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1 Introduction

In this laboratory work you will analyse and simulate two types of simple bioreactors.
In the excercises you will apply concepts from the theory, for example, calculation of
stationary values, linearization and phase portait.

2 An introduction to modeling of bioreactors

Below we will derive some simple models for bioreactors. Such models can help explain
some fundamental properties of bioreactors and also give a suitable background for un-
derstanding more advanced models.

Bioreactors are used in many applications including industries concerned with food, be-
verages and pharmaceuticals. Another key application of bioreactors is in wastewater
treatment. Biotechnology, which deals with the use of living organisms to manufacture
valuable products, has had a long period of traditional fermentations (production of
beer, wine, cheese etc.). The development of microbiology, around hundred years ago,
expanded the use of bioreactors to produce primary metabolic products. In 1940’s the
large scale production of penicillin was a major breakthrough in biotechnology. Some 20
years ago, the computer technology started to make advanced process control possible.
The development of genetic engineering have played a major role in creating the current
progress in the field of biotechnology.

2.1 The specific growth rate

Many biochemical processes involves (batch) growth of microorganisms. In a batch pro-
cess, microorganisms are added into a reactor containing substrate1, one may (after some
initial time delay) obtain an exponential growth phase (which may continue until the
substrate is consumed).

Let X(t) denote the concentration (mass/unit volume) of biomass (active microorga-
nisms). An exponential growth can be expressed as

dX(t)

dt
= µX (2.1)

The parameter µ is denoted the specific growth rate, “rate of increase in cell concentration
per unit cell concentration” ([1/time unit]).

1Substrate is defined as the source of energy (“food”), it can be organic (for heterotrophic bacteria),
inorganic (e.g. ammonia), or even light (for phototrophs).

1



2.1.1 The Monod function

Often the growth rate µ depends on the substrate concentration S. It is natural to assume
that a low amount of substrate gives a low growth rate. If the substrate concentration
increases the growth rate increases. For sufficiently high substrate levels though, the
growth rate becomes saturated. The following empirical relation is often used and is
commonly named the Monod function2

µ(S) = µmax
S

KS + S
(2.2)

where

µmax is the maximum specific growth rate
S is the concentration of substrate
KS is the half saturation constant

The impact of the substrate concentration on the specific growth rate is shown in Figure
1.
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Figur 1: Illustration of the Monod function. The following parameters are used KS = 0.5
and µmax = 1. Note that S = KS gives µ = 0.5µmax.

2.1.2 The Haldane function

Some substrates have an inhibitory effect at high concentrations. That means that the
growth rate starts to decrease if the substrate concentration becomes too high. The
Monod function (2.2) does not account for any inhibitory effects. Substrate inhibition
may be modeled by the Haldane law

2It was initially proposed by Michaelis-Menton in 1913 (the relation is therefore also often called
Michaelis-Menton law) and extended by Monod in 1942 to describe growth of microorganisms.
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µ(S) = µo
S

K1 + S + S2/Kh

(2.3)

The Haldane law will make µ(S) to decrease when S is sufficiently large due to the S2

term in the denominator. It is seen that µ(S) → 0 as S → ∞. The exact shape of the
function is determined by the parameters µo, K1, and Kh.

2.1.3 The Yield coefficient

As the microorganisms growth, substrate is used. This is commonly expressed as:

dX

dt
= −Y

dS

dt
(2.4)

where Y is the yield coefficient (utbyteskonstant), “the ratio of the mass of cells formed
to the mass of substrate consumed”. The yield coefficient can be expressed as

Y = −
dX

dS
(2.5)

2.2 Microbial growth in a stirred tank reactor

We will consider the dynamics of a completely mixed tank reactor shown in Figure 2.
See also example 2.1 in “Modellering av Dynamiska system”. The influent flow rate Q
[volume/time] is equal to the effluent (output) flow rate. Hence, the volume V is con-
stant. The substrate concentration in the influent is denoted Sin [mass/volume]. The
influent biomass concentration is assumed to be zero.

Inflow Q, Sin

Volume V

S, X Outflow Q, S, X

Figur 2: A completely mixed bioreactor.

The rate of accumulation of biomass is obtained from a mass balance. Assume that the
biomass has a specific growth rate µ(S) (which for example may be given by (2.2)). The
total amount of produced biomass per time unit in a reactor with volume V is µ(S)V X,
compare with (2.1). Since the reactor is completely mixed, the outflow concentration of
biomass is equal to the concentration in the tank. The rate of change of biomass is then
given as

V
dX

dt
= µ(S)V X − QX (2.6)
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Now, define the dilution rate (utspädningshastighet)

D =
Q

V
(2.7)

The model (2.6) can now be written in the following simple form

dX

dt
= (µ(S) − D)X (2.8)

For the substrate consumption we assume that the yield coefficient is Y , see (2.4).
Paralleling, the procedure above for the substrate mass balance gives

V
dS

dt
= QSin −

µ(S)

Y
V X − QS (2.9)

Introducing the dilution rate (2.7) gives

dS

dt
= −

µ(S)

Y
X + D(Sin − S) (2.10)

The model consisting of (2.8) and (2.10) form the basis for most bioreactors models. For
physical reasons we also have X ≥ 0 and S ≥ 0.

