
Classical Paradigms
in concurrency

Frédéric Haziza <daz@it.uu.se>

Department of Computer Systems

Uppsala University

Summer 2009

Iterative Recursive Prod/Cons Client/Server Peers

Classical Paradigms

Trivial parallelism
Data parallelism
Task parallelism / Functional parallelism

5 paradigms:
Iterative parallelism
Recursive parallelism
Producer/Consumer
Client/Server
Interacting peers

2 OS2’09 | Classical Paradigms (in concurrency)

Iterative Recursive Prod/Cons Client/Server Peers

Iterative Parallelism: Matrix multiplication

1: double a[n,n], b[n,n], c[n,n];

2: for i=0 to n-1 { .iterating trough the rows

3: for j=0 to n-1 { .iterating trough the columns

4: . Computes inner product of a[i,*] and b[*,j]

5: c[i,j] = 0.0;
6: for k = 0 to n-1 {
7: c[i,j] = c[i,j] + a[i,k]*b[k,j];

}
}

}

What can we parallelize? Line 5 to 8
⇒ c[i,j] is written to, and a[i,k], b[k,j] are only read
⇒ every c[i,j] computation!

4 OS2’09 | Classical Paradigms (in concurrency)

Iterative Recursive Prod/Cons Client/Server Peers

Iterative Parallelism: Matrix multiplication

Parallelizing the rows

CO [i=0 to n-1] { .compute rows in parallel

for j=0 to n-1 {
c[i,j] = 0.0;
for k = 0 to n-1 {

c[i,j] = c[i,j] + a[i,k]*b[k,j];
}

}
}

5 OS2’09 | Classical Paradigms (in concurrency)

Iterative Recursive Prod/Cons Client/Server Peers

Iterative Parallelism: Matrix multiplication

Parallelizing the columns

CO [j=0 to n-1] { .compute columns in parallel

for i=0 to n-1 {
c[i,j] = 0.0;
for k = 0 to n-1 {

c[i,j] = c[i,j] + a[i,k]*b[k,j];
}

}
}

6 OS2’09 | Classical Paradigms (in concurrency)

Iterative Recursive Prod/Cons Client/Server Peers

Iterative Parallelism: Matrix multiplication

Parallelizing all rows and columns

CO [i=0 to n-1, j=0 to n-1] {
c[i,j] = 0.0;
for k = 0 to n-1 {

c[i,j] = c[i,j] + a[i,k]*b[k,j];
}

}

7 OS2’09 | Classical Paradigms (in concurrency)

Iterative Recursive Prod/Cons Client/Server Peers

Recursive Parallelism: Adaptive Quadrature

f (x)

x

y

a b

∫ b

a
f (x)dx

9 OS2’09 | Classical Paradigms (in concurrency)

Iterative Recursive Prod/Cons Client/Server Peers

Recursive Parallelism: Adaptive Quadrature

1: double fleft = f(a), fright, area = 0.0;
2: double width = (b-a)/ INTERVALS;

3: for x = (a+width) to b by width {
4: fright = f(x);
5: .Compute the small rectangle area

6: area = area + (fleft + lfright) * width / 2;
7: fleft = fright; .the right-hand value becomes the new left-hand value

}

f (x)

x

y

x

10 OS2’09 | Classical Paradigms (in concurrency)

Iterative Recursive Prod/Cons Client/Server Peers

Divide and Conquer

f (x)

x

y

f (x)

x

y

|areanew − areaold | > ε

11 OS2’09 | Classical Paradigms (in concurrency)

Iterative Recursive Prod/Cons Client/