
1

Lab 1: Write a UNIX shell

Created by Magnus Johansson (March 22, 2007)

Adapted from a version by John Hakansson (January 30, 2008)
April 13, 2008 (Léon Mugwaneza)

1 Background
The following is not necessary to read in order to do the assignment, but it gives a historical context.

In 1969 the first version on UNIX was developed at Bell Labs. The name UNIX is not an acronym, but
rather a pun on MULTICS (Multiplexed Information and Computing Service), its predecessor from 1965.
Around 1977 UNIX spread to University of California-Berkeley which modified it and released its own
version of UNIX. This version became known as Berkeley Software Distribution (BSD) 4.2. In 1984
AT&T (of which Bell Labs was a part) started selling a commercial version of UNIX they called System
5. If you use Linux you may have seen the term System V init scr ipts. This is where it comes from.

Over time many companies and universities modified UNIX into their own versions. For a thorough
overview see http://www.levenez.com/unix/. There you can see a very nice picture of pretty much all
UNIX variants and how they relate to each other. The major players today include Solaris by Sun,
HP-UX from Hewlett-Packard, AIX from IBM, and Tru64 from Compaq. There are also a bunch of free
versions including FreeBSD, NetBSD, and Linux. For a very good, and more thorough, history of UNIX,
see http://www.bell-labs.com/history/unix/. This short history serves just to illustrate that there are a
“myriad” of versions of UNIX.

The different versions of UNIX diverged over time and the need for a standardization became obvious. In
1988 the first version of POSIX (Portable Operating System Interface) was released. POSIX is a
standard that specifies the user and software interfaces that must be present on a compliant system. It
consists of four parts (cut and pasted from http://www.localcolorart.com/search/encyclopedia/POSIX/):

Base Definitions - a list of definitions and conventions used in the specifications and a list of C header files

which must be provided by compliant systems.

Shell and Utilities - a list of utilities and a description of the shell, sh.

System Interfaces - a list of available C system calls which must be provided.

Rationale - the explanation behind the standard.

Pretty much all UNIX versions are POSIX conformant at least to some extent. Even some versions of

Windows (e.g. NT, 2000) includes POSIX support.

This assignment is all about using the POSIX interface to experiment some process management operations.

2 The assignment

You are to program a UNIX shell similar to, for example, BASH, which probably is the command

shell you normally use when you use a UNIX system. A shell is an interface between a user and the
operatin system. It lets us give commands to the system and start other programs. It uses several POSIX
system calls, for example fork, execve, getpid, getppid, and wait. The final version of your shell should
be able to fork at least two processes and connect them with pipes. It should work just like when you
type ls|wc in BASH.This command redirects stdout of ls to stdin of wc. Together these commands
will display the number of lines, words, and characters in the output of ls.

You may write the shell in any programming language you wish as long as you can do POSIX calls
from it, but normally C is the preferred choice, since this is the language assumed in the POSIX
specification. This assignment has been prepared for Java, however, since students nowadays usually

2

 don’t know C. If you do master C, it is the recommended choice, but if you don’t, please use a different
language. Otherwise you will end up with a lot of C problems that are unrelated to the assignment. For
the rest of this document it will be assumed that you do the assignment in Java.

2.1 POSIX and Java : jtux

[if you will not use java, you may skip this].
As you most likely know, Java is not normally compiled to machine code, but rather to byte code.

This makes it a bit harder to do low level programming in it, and by default Java has no support for
POSIX calls since it is not portable to non-POSIX systems. There are a few external libraries you can
use, however. The one that is described here is called jtux (http://www.basepath.com/aup/jtux/). You
can find the documentation for jtux in the docs subdirectory of the assignment. The specific parts you
need to use for the assignment are also briefly described in this document. It is also a good idea to take a
look at the manual pages for the different POSIX calls, since the jtux documentation is a bit sparse. You
do this by typing man -s2 fork in the shell, for the fork system call, etc.

2.1 Writing a shell using POSIX

You are given skeleton code that you need to complement with some code to get it to work as
 expected. The code will by default just display a prompt and echo whatever you type. Take a look at
the code and make sure you understand most of it. It’s well documented so things should be clearer
after you’ve had a look.

Java : You should start by running the shell script build.sh to compile the skeleton code into byte code.

You can then run it by typing ./shell.sh.
C: You should start by running the command g++ -Wall –Werror -o shell shell.c

to compile the skeleton code. You can run it by typing ./shell.

Run the shell and type stuff to get a feeling of how it works right now. You exit the skeleton
shell by typing exit.

Step 1: Experiment the fork system call.

a. Read section 3 of this document about processes in Unix, and the manual page for the fork

system call (man –s2 fork).

b. Make the shell fork a child whenever you type something at the prompt. Let the child die

immediately.
 Open up another shell (bash, not your own) and type ps -l -uyourloginname to see your
processes. You should be able to see a zombie appear each time you type something in your shell. Try
to kill the zombies using the command kill -9 pid, where pid is the process id of the
zombie. You can find this id in the output from ps. What happens? Why?
Now type exit in your shell to exit it. Now try to see the zombies again. They are gone. What
happened to them?

