
Computer Architecture
Crash course

Frédéric Haziza <daz@it.uu.se>

Department of Computer Systems

Uppsala University

Summer 2009

Why? Concurrency Hardware?

Conclusions

The multicore era is already here
cost of parallelism is dropping dramatically
• Cache/Thread is dropping
• Memory bandwidth/thread is dropping

The introduction of multicore processors will have profound
impact on computational software

“For high-performance computing (HPC) applications,
multicore processors introduces an additional layer of
complexity, which will force users to go through a phase
change in how they address parallelism or risk being left
behind.”

[IDC presentation on HPC at International Supercomputing Conference, ICS07, Dresden, June 26-29 2007]

5 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Why multiple cores/threads?
(even in your laptops)

Instruction level parallelism is running out
Wire delay is hurting
Power dissipation is hurting
The memory latency/bandwidth bottleneck is becoming even
worse

7 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Focus: Performance

Create and explore:

1 Parallelism
• Instruction level parallelism (ILP)
• In some cases: Parallelism at the program/algorithm level

(“Parallel computing”)

2 Locality of data
• Caches
• Temporal locality
• Cache blocks/lines: Spatial locality

8 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Old Trend 1: Deeper pipelines
(exploring ILP)

9 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Old Trend 2: Wider pipelines
(exploring more ILP)

10 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Old Trend 3: Deeper memory hierarchy
(exploring locality of data)

11 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Are we hitting the wall now?

YearNow

Performance [log]

1

10

100

1000

“M
oor

e’s
law

”
Business as usual...

Humm, transistors can
be made smaller and
faster, but there are
other problems

Possible path, but re-
quires a paradigm shift

12 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Classical microprocessors: Whatever it takes to
run one program fast

Exploring ILP (instruction-level parallelism)

Faster clocks → Deep pipelines
Superscalar Pipelines
Branch Prediction
Out-of-Order Execution
Trace Cache
Speculation
Predicate Execution
Advanced Load Address Table
Return Address Stack
...

Ba
d
Ne

ws
#
1:
Al
rea
dy
ex
plo
red

mo
st
ILP

13 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

#2: Future technology

Ba
d
Ne

ws
#
2:
Lo
oo
ng
wi
re
de
lay
→
slo
w
CP
Us

14 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

#2: How much of the chip area can you reach in
one cycle?

Ba
d
Ne

ws
#
2:
Lo
oo
ng
wi
re
de
lay
→
slo
w
CP
Us

15 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Bad News #3: Mem latency/bandwidth

B

C

B+C A

16 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Bad News #4: Power is the limit

Power consumption is the bottleneck
• Cooling servers is hard
• Battery lifetime for mobile computers
• Energy is money

Dissipated effect is proportional to
• ˜ Frequency
• ˜ Voltage2

17 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

1 Why mutliple threads/cores?
Old Trends
Bad news
Solutions?

2 Introducing concurrency
Scenario
Definitions
Amdhal’s law

3 Can we trust the hardware?

18 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Bad News #1: Not enough ILP
→ feed one CPU with instr. from many threads

19 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Simltaneous multithreading

20 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Bad News #2: Wire delay
→ Multiple small CPUs with private L1$

21 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Bad News #2: Wire delay
→ Multiple small CPUs with private L1$

Institutionen för informationsteknologi | www.it.uu.se

Multicore processor

Mem

I R

Regs

B MMW

I R B MMW

I R B MMW

I R B MMW

I

I

I

I
Issue

logic

$

!

SEK

Thread 1

Thread N

…

PC

PC Regs

SEK

Issue

logic

22 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Bad News #3: Memory latency/bandwidth
→ memory accesses from many threads

B

C

B+C A

B

C

B+C A

23 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Bad News #4: Power consumption
→ Lower the frequency → lower voltage

Pdyn = C ∗ f ∗ V 2 ≈ area ∗ freq ∗ voltage2

CPU
freq=f

VS.
CPU

freq=f/2
CPU

freq=f/2

Pdyn(C , f ,V) < CfV 2 Pdyn(2C , f /2, < V) < CfV 2

CPU
freq=f

VS.
CPU CPU

CPU CPU

freq=f/2

Pdyn(C , f ,V) < CfV 2 Pdyn(C , f /2, < V) < 1
2CfV

2

24 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Solving all the problems (?):
Exploring thread parallelism

#1 Running out of ILP

→ feed one CPU with instr. from many threads

#2 Wire delay is starting to hurt

→ Multiple small CPUs with private caches

#3 Memory is the bottleneck

→ memory accesses from many threads

#4 Power is the limit

→ Lower the frequency → lower voltage

25 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

In all computers very soon...

