Design principles

OOD: Lecture 4

Next lecture

e UML: Thursday, Sep 20, at 8:15am in 1211

Reminder: Readings

* Wirfs-Brock, R., and B. Wilkerson (1989)
“Object-oriented design: a responsibility-
driven approach”

* Wikipedia's entry on Object-oriented Design

“Software rot”

* |Increased difficulty to adapt and maintain
* Causes

— Communication/Documentation breakdown

* Maintainers not fully familiar with the original design
principles -> change works, but...

— Design is not resilient in the face of change

Symptoms of rotting design

Rigidity
— Every change causes a cascade of subsequent changes in
dependent modules. “2 days -> 2 months”

Fragility

— Breaks in many places when a change is made
Immobility

— Reuse is more work than creating from scratch

Viscosity: The law of least resistance when faced with a choice

— Design viscosity: Hacks are easier/faster than preserving
the design

— Environment viscosity: Slow cycle time -> fastest choice

Dependency management

* Rigidity, fragility, immobility, and viscosity are
all four —arguably — caused by an improper
dependency structure

* Three groups of preventive principles /
guidelines
— Class design
— Package cohesion
— Package coupling

Principles of object-oriented class
design

SOLID:

* SRP: The single responsibility principle
* OCP: The Open Closed principle

* LSP: The Liskov substitution principle

* ISP: The interface segregation principle

* DIP: The dependency inversion principle

SRP
The single responsibility principle

* A class should have one, and only one, reason
to change.

* A class should have a single responsibility
 Example

interface Modem { //Modem.java -- SRP Violation
public void dial (String phoneNumber) ;
public void hangup () ;
public void send(char c);

public char receive();

SRP continued

* Two responsibilities
— Connection management: dial and hangup

— Data communication: send and receive

i B Ette r <<Interface>> & _
DataChannel | . A
ssend(c: char) | e
+raceive(): char AiehSiing phone bijghlie
.;7—' ;:T;-; > ‘ w) -'l':: ¢]

implemetitation

— Nothing depends on the modem implementation class

OCP
The Open Closed principle

* A module should be open for extension but
closed for modification.

— Ability to change what the module does, without
changing its source code

— Techniques based on abstraction
* Dynamic polymorphism

e Static polymorphism

Dynamic polymorphism
OCP violation example

struct Modem {
enum Type {hayes, courier, ernie) type;
bi
struct Hayes {
Modem: : Type type;
// Hayes related stuff
bi
struct Courier {
Modem: : Type type;
// Courier related stuff
bi
struct Ernie {
Modem: : Type type;
// Ernie related stuff
bi
void LogOn (Modem& m, stringé& pno, string& user, string& pw) {
if (m.type == Modem: :hayes) {
DialHayes ((Hayes&)m, pno);
} else if (m.type == Modem::courier) {
DialCourier ((Courieré&)m, pno);
} else if (m.type == Modem::ernie) {
DialErnie ((Ernie&)m, pno)

//

OCP: Dynamic polymorphism
continued

class Modem {
public:
virtual void Dial (const string& pno) = 0;
virtual void Send(char) = 0;
virtual char Recv () = 0;
virtual void Hangup() = 0;

}

vold LogOn (Modem& m, stringé& pno,
string& user, stringé& pw) {
m.Dial (pno) ;
// you get the idea.

OCP: Static polymorphism

¢ Templates/Generics
template <typename MODEM>
void LogOn (MODEM& m, stringé& pno,
stringé& user, stringé& pw) {

m.Dial (pno) ;

//

LSP
The Liskov substitution principle

Derived classes must be substitutable for their
base classes.

The contract of the base class must be honoured
by the derived class

A derived class is substitutable for its base class if:

— Its pre-conditions are no stronger than the base class
method.

— Its post-conditions are no weaker than the base class
method.

Or, in other words, derived methods should
expect no more and provide no less.

LSP violation
The Circle/Ellipse dilemma

* Acircle is—an ellipse

\-
2

Ellipse

-focus1 \~P’ont

focgﬂ Point
-majorAxis | Dow(o

)
=
_

i
..

=S
&

+getFocus1() : ;Pont
4getFocusao : Point

\\

&

&

A

4setFod£focus1 Point, focus2 : Point)
+gettajorhxs() : Double

+seiMaj
'gemrAxis(j*" Double

&
&

a’A)ds(mﬂ’d‘A)as Dotl)le}é‘vad

+A|Ba() Me

¢C|mnfefqﬁéa() Double ;
\

&
a8

&/
7
(<2

&
-~

o
>

Circlo

&

+setFoci(a : Point, b : Peint)

fog@s“i = a;

|focus2 = a;

LSP violation 2

* Aclient code fragment:

vold f(Ellipse e) {
Point a = new Point (0,
Point b = new Point (1,
e.setFoci(a, b);
e.setMajorAxis (3) ;
assert e.getFocusl () ==
assert e.getFocusZ() ==
assert e.getMajorAxis ()

LSP violation 3

* Ugly client-side fix
vold f(Ellipse e) {

1f (e.getClass () .equals (
FEllipse.class)) {

// ..
} else {

throw new Exception (
“Not a real ellipse”);

ISP
The interface segregation principle

* Make fine grained interfaces that are client
specific.
Or
Many client specific interfaces are better than
one general purpose interface

* [Kent] Do not change interfaces unless
absolutely necessary, and especially do not
change method signatures

DIP
The dependency inversion principle

* Depend on abstractions, not on concretions.
* The primary mechanism of OO design
* No dependency should target a concrete class

— Non-volatile classes (e.g. Java core library classes)
tend to cause less problems

Principles of package cohesion

* RE

(@)
g

R

e
9

9

The release reuse equivalency principle
The common closure principle

The common reuse principle

Note that these three exist in a balance. They

can’t all three be completely satisfied at the
same time

REP
The release reuse equivalency principle

 The granule of reuse is the granule of release.

* Package together what would be reused
together

* Support and maintain older versions
* Simplifies reuse

CCP
The common closure principle

Classes that change together are packaged
together.

Minimizes configuration management (CM)
work
— |l.e. management, test, and release of packages

Simplifies development and maintenance
Tends towards big packages

CRP
The Common Reuse Principle

Classes that aren’t reused together should not
be grouped together.

Complement of REP

Avoid forcing unnecessary client re-building
Simplifies reuse

Tends to small packages

Principles of package coupling

The acyclic dependencies principle

The stable dependencies principle

v |
\> \U \”

The stable abstractions principle

ADP
The acyclic dependencies principle

 The dependency graph of packages must have
no cycles.

* Cycles increase the work to re-build and
eventually make every package depend on
every other package

* Breaking a cycle
— New package: Break out of dependency target

— Apply dependency inversion (DIP) + interface
segregation (ISP)

ADP: Breaking a cycle
Applying DIP & ISP

SDP
The stable dependencies principle

Depend in the direction of stability.

A way of reducing the number of packages

that are hard to change because changes

would propagate to many other packages
Ce

Cqt+Co

Depend upon packages whose Instability

metric is lower than yours

Instability =

SAP
The stable abstractions principle

Abstractness increases with stability
or

Stable packages should be abstract packages.

Can be seen as a re-formulation of
dependency inversion (DIP) A

Abstract — stable — easy to :
extend (OCP)

Concrete — instable — easy to
change

Next lecture

* Thursday, Sep 20, at 8:15amin 1211

