Convexity and optimality

Global minimizer:
\(x^* \in S \) such that
\[f(x^*) \leq f(x) \quad \forall x \in S \subset \mathbb{R}^n \]

Local minimizer:
\(x^* \in S \) such that, for some \(\epsilon > 0 \),
\[f(x^*) \leq f(x) \quad \forall x \in S \cap B(x^*; \epsilon) \]

Theorem. For convex functions on convex sets holds that each local minimizer is a global minimizer.

Example:
\[\min_x f(x) \text{ such that } Ax \leq b, \]

where \(f(x) = c^T x \) (linear program) or
\[f(x) = \gamma + c^T x + \frac{1}{2} x^T Q x, \text{ } Q \text{ positive semidefinite} \] (quadratic program)
Iterative algorithms

Problem:

\[\min_{x \in S} f(x) \]

Many optimization algorithms are of the type

1. Specify an initial guess \(x_0 \)
2. For \(k = 0, 1, \ldots \)
 2.1 If \(x_k \) optimal stop
 2.2 Determine a search direction \(p_k \) and a step \(\alpha_k \) and set
 2.3 \(x_{k+1} = x_k + \alpha_k p_k \)
Convergence rate

Definition
The sequence \(\{ x_k \} \) converges to \(x^* \) with rate \(p \) and rate constant \(C \) if
\[
\lim_{k \to \infty} \frac{\| x_{k+1} - x^* \|}{\| x_k - x^* \|^p} = C.
\]

- **Linear**: \(p = 1 \) and \(0 < C < 1 \). The error is multiplied by \(C \) each iteration.
- **Quadratic**: \(p = 2 \). Roughly a doubling of the correct digits each iteration.
- **Superlinear**: \(p = 1, C = 0 \). “Faster than linear”. Includes quadratic convergence but also “intermediate” rates.
Taylor series with remainder term

Let \(f : \mathbb{R}^n \to \mathbb{R} \) be of class \(C^2 \) (twice continuously differentiable). Then, \(\forall x, y \in \mathbb{R}^n \),

\[
f(y) = f(x) + (y - x)^T \nabla f(x) + \frac{1}{2} (y - x)^T \nabla^2 f(\xi) (y - x)
\]

where \(\xi = \alpha y + (1 - \alpha) x \) for some \(\alpha \in [0, 1] \).

The \textbf{gradient} of \(f \):

\[
\nabla f = \left(\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n} \right)^T
\]

The \textbf{Hessian} of \(f \):

\[
\nabla^2 f =
\begin{pmatrix}
\frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n^2}
\end{pmatrix}
\]
Positive definite matrices

An \(n \)-by-\(n \) real matrix \(A \) is positive semidefinite if

\[
v^T A v \geq 0 \quad \forall v \in \mathbb{R}^n
\]

It is positive definite if

\[
v^T A v > 0 \quad \forall 0 \neq v \in \mathbb{R}^n
\]

- A positive definite matrix is nonsingular
- Matrix \(A \) is positive definite if and only if matrix \(A^{-1} \) is positive definite

A symmetric matrix \(A \) is positive definite if and only if

- All eigenvalues of \(A \) are strictly positive
- \(A = LL^T \) with \(L \) lower triangular and \(L_{ii} > 0 \) (Cholesky factorization).
Unconstrained minimization: necessary and sufficient conditions

First-order necessary condition: Assume $f : \mathbb{R}^n \to \mathbb{R}$ has a local minimum at $x = x^*$ and that f is differentiable at $x = x^*$. Then $\nabla f(x^*) = 0$.

Second-order necessary condition: Assume $f : \mathbb{R}^n \to \mathbb{R}$ has a local minimum at $x = x^*$ and that f is of class C^2. Then $\nabla^2 f(x^*)$ is positive semidefinite.

Second-order sufficiency condition: Assume $f : \mathbb{R}^n \to \mathbb{R}$ is of class C^2, $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive definite then x^* is a local minimizer.