Classical Paradigms
in concurrency

Frédéric Haziza <daz@it.uu.se>

Department of Computer Systems

Uppsala University

Summer 2009

Classical Paradigms

m Trivial parallelism
m Data parallelism

m Task parallelism / Functional parallelism

5 paradigms:

Iterative parallelism

Recursive parallelism
Producer/Consumer
Client/Server

Interacting peers

(2) 0S2'09 | Classical Paradigms (in concurrency)

Iterative

Iterative Parallelism: Matrix multiplication

1 double a[n,n], b[n,n], ¢[n,n];

2: for i=0 to n-1 { biterating trough the rows

3: for j=0 to n-1 { siterating trough the columns
4 b Computes inner product of afi,*] and b[*j]

5: cli,j] = 0.0;

6: for k=0ton1 {

cli] = clij] + aliKI*blk.;

}

What can we parallelize? Line 5 to 8
= c[i,j] is written to, and ali,k], b[k,j] are only read
= every c[i,j] computation!

(@ 0S2'09 | Classical Paradigms (in concurrency)

Iterative

Iterative Parallelism: Matrix multiplication

Parallelizing the rows

CO [i=0 to n-1] { vcompute rows in paraliel
for j=0 to n-1 {
cli,j] = 0.0;
for k=0ton-1 {
clij] = c[ij] + afi k]*b[k.jl;

(5) 0S2'09 | Classical Paradigms (in concurrency)

Iterative

Iterative Parallelism: Matrix multiplication

Parallelizing the columns

CO [j=0 to n-1] { vcompute columns in parallel
for i=0 to n-1 {
cli,j] = 0.0;
for k=0ton-1 {
clij] = c[ij] + afi k]*b[k.jl;

(6) 0S2'09 | Classical Paradigms (in concurrency)

Iterative

Iterative Parallelism: Matrix multiplication

Parallelizing all rows and columns J

CO [i=0 to n-1, j=0 to n-1] {
cli,j] = 0.0;
for k=0ton1 {
, cfi.j] = c[ij] + ali.k]*blk,j];

(@) 0S2'09 | Classical Paradigms (in concurrency)

Recursive

Recursive Parallelism: Adaptive Quadrature

f(x)

L+
o+

/a bf(x)dx

(9 0S2'09 | Classical Paradigms (in concurrency)

Recursive

Recursive Parallelism: Adaptive Quadrature

1. double fleft = f(a), fright, area = 0.0;
2 double width = (b-a)/ INTERVALS;

s for x = (a+width) to b by width {

& fright = f(x);

5: b Compute the small rectangle area

6: area = area + (fleft + Ifright) * width / 2;

7 fleft = fright; vthe right-hand value becomes the new left-hand value

0S2'09 | Classical Paradigms (in concurrency)

Recursive

Divide and Conquer

a £(x)

L X

areanpey — areaoly| > €

(AD) 0S2'09 | Classical Paradigms (in concurrency)

Recursive

Divide and Conquer

double quad(double left, right, fleft, fright, oldarea) {

double mid = (left + right)/2; vfind the middle point
double fmid = f(mld), >get its value

double larea = (fleft 4+ fmid) x (mid — left)/2;
double rarea = (fmid + fright) = (right — mid)/2;

if |(/area + rarea) — oldarea| > € {
>Recurse to integrate both halves
larea = quad(left,mid,fleft,fmid,larea);
rarea = quad(mid,right,fmid,fright,rarea);
}

return (larea + rarea);

¥

b
/a f(x)dx ~ quad(a, b, f(a), f(b),(f(a) + (b)) x (b — a)/2);

(A2 052'09 | Classical Paradigms (in concurrency)

Recursive

Divide and Conquer - Parallel

double quad(double left, right, fleft, fright, oldarea) {

double mid = (left + right)/2; vfind the middle point
double fmid = f(mid); bget its value

double larea = (fleft 4+ fmid) * (mid — left)/2;
double rarea = (fmid + fright) = (right — mid)/2;

if |(/area + rarea) — oldarea| > € {

>Recurse to integrate both halves

cof {
larea = quad(left,mid,fleft,fmid,larea);
>in parallel!
rarea = quad(mid,right,fmid,fright,rarea);

} >Must wait for larea and rarea

}

return (larea + rarea);

(13 0S52'09 | Classical Paradigms (in concurrency)

Prod/Cons

Producer / Consumer

Consu

Shared Resource

(a5 0S2'09 | Classical Paradigms (in concurrency)

Client/Server

Client / Server

Request

Request

(A7) 0S2'09 | Classical Paradigms (in concurrency)

Interacting Peers - Coordinator/Workers

0S2'09 | Classical Paradigms (in concurrency)

Interacting Peers - Circular Pipeline

0S2'09 | Classical Paradigms (in concurrency)

Interacting Peers

Coordinator /Workers J Circular pipeline J

@ Worker,

Results Results

A - - > GE

~ ~
- - -_ -

Data Data

(2D 0S52'09 | Classical Paradigms (in concurrency)

	Iterative Parallelism
	Recursive Parallelism
	Producer/Consumer
	Client/Server
	Interacting Peers

