Review: The simplex algorithm. Starts with a basic feasible solution $x^T = (x_B^T \ x_N^T)$, where $x_B = B^{-1}b = \hat{b} > 0$, $x_N = 0$. Matrices B and N contain the columns of A, and the columns of B is a basis in \mathbb{R}^m. Also, let $c^T = (c_B^T \ c_N^T)$.

1. (optimality) Compute the *simplex multipliers* $y = B^{-T}c_B$ (solve $B^Ty = c_B$) and the *reduced costs* $\hat{c}_N^T = c_N^T - y^TN$. If $\hat{c}_N^T \geq 0$ stop (optimality found), else select some component p of x_N where $\hat{c}_{p,N}^T < 0$. (Corresponding column a_p of N will be brought into B.)

2. (step) Compute $\hat{a}_p = B^{-1}a_p$ (solve $B\hat{a}_p = a_p$). If $\hat{a}_p \leq 0$ stop (unbounded). Else, find the i^* that attains $\min \left\{ \frac{\hat{b}_i}{\hat{a}_{i,p}} : \hat{a}_{i,p} > 0 \right\}$.

3. (update) Interchange column i^* in B and column p in N. Reorder x_B, x_N, c_B and c_N.
