Controller Design using State Feedback and Observer

Model Based Development of Embedded Systems

2014
Overview

- **State-Space Feedback**
 - Allows to control several state variables simultaneously
 - Works if the system is *controllable*
 - Popular method: LQ design
 - Integral control can be added by simple ad hoc trick

- **Observer**
 - Often, not all states of the system are observable
 - We can design an observer
 - If the system is observable
 - Observer can be designed with prespecified poles
 - Poles determine how fast the observer will converge to correct state estimate

- **State-Space Feedback with Observer**
 - Obtained by combining the above methods
State-Space Feedback

- Inverted Pendulum Example:
 - We want to control both angle and speed
 - Check whether the system is controllable
 \[
 \text{rank}(\text{ctrb}(A_{\text{pend}},B_{\text{pend}})) \quad \text{should be 4.}
 \]

- `gen_lqr.m`

 \[
 Q = \text{eye}(4) ; \quad % \text{Make an identity matrix} \\
 Q(2,2) = 10 ; \quad % \text{define penalties for, e.g., speed and angle} \\
 Q(3,3) = 500 ; \\
 R = 1 ; \\
 K = \text{lqr}(A_{\text{pend}},B_{\text{pend}},Q,R) \quad % \text{calculate feedback matrix}
 \]

- Look at model in `state_feedback.mdl`
Adding Integral control

- In cases, where steady_state error is an issue
- Or just, to get smoother behavior
- Same setup for inverted pendulum

 • gen_lqr_int.m

  ```matlab
  Aext = [A_pend, zeros(4,1) ; 1 0 0 0 0]; % add a component to the state
  Bext = [B_pend ; 0];
  Cext = [C_pend, zeros(2,1)];
  Dext = [D_pend];

  Qext = zeros(5,5);  % Make a zero matrix
  Qext(1,1) = 10;
  Qext(3,3) = 500;
  Qext(5,5) = 10;
  R = 1;
  Kext = lqr(Aext,Bext,Qext,R)
  ```
Observer

- In general not all states are observable
- E.g., assume only position and angular speed observable
- Same setup for inverted pendulum
 - Check whether the system is controllable
 \[
 \text{rank} \left(\text{obsv}(A_pend, C_pend) \right) \quad \text{should be 4.}
 \]
 - See how fast the system is
 - Done by finding poles of the closed system:
 \[
 \text{eig}(A_pend - B_pend*K)
 \]
 - Define poles of the observer (should be faster than closed system)
 \[
 P = [-10 -12 -14 -16];
 \]
 - Construct the observer gain
 \[
 L = \text{place}(A_pend', C_pend', P);\]
Expressing the Observer:

- Inputs \((u,y)\)
- \(\dot{x}_{\text{hat}} = (A - LC) x_{\text{hat}} + Bu + Ly\)
- Output \(= x_{\text{hat}}\)

In MATLAB, letting input be \([u;y]\)

\[
\begin{align*}
P &= [-50 \ -51 \ -52 \ -53]; \\
L &= \text{place}(A_\text{pend}',C_\text{alt}',P)'; \\
A_\text{obs} &= (A_\text{pend} - L*C_\text{alt}); \\
B_\text{obs} &= [B_\text{pend}, L]; \\
C_\text{obs} &= \text{eye}(4); \\
D_\text{obs} &= \text{zeros}(4,3);
\end{align*}
\]
About LQ

Inputs:

- Penalty matrix Q for the state variables. Typically Q is a diagonal matrix, with each entry giving a penalty for each variable.
- Penalty matrix R for the control input(s). Typically a diagonal matrix.
- The `lqr(A,B,Q,R)` command in MATLAB computes the feedback matrix K so that the total penalty

$$\int_0^\infty (x^T Q x + u^T R u) \, dt$$

is minimized.
About Poles

- A system, whose dynamics is given by
 \[\frac{dx}{dt} = Ax + Bu \]
 has in general a number of (complex) poles (number is dim of A), which say how fast the system converges or diverges.
- A pole \(p \) means that one component of explicit expression for dynamics evolves like
 \[e^{pt} \]
- Thus, a pole with positive real-part means divergence.
- Poles with large negative real-part means quick convergence.
- When designing observer, it is important that observer converges significantly faster than the observed system.
 - Poles can be 5-10 times larger (should all be negative)