Java : The only jtux method you need to use at this point is long UProcess.fork(). It works
exactly like the POSIX call fork(), so type man -s2 fork to get the details.

 Save your work in a file named step1 (.java or .c). You will have to hand in that

program together with answers your to the questions in this step.

Step 2: Waiting for a child process, getting process and parent process identifications.

a. Have the shell wait for the child it forks, so that you avoid zombies. After this step you should not be

able to see any zombies when your shell is running.
Read the man page for wait for more details. Note that there are more than one man page for wait. The
one you want to see is in section 2 (man -s2 wait). The one in the first section is a shell command
and not a system call.

3

Java : You now also have to use the jtux method long UProcess.wait(UExitStatus
status). You need to declare a variable of type UExitStatus before you call wait.
This variable will contain the exit status of the process you waited for. Use the method
status.get() to access the actual status if you wish. wait returns the process id of the
process you just waited for.

b. Modify your program to make :

- the child process display its id and the id of its parent process before it dies, and
- the parent process (your shell) displays the value returned by fork, the value returned by wait,

and its own pid.
As the two processes use the same terminal for output, use the string “child : “ before each
information displayed by the child, and the string “parent: “ before each information displayed
by the parent process.

Make sure you understand that the only way for a process to get its id or its parent’s id is to ask the
operating system. Why has a process to resort to the OS kernel to have its own identification? You
will need to use the getpid and getppid POSIX system call for that. Read the manual page for
getpid (get process identification) and getppid (get parent process identification) for more details.

Java : You now have to use the jtux methods long UProcess.getpid() to get the process
id and long Uprocess.getppid() to get the parent process id.

What are the outputs of the 2 processes ? are they coherent one with the other?

Note : The process, and parent process identification are some of the information stored in the PCB.
Among other information, a process can get from the operating system through POSIX system calls
are : the id of user who owns the process (getuid), the user group id (getgid), the current
working directory (getcwd), the environment variable (getenv), information describing the
resources utilized by the current process (getrusage), limits on the consumption of system
resources (getrlimit), etc. You do not have to learn about these system calls in this assignment
but it is good you know the operating system stores a lot of information on processes.

 Save your work in a file named step2 (.java or .c). You will have to hand in that
program together with your answers to the questions in this step.

Step 3: Experiment exec call to replace the code of a process with a new program

a. Make the forked child execute new code so that you can type e.g. ls -lF at your prompt and have

it work.
Note that if you try to run a program that expects to read from stdin, it will not work. This is
because your shell reads from stdin. In order to make it work you would have to redirect stdin for
the program, but that is not necessary for the assignment. If you are interested in how to do this, see
the last step for details. If you have started such a program, don’t type Ctrl-C to abort it, since this
will mess up your console. Instead, use a different shell and kill the relevant process from it.

Java: use the jtux method void UProcess.execvp(String file, String[]args). file is the

command you want to run, e.g. ls, and args are all arguments. Note that the first
argument should always be the name of the program that’s being run. This means that for this step
you should call execvp something like UProcess.execvp(arguments[0][0],
arguments[0]), where arguments is the array given by the skeleton code. It contains
everything you need. See the man page for execvp for more details.

C: Use the POSIX call int execvp(const char *file, char const *argv[]),
where file is the command you want to run, e.g. ls, and argv are all arguments. Note
that the first argument should always be the name of the program that’s being run. This means that
for this step you should call execvp something like execvp(args[0][0], args[0]),
where args is the array given by the skeleton code. It contains everything you need. See the man
page for execvp for more details.

4

b. Make the shell fork and execute more than one child if more than one command is given recall you
separates commands typed on the prompt by the pipe character (|). At this point you shouldn’t try
to connect the children with a pipe. Be careful here not to create any zombies. To make the next
step a little bit easier you should first fork all children, and then wait for them. Don’t create one and
wait for it before you spawn the next one.

No new POSIX calls are necessary for this step.

For the assignment it is enough to handle just two processes here.

If you try with ls|wc here, you will get weird behaviour. This is because wc tries to read from stdin,
but will not get any input as described in the previous step. Try something else instead, for example
ls|ps. Neither of those programs try to read from stdin.

 Save your work in a file named step3 (.java or .c). You will have to hand in that
program.

Step 4: Connecting sibling processes using pipes

a. Read section 4 of this document. It is about pipes and redirection.

b. Connect the children with pipes so that e.g. ls|wc works as expected.
You will now have to create one or more pipes. This is done through the POSIX call pipe.
See the documentation on pipes for more details. In addition you will also need to use void
the POSIX call close to close the unused ends on the pipe, and the POSIX call dup2 to do
the redirection. See the documentation on pipes for more details, and/or read the man pages for pipe,
close, and dup2.

Java: Use void UFile.pipe(int[] pfd) where pfd should be an integer array of size 2.
 Also use use void UFile.close(int fd) and int UFile.dup2(int fd, int fd2).

C: use POSIX calls int pipe(int fildes[2]), int close(int fildes), and int
dup2(int fildes, int filedes2).