2.2.1 Stationary points and wash-out

We will consider the basic bioreactor model (2.8) and (2.10) which is summarised below.

dX

dt
= (µ(S) − D)X (2.11)

dS

dt
= −

µ(S)

Y
X + D(Sin − S) (2.12)

In the following we assume that D and Sin are constant and we will derive the stationary

points (also called equilibrium states or fixed points) of the model. The stationary points
are found by solving dX

dt
= dS

dt
= 0. The stationary points are denoted3 X̄ and S̄.

It is directly seen from (2.11) that a necessary condition for dX
dt

= 0 is

X̄ = 0 (2.13)

or
µ(S) = D (2.14)

The first condition (2.13) is known as wash-out. All biomass will disappear! In most
cases the wash-out condition is undesirable and should be avoided. Wash out is typically
obtained if D is too high (too much biomass is then taken out from the reactor and the
reactor becomes “overloaded”).

3Note the difference in notation compared to the Compendium p 80.
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Next we will consider the condition (2.14) when µ is a Monod function:

µ(S) = µmax
S

KS + S
(2.15)

We then obtain

µmax
S̄

KS + S̄
= D (2.16)

Solving for S̄ yields

S̄ =
DKS

µmax − D
(2.17)

Note that S̄ does not depend on Sin! That means that during steady state the effluent
substrate concentration from the reactor does not depend on the influent concentration
of substrate (assuming the the specific growth rate can be modelled as a Monod function
and that the influent biomass concentration is zero).

The steady state value of the biomass during non wash-out is obtained by solving (2.12)
using dS

dt
= 0 and µ(S) = D. This gives

X̄ = Y (Sin − S̄) (2.18)

Hence, by first calculating S̄ it is very easy to calculate X̄ (assuming the yield and
influent substrate to be known).

In order not to get a wash-out, we must have X̄ > 0. From (2.18) this gives the condition
Sin > S̄. By using (2.17) in this condition we can easily derive a condition on D so that
wash-out is avoided.

2.2.2 State space description

The general form for a nonlinear state space description of order two is given by

ẋ = f(x, u)

x =

[

x1

x2

]

, f(x, u) =

[

f1(x, u)
f2(x, u)

]

(2.19)

The model consisting of (2.8) and (2.10) can be written in the form (2.19) by defining
u = Sin and

x =

[

X
S

]

, f(x, u) =

[

f1(x, u)
f2(x, u)

]

=

[

µ(S)x1 − Dx1

−
1
Y

µ(S)x1 − Dx2 + Du

]

(2.20)

The model can be linearized around a stationary point, see further Chapter 7.1 “Model-
lering av Dynamiska System”. The model (2.8) and (2.10) can also be written as

ẋ(t) =

(

µ(S) − D 0

−
µ(S)
Y

−D

)

x(t) +

(

0
D

)

u (2.21)

In the (not very realistic) case when µ(S) = µ (a constant), the model (2.21) becomes
linear, compare with equation (6.2) in “Modellering av Dynamiska system”
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3 Analysis and simulation of a Monod reactor

3.1 The model

We will here consider the model described in Section 2.2 when the specific growth rate
is a Monod function. For convenience we summarise the model equations below (see
Section 2 for a derivation and definitions of involved variables):

dX

dt
= (µ(S) − D)X

(3.1)

dS

dt
= −

1

Y
µ(S)X + D(Sin − S) (3.2)

µ(S) = µmax
S

KS + S
(3.3)

3.2 Exercises

Exercise P1 The stationary values for the model (3.1)-(3.3) are given in the previous
Section. Consider the wash-out case (all biomass is washed out from the reactor and
X̄ = 0). What is the corresponding value for S̄? Is the result natural?

'

&

$

%
Exercise P2 Calculate a limit Dlim so that if D < Dlim wash out will not occur.
Hint: The condition for non wash-out is that Sin > S̄, where S̄ is given in (2.17).

'

&

$

%
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Exercise P3 Calculate numerically the stationary values X̄ , S̄ and Dlim for the (non
wash-out) case:

µmax = 2 [h−1], KS = 1.2 [mg/l], Y = 0.8, D = Q/V = 0.5 [h−1], Sin = 1 [mg/l]

'

&

$

%
Next the process will be simulated using a program written in Matlab.