Multicore processors, probably also
with simultaneous multithreading

26 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Scenario

Several cars want to drive from point A to point B.

They can compete for space on the same road
and end up either:

following each other
or competing for positions (and having accidents!).

Or they could drive in parallel lanes,
thus arriving at about the same time without getting in each
other’s way.

Or they could travel different routes, using separate roads.

28 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Scenario

Several cars want to drive from point A to point B.

Sequential

Programming
They can compete for space on the same road
and end up either:

following each other

or competing for positions (and having accidents!).

Parallel

Programming
Or they could drive in parallel lanes,

thus arriving at about the same time without getting in each other’s way.

Distributed

Programming
Or they could travel different routes, using separate roads.

29 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Definitions

Concurrent Program
2+ processes working together to perform a task.
Each process is a sequential program
(= sequence of statements executed one after another)

Single thread of control vs multiple thread of control

Communication

• Shared Variables
• Message Passing

Synchronization

• Mutual Exclusion
• Condition Synchronization

30 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Correctness

Wanna write a concurrent program?
What kinds of processes?

How many processes?

How should they interact?

Correctness
Ensure that processes interaction is properly synchronized

Mutual Exclusion

Ensuring the critical sections of statements do not execute at
the same time

Condition Synchronization

Delaying a process until a given condition is true

Our focus: imperative programs and asynchronous execution
31 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Amdhal’s law

P is the fraction of a calculation that can be parallelized
(1− P) is the fraction that is sequential
(i.e. cannot benefit from parallelization)

N processors

speedup
(1−P)+P

(1−P)+P/N

maximum speedup

1
1−P

Example
If P = 90% ⇒ max speedup of 10
no matter how large the value of N used (ie N →∞)

32 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Single-Processor machine

CPU

1ns
200ns

3ns

sr
am

Cache
Level 1
Level 2

sram

10ns
200ns

Mem

dram

150ns
200ns

Storage

5 000 000ns
10 000 000ns

2000:
1982:

34 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Memory Hierarchy

Main Memory

Level 2 cache

Level 1 cache

CPU

35 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Why do we miss in the cache?

Compulsory

miss
Touching the data for the first time

Capacity

miss
The cache is too small

Conflict

miss
Non-ideal cache implementation (data hash to the same cache

line)

Main Memory

Miss

Cache

Hit

CPU

36 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Locality

Temporal

locality

Spatial

locality

Inner loop stepping through an array

A, B, C, A+1, B, C, A+2, B, C,

spatial temporal

37 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

MultiProcessor world - Taxonomy

SIMD MIMD

Message Passing

Fine-grained Coarse-grained

Shared Memory

UMA NUMA COMA

38 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Shared-Memory Multiprocessors

Memory Memory...

Interconnection network / Bus

Cache Cache
...

CPU CPU

39 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Programming Model

Thread

$

Thread

$

Thread

$

Thread

$

Thread

$

Thread

$

Thread

$

Thread

$

Thread

$

Shared Memory

40 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Cache coherency

Shared Memory

A: B:

$

Thread

$

Thread

$

Thread
Read A

Read A

...

...

Read A

...

Read A

...

Write A

Read B

...

Read A

41 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Summing up Coherence

There can be many copies of a
datum, but only one value

To
o str

on
g!!

!

There is a single global order of value
changes to each datum

42 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Memory Ordering

The

coherence

defines a per-datum order of value changes.
The

memory model

defines the order of value changes for all
the data.