At this point you may have discovered that you cannot do everything in your shell that you can

do in BASH. There are at least two obvious differences. First, BASH has a few built in commands.
Since they are built in BASH you cannot call them from your shell, unless you implement them in your
shell yourself. Examples of built in commands are cd and pwd. Second, BASH has some built in magic
that does wildcard expansion and some clever things with quoted strings. In your shell, for example, ls
*.java will not work as expected since there is no file literarily called *.java. BASH on the other
hand will expand the expression and call ls with one argument for each file that ends with .java. The
wildcard expansion is built into BASH, and is not handled by ls. You don’t have to handle these things
in your shell.

 Save your work in a file named step4 (.java or .c). You will have to hand in that
program.

3 Processes in UNIX

Several processes can run at the same time in a UNIX system. The operating system needs a way to keep
track of each process. Information such as what state the process is in (running, sleeping, waiting, etc.),
what user is running it, which files the process has open, and so on needs to be stored somewhere. All this
information is stored in the process control block (PCB) of the process, which is located in kernel space.
Each process also has a unique process id (pid) associated with it. When a UNIX system starts, a single
process is created, and it’s called init. This process then forks into more processes which in turn executes
new programs. These programs in turn can fork and execute new programs. This way a hierarchy of
processes is created, with init as the ancestor of all processes. The init process always has a process id of 1.

5

The only way to create a new process in UNIX is to use the fork system call. This is what happens when
a process calls fork:

1. The process calls fork.

2. The kernel creates a PCB for the new process.

3. The kernel allocates memory for the new process.

4. The kernel puts a copy of the process in the memory for the new process.

5. The kernel schedules both processes.

At this point both the parent and the child will run the same code, so to make them behave differently,

the code will have to look at the return value of fork, and execute different branches depending on what the
return value is. In the parent, fork will return the process id of the newly created child, and in the child,
fork will return 0. The child will have copies of all variables in the parent, and of all file and other I/O
descriptors (see next section) in the parent.

When the child exits, it will return a value. If exited normally, 0 will be returned, but if some error

occurred, or it needs to return some value for some other reason, a value greater than 0 will be returned.
But where will the return value be stored? When the process exits, the kernel will deallocate the memory
it occupies, so there is no space to store the return value. The answer is that the return value is stored in
the PCB. So when a process exits, another process may need to read the return value. For this reason,
when a process exits, the memory it occupies is freed, but the PCB is not. The kernel can not release the
PCB until someone has read the return value of the process. When a process is in this state, it is called a
zombie. To read the return value of a process you use the system call wait(pid_t wait(int *stat_loc);). It
will store the value returned by at process termination in the variable refernced by stat_loc, and will
return the pid of the process it waited for (see figure 1).

Figure 1: How fork and wait work. a) fork returns 0 in the child and the pid of the chills in the

parent, b) parent and child can create new processes, c) parent waits for child.

6

If you don’t want to execute the same program in both the parent and the child, you will need to
use another system call of the exec family (exec, execve,execlp, …) . This exec
command will load the content of a given file into the process and start executing it. It will replace the
old program.

4 I/O using pipes

A descriptor is an integer that identifies some kind of I/O-object in the kernel. It can for example

be a pipe, a file, or a network socket. Depending on what kind of I/O-object you want to use, you
create the descriptor using different system calls. For example you need a descriptor to read from a file.
You get the descriptor by using the open system call. You then use the descriptor to access the file
through other system calls such as read or write. One I/O-object may have many descriptors associated
with it.

When a new process is created it will pretty much always have at least three open descriptors: 0, 1,
and 2. These are better known as stdin, stdout, and stderr, respectively. When you are using a shell,
stdin is normally connected to the keyboard, and stdout and stdin are connected to the shell.

Figure 2: A pipe.

A pipe is a special kernel object. Basically it is just a pair of descriptors connected together. You

 write to one end and read from the other. A pipe is typically used in communication between a parent
and a child, or between siblings. You create it by using the system call pipe. You give it an array of two
integers as argument, and after the call these two integers will be descriptors for the ends of the pipe. If
you then fork off a new process, this process will have copies of the descriptors, and you can then talk to
the child through the pipe. If you fork off two children, these two can talk to each other through the
pipe.

A common use of pipes is when you use a shell and type for example ls | less. This will create a
pipe between the programs ls and less, and it will redirect stdout of ls to stdin of less. To do this
redirection you use the system call dup. This system call will duplicate a descriptor so that the copy will
refer to the same I/O-object as the original. For example, to redirect stderr to stdout you use a variant of
dup, called dup2, which takes two arguments. If you call it like dup2(stdout, stderr) it will replace
the contents of stderr with the contents of stdout. As a result, all output to stderr will now go to stdout
instead.

0 1

pipe

User space

Kernel

P1

7

5 More information

In these pages I’ve just presented what is necessary to complete the lab. For a more thorough
discussionon all these concepts, see “Advanced UNIX Programming, 2nd Edition” by Marc J. Rochkind
(Pearson, 2004).

I want your feedback on these labs!!! Please tell me what’s good and what’s not.