1. Start the computer and log in.

2. Go to the Start menu and select StudentLabProg/DynSys/lab3 (this will copy the
files to your working directory).

In Matlab, the model (3.1)-(3.3) is simulated by the m-file growth (just type growth

followed by return).
The simulator has the default values given in Exercise P3. The initial4 values are:
X(0) = 0.1, S(0) = 1.1.
The default simulation length Tmax is 40 time units.

Exercise 4 Simulate the model (3.1)-(3.3) using the function growth. From the plot,
estimate the stationary values of biomass and substrate. Compare the results with the
calculated values in Exercise P3.

'

&

$

%

4The concentrations at time t=0 in the reactor.
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Exercise 5 Increase the value of D until wash-out is obtained. Note that by increasing
the simulation time the accuracy of the estimate is increased. For what (approximate)
value on D is wash-out obtained? Compare with the calculated value in Exercise P3.
Compare also S̄ during wash-out with the result in Exercise P1.

'

&

$

%
Exercise 6, Optional (frivillig) Check how the simulated biomass and substrate is
affected by different values on µmax, KS , Y , Sin and D = Q/V

'

&

$

%
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4 Analysis and simulation of a Haldane reactor

4.1 The model

In this section we will consider the same basic model as in the previous section but when
the biomass specific growth rate is modeled with the Haldane kinetics (see Section 2.1.2).
The model is summarised below

dX

dt
= (µ(S) − D)X

(4.1)

dS

dt
= −

1

Y
µ(S)X + D(Sin − S)

µ(S) = µo
S

K1 + S + S2/Kh

(4.2)

4.2 Exercises

Exercise P7 During non washout conditions (that is µ(S) = D) the model (4.1) with
the Haldane law (4.2) has two stationary points which we denote (S̄1, X̄1) and (S̄2, X̄2)

Calculate (that is solve µ(S) = D) (S̄1, X̄1) and (S̄2, X̄2) for the case:
µo = 1.5 [h−1], K1 = 1.2[mg/l], Kh = 2 [mg/l], Y = 0.8, D = Q/V = 0.5 [h−1], Sin = 5
[mg/l].

Hint: If your calculations are correct, one point should be (S̄, X̄) = (0.735, 3.412).

'

&

$

%
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Next the Haldane reactor will be simulated. This is done in Matlab, with the m-file
hald. The simulator has the default values given in Exercise P7. The initial values are:
X(0) = 3, S(0) = 3.

Exercise 8 Simulate the model (4.1)-(4.2) using the function hald. From the plot, esti-
mate the stationary values of the substrate and biomass. Verify that one of the stationary
points calculated in Exercise P7 is achieved.

'

&

$

%
Exercise 9 Play around with the simulator and (for example) check the stationary value
of S for different input concentrations Sin. For what values of Sin do wash-out occurs?

'

&

$

%
Exercise P10 You may have noticed from from the simulations that only one of the
stationary (non wash-out) points was achieved. Maybe there is something “strange” with
the other point?

In order to analyse this, linearise the system and evaluate the eigenvalues of the lineari-
sed system matrix for the two stationary points (the non wash-out case). Show that one
stationary point is asymptotically stable stationary point while the other is unstable.
Hints:
You are encouraged to use Matlab when needed, for example to calculate eigenvalues
(do help eig to get information).
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Remark: It is possible to check stability for the two stationary points without using
any numerical values. The characteristic equation will be on the form s2 + as + b. The
following holds:
All roots in the left half plane <=> a > 0, b > 0.
In order to check if b is positive or negative the condition

0 < S̄1 <
√

K1Kh < S̄2

is the used for evaluating if dµ(S)
dS

is positive or negative.
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Exercise 11 The m-file haldphase plots the phase portrait for the system. Inspect the
file (and the m-file that is called from the file)) and describe what it does. Use the m-file5

to make a phase portrait, print it out, and make (by pen) appropriate arrows and mark
the locations of the analysed stationary points. Also mark the wash-out point (which is
also a stationary point).

Assume that it is known that 0 < S(0) < 6, approximately what value on X(0) is needed
to prevent wash-out?

Submit (bifoga) the plot!.

'

&

$

%
Remark: For simple models like the one above, finding steady state solutions, lineari-
sation and calculation of eigenvalues may be done analytically. For larger models these
calculations are not possible to do by paper and pen. Many of these analyses (finding
steady state values, linearisation) are possible to do in Matlab but the model needs to
be created in Simulink which is an extension of Matlab where models are created by
block diagrams.

5You are free to modify the file, in case you want a higher resolution in the plot.
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