What ordering does the memory system guarantees?
“Contract” between the HW and the SW developers
Without it, we can’t say much about the result of a parallel
execution

43 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

What order for these threads?

A’ denotes a modified value to the datum at address A

Thread 1

LD A
ST B’
LD C
ST D’
LD E
...
...

Thread 2

ST A’
LD B’
ST C’
LD D
ST E’
...
...

LD A happens before ST A’

44 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Other possible orders?

Thread 1

LD A
ST B’
LD C

ST D’
LD E
...
...

Thread 2

ST A’
LD B’
ST C’
LD D

ST E’
...
...

Thread 1

LD A
ST B’
LD C

ST D’
LD E
...
...

Thread 2

ST A’
LD B’
ST C’
LD D

ST E’
...
...

45 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Memory model flavors

Sequentially Consistent

: Programmer’s intuition

Total Store Order

: Almost Programmer’s intuition

Weak/Release Consistency

: No guaranty

46 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Dekker’s algorithm

Initially A = 0,B = 0
“fork”

A := 1
if(B==0)print(“A wins”);

B := 1
if(A==0)print(“B wins”);

Can both A and B win?

Does the write
become globally
visible before the
read is performed?

Left: The read (ie, test if B==0) can bypass the store (A := 1)
Right: The read (ie, test if A==0) can bypass the store (B := 1)
⇒ Both loads can be performed before any of the stores
⇒ Yes, it is possible that both win!

47 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Dekker’s algorithm for Total Store Order

Initially A=0,B=0
“fork”

A := 1
Membar #StoreLoad;
if(B==0)print(“A wins”);

B := 1
Membar #StoreLoad;
if(A==0)print(“B wins”);

Can both A and B win?

Does the write
become globally
visible before the
read is performed?

Membar: the read is started after all previous stores have been “globally
ordered”
⇒ Behaves like a sequentially consistent machine
⇒ No, they won’t both win. Good job Mister Programmer!

48 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Dekker’s algorithm, in general

Initially A = 0,B = 0
“fork”

A := 1
if(B==0)print(“A wins”);

B := 1
if(A==0)print(“B wins”);

Can both A and B win?

The answer depends on the memory model

Remember? ...
Contract between the HW and SW developers.

49 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

So....

Memory Model
is a tricky issue

50 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

New issues

Compulsory miss
Capacity miss
Conflict miss

Memory Memory...

Interconnection network / Bus

Cache Cache

...

CPU CPU

Communication miss

Cache-to-cache transfer

False-sharing

Side-effect from large cache lines

What about the compiler?
Code reordering? volatile keyword in C ...

51 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Good to know

Performance ⇒ Use of Cache
Memory hierarchy ⇒ Consistency problems

To get maximal performance on a given machine,
the programmer has to know about the characteristics of the
memory system and has to write programs to account them

52 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Distributed Memory Architecture

Interconnection network

Memory Memory

...Cache Cache

CPU CPU

Communication through Message Passing
Own cache, but memory not shared
⇒ No coherency problems

53 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Isn’t a CMP just a SMP on a chip?

54 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Cost of communication?

55 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Impact on Algorithms

For performance, we need to understand the interaction between
algorithms and architecture.

The rules
have changed

We need to question old algorithms and results!

56 OS2’09 | Computer Architecture (Crash course)

Why? Concurrency Hardware?

Criteria for algorithm design

Pre-CMP:
• Communication is expensive: Minimize communication
• Data locality is important
• Maximize scalability for large-scale applications

Within a CMP chip today:
• (On-chip) communication is almost to free
• Data locality is even more important
• (SMT may help by hiding some poor locality)
• Scalability to 2-32 threads

In a multi-CMP system tomorrow:
• Communication is sometimes almost free (on-chip), sometimes

(very) expensive (between chips)
• Data locality (minimizing of-chip references) is a key to

efficiency
• “Hierarchical scalability”

57 OS2’09 | Computer Architecture (Crash course)

	Why mutliple threads/cores?
	Old Trends
	Bad news
	Solutions?

	Introducing concurrency
	Scenario
	Definitions
	Amdhal's law

	Can we trust the hardware?

