
Design principles

OOD: Lecture 4

Next lecture

• UML: Thursday, Sep 20, at 8:15 am in 1211

Reminder: Readings

• Wirfs-Brock, R., and B. Wilkerson (1989)
“Object-oriented design: a responsibility-
driven approach”

• Wikipedia's entry on Object-oriented Design

“Software rot”

• Increased difficulty to adapt and maintain

• Causes

– Communication/Documentation breakdown

• Maintainers not fully familiar with the original design
principles -> change works, but…

– Design is not resilient in the face of change

Symptoms of rotting design

• Rigidity
– Every change causes a cascade of subsequent changes in

dependent modules. “2 days -> 2 months”

• Fragility
– Breaks in many places when a change is made

• Immobility
– Reuse is more work than creating from scratch

• Viscosity: The law of least resistance when faced with a choice

– Design viscosity: Hacks are easier/faster than preserving
the design

– Environment viscosity: Slow cycle time -> fastest choice

Dependency management

• Rigidity, fragility, immobility, and viscosity are
all four – arguably – caused by an improper
dependency structure

• Three groups of preventive principles /
guidelines

– Class design

– Package cohesion

– Package coupling

Principles of object-oriented class
design

SOLID:
• SRP: The single responsibility principle

• OCP: The Open Closed principle

• LSP: The Liskov substitution principle

• ISP: The interface segregation principle

• DIP: The dependency inversion principle

SRP
The single responsibility principle

• A class should have one, and only one, reason
to change.

• A class should have a single responsibility

• Example
interface Modem { //Modem.java -- SRP Violation

 public void dial(String phoneNumber);

 public void hangup();

 public void send(char c);

 public char receive();

 }

SRP continued

• Two responsibilities
– Connection management: dial and hangup

– Data communication: send and receive

• Better

– Nothing depends on the modem implementation class

OCP
The Open Closed principle

• A module should be open for extension but
closed for modification.

– Ability to change what the module does, without
changing its source code

– Techniques based on abstraction

• Dynamic polymorphism

• Static polymorphism

Dynamic polymorphism
OCP violation example

struct Modem {

 enum Type {hayes, courier, ernie) type;

};

struct Hayes {

 Modem::Type type;

 // Hayes related stuff

};

struct Courier {

 Modem::Type type;

 // Courier related stuff

};

struct Ernie {

 Modem::Type type;

 // Ernie related stuff

};

void LogOn(Modem& m, string& pno, string& user, string& pw) {

 if (m.type == Modem::hayes) {

 DialHayes((Hayes&)m, pno);

 } else if (m.type == Modem::courier) {

 DialCourier((Courier&)m, pno);

 } else if (m.type == Modem::ernie) {

 DialErnie((Ernie&)m, pno)

 // ...

 }

}

OCP: Dynamic polymorphism
continued

class Modem {

 public:

 virtual void Dial(const string& pno) = 0;

 virtual void Send(char) = 0;

 virtual char Recv() = 0;

 virtual void Hangup() = 0;

};

void LogOn(Modem& m, string& pno,

 string& user, string& pw) {

 m.Dial(pno);

 // you get the idea.

}

OCP: Static polymorphism

• Templates/Generics
template <typename MODEM>

 void LogOn(MODEM& m, string& pno,

 string& user, string& pw) {

 m.Dial(pno);

 // ...

}

LSP
The Liskov substitution principle

• Derived classes must be substitutable for their
base classes.

• The contract of the base class must be honoured
by the derived class

• A derived class is substitutable for its base class if:
– Its pre-conditions are no stronger than the base class

method.
– Its post-conditions are no weaker than the base class

method.

• Or, in other words, derived methods should
expect no more and provide no less.

LSP violation
The Circle/Ellipse dilemma

• A circle is-an ellipse

LSP violation 2

• A client code fragment:
void f(Ellipse e) {

 Point a = new Point(0, 1);

 Point b = new Point(1, 0);

 e.setFoci(a, b);

 e.setMajorAxis(3);

 assert e.getFocus1() == a;

 assert e.getFocus2() == b;

 assert e.getMajorAxis() == 3;

}

LSP violation 3

• Ugly client-side fix
void f(Ellipse e) {

 if (e.getClass().equals(

 Ellipse.class)) {

 //…

 } else {

 throw new Exception(

 “Not a real ellipse”);

 }

ISP
The interface segregation principle

• Make fine grained interfaces that are client
specific.
Or
Many client specific interfaces are better than
one general purpose interface

• [Kent] Do not change interfaces unless
absolutely necessary, and especially do not
change method signatures

DIP
The dependency inversion principle

• Depend on abstractions, not on concretions.

• The primary mechanism of OO design

• No dependency should target a concrete class

– Non-volatile classes (e.g. Java core library classes)
tend to cause less problems

Principles of package cohesion

• REP: The release reuse equivalency principle

• CCP: The common closure principle

• CRP: The common reuse principle

Note that these three exist in a balance. They
can’t all three be completely satisfied at the
same time

REP
The release reuse equivalency principle

• The granule of reuse is the granule of release.

• Package together what would be reused
together

• Support and maintain older versions

• Simplifies reuse

CCP
The common closure principle

• Classes that change together are packaged
together.

• Minimizes configuration management (CM)
work

– I.e. management, test, and release of packages

• Simplifies development and maintenance

• Tends towards big packages

CRP
The Common Reuse Principle

• Classes that aren’t reused together should not
be grouped together.

• Complement of REP

• Avoid forcing unnecessary client re-building

• Simplifies reuse

• Tends to small packages

Principles of package coupling

• ADP: The acyclic dependencies principle

• SDP: The stable dependencies principle

• SAP: The stable abstractions principle

ADP
The acyclic dependencies principle

• The dependency graph of packages must have

no cycles.

• Cycles increase the work to re-build and
eventually make every package depend on
every other package

• Breaking a cycle
– New package: Break out of dependency target

– Apply dependency inversion (DIP) + interface
segregation (ISP)

ADP: Breaking a cycle
Applying DIP & ISP

SDP
The stable dependencies principle

• Depend in the direction of stability.

• A way of reducing the number of packages
that are hard to change because changes
would propagate to many other packages

• 𝐼𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝐶𝑒

𝐶𝑎+𝐶𝑒

• Depend upon packages whose Instability
metric is lower than yours

SAP
The stable abstractions principle

• Abstractness increases with stability

or
Stable packages should be abstract packages.

• Can be seen as a re-formulation of
dependency inversion (DIP)

• Abstract – stable – easy to
extend (OCP)

• Concrete – instable – easy to
change

0

1

0 1

I

A

Next lecture

• Thursday, Sep 20, at 8:15 am in 1211

