Automating/avoiding derivative calculations
(§11.4 in book)

▶ Many optimization algorithms need derivatives
▶ **Newton**: first and second derivatives needed
▶ **Steepest-descent, quasi-Newton**: first derivatives needed
▶ However, derivatives may not be available or useful:
 ▶ Function values may be given by measurements or black-box simulation code
 ▶ Function may be noisy
 ▶ Function may possess numerous local minima

If function is very irregular or very noisy:
▶ Gradient-based optimization may be bad
▶ May be better to use a stochastic method (e.g., genetic algorithms, evolutionary strategies)
▶ Such methods generally needs many function evaluations: only feasible when function evaluations are not too expensive
If function not too noisy or too irregular (thus, derivatives can be used), but if exact derivatives are not available:
▶ Let the computer calculate derivatives:
 ▶ Finite differences (approximate derivatives)
 ▶ Automatic (or algorithmic) differentiation (exact derivatives)
▶ Use derivative-free methods such as (**Multidirectional search, Nelder–Mead**)

Computer-calculated derivatives I

Simplest strategy: Use **finite differences**

\[
\frac{\partial f(x)}{\partial x_i} \approx \begin{cases}
\frac{f(x+\delta)-f(x)}{\delta} & \text{Forward Euler} \\
\frac{f(x+\delta)-f(x-\delta)}{2\delta} & \text{Central difference}
\end{cases}
\]

▶ Available as an option in most optimization software
▶ “Non-intrusive”, can be used with black-box simulation code
▶ Cost: \(O(n)\) operations for gradients, \(O(n^2)\) for Hessian \((x \in \mathbb{R}^n)\)
▶ Selection of step \(\delta\) delicate:
 ▶ Too large steps yields inaccurate derivatives
 ▶ Too small steps yields cancelation of significant digits

Finite Differences

Example

▶ Let \(f(x) = e^x\), \(f'(x) = e^x\).
▶ Study the error

\[
\left| f'(1) - \frac{f(1+h)-f(1)}{h} \right| \quad \text{for } h = 1, 0.1, 0.01, \ldots
\]

For forward Euler: optimal value of \(h \sim \sqrt{e_M} \approx 10^{-8}\) for IEEE double precision
Computer-calculated derivatives II

Automatic differentiation (AD)

- Useable for function evaluation coming from a computer calculation (not measurements!)
- “Intrusive”: needs modifications of the computer source code
- Observation:
 - Each line in a computer program is easy to differentiate
 - Differentiation rules (e.g., product rule, chain rule) are completely mechanical
 - Let the computer analyze each row in the program and calculate the derivative simultaneously as the function

Assume we have a computer program computes the function $f : \mathbb{R}^n \to \mathbb{R}$

AD software turns this program into another program returning $f(x)$ and $\nabla f(x)$

Two ways to implement AD:
- Source transformation (compiler technology)
- Operator overloading

AD with operator overloading

Convenient in languages such as C++ and Java
Redefines real variables and redefines arithmetic operations to include derivative information

- u, v, w: real variables (their values depend on input vector x)
- α, β: constants (do not depend on x)
- Data structures for u, v:

$$u = \begin{pmatrix} du \\ u \end{pmatrix}, \quad v = \begin{pmatrix} dv \\ v \end{pmatrix}, \quad w = \begin{pmatrix} dw \\ w \end{pmatrix}$$

For simplicity, assume scalar du, dv, dw (input vector x scalar)
Straightforward to extend to vector du, dv, dw

Examples

- Operation: $v = \alpha u$. In code: $v = \alpha \ast u$. Defined as

$$v = \begin{pmatrix} \alpha du \\ \alpha u \end{pmatrix}$$

- Operation: $w = uv$. In code: $w = u \ast v$. Defined as

$$w = \begin{pmatrix} udv + vdu \\ uv \end{pmatrix}$$

- Operation: $w = \frac{u}{v}$. In code: $w = u/v$. Defined as

$$w = \begin{pmatrix} \frac{du}{v} - \frac{1}{v^2} dv \\ \frac{u}{v} \end{pmatrix}$$
- Change data type for each variable in program calculating f
- Providing the input $\left(\frac{dx}{x} \right) = \left(\frac{1}{x_0} \right)$ yields the output $\left(\frac{df}{f} \right) = \left(\frac{f'(x_0)}{f(x_0)} \right)$
- Yields exact derivatives (up to machine precision)
- Computational effort grows linearly with the dimension of x
- There are more efficient, but more memory-demanding versions of AD (“backward mode”)