Task analysis
 - Activities that the system must handle
 - Goal-directed situations
 - Action-directed means-ends analyses

The order of the analyses

- Work domain design
- Control tasks and sub-tasks
- Strategies
- Organizational aspects
- Operators expertise

Consequences for design

- Work domain analyses
 - Sensors, models, databases
- Control task analyses
 - Procedures, instructions, (level of automation?)
- Analyses of strategies
 - Dialogues, process interfaces, large screen displays
- Organizational analyses
 - Roles and responsibility, flow of communication, level of automation
- Analyses of the operators expertise
 - Selection, training, some interface design
Strategies 1

- AH-DH is used to conduct analyses of a certain work domain, a map of the object
- Decision ladder is used to conduct analyses of control tasks, what to do within the domain
- The tools for analyses of operators strategies are information flow maps, how the control tasks are executed

Strategies 2

- An important result from studies of how operators work is that they use different strategies depending on the size of the work strain/overload
- Maps of information flows is used to identify different types of diagnostic search strategies

Search strategies 1

- Topographic search
 - The use of an idealized process representation to generate different types of trouble shooting alternatives
 - Is based on models of normal function and the physical process as such
Search strategies 2

- Symtomatic search
 - The point of departure here is the information content in different observation reports
 - Three different types of av symtomatic search strategies
 - Pattern recognition
 - Decision tables
 - Hypotheses-and-test

Search strategies 3

- Strategies are independent from the observer/actor
- Design that supports the operators
 - Realize that operators generate spontaneous strategies from case to case
 - Replace cognitive demanding strategies
 - Enhance and augment the use of adaptive strategies
 - Realize the fact that the operators must be in charge, be "in-the-loop", and have situation awareness
 - The operators must be able to switch between different strategies when the situation changes

Tool for strategies?

Pre-indicator Main indicator
Conclusions chpt. 9

- Maps of information flows are not descriptions of cognitive activities, but idealized categories of task procedures.
- Information flow maps are based on context-specific contents.
Rasmussens SRK-model

- Decision-making at two levels
 - General human characteristics in terms of abilities and limitations
 - Working memory limitations affect the ability to browse among process pictures
 - Domain-specific competence in terms of expertise within a certain domain
 - Train-drivers must have route-knowledge in order to stop smoothly at the platform

SRK: Knowledge

- Problem space = mental models
 - Whole-parts relations
 - Means-ends relations
 - Causal relations
- Process-rules in terms of:
 - Rules of thumb
 - Model development
 - Transformation of models
 - Matching between abstraction levels
 - Cognitive walk-throughs

SRK: Rules

- Problem space = implicit rules
 - Rules in terms of matching between impressions and actions
 - Action-response models (implicit)
- Process-rules in terms of:
 - Situation-based rules (if-then)
 - Actions directed toward physical or symbolic objects in the work context
SRK: Skills
- Problem space = internal dynamic models about closest surrounding
 - Closest surrounding and the own body
- Process-rules in terms of:
 - Not relevant here, behavior is controlled by fluctuations in the nervous system

SRK: Levels of signals
- Knowledge level – Symbols are the units on which knowledge-based behavior is based
- Rule level – Signs lead to rule-based behavior, if-then situations
- Skill-level – Signals lead to automated actions, pattern-matching

SRK: Supports expertise
- The advantage with the SRK-model is that it gives possibilities to design dialogues and process pictures with the level of expertise in mind
- This is especially important in contexts where domain-specific knowledge is a precondition for a decision adapted to the context and situation
The operators design

- Operators will always change and adjust the system interface in order to make it as efficient as possible
- Some changes are permanent, indicating bad design from the beginning
- Other changes will be temporary, the use of alarm systems is an example

Conclusions chpt. 11

- General human characteristics
- Domain-specific expertise
- Organize work after a process model
 - User-centred systems design
 - Analyzing representative work tasks
 - User participation in design and evaluation of interfaces and process pictures
 - Exploring possible ways to develop work together with users

Organization & Cooperation

- For this part, Vicente uses the same analyses once again, but the focus is now on identifying responsibility and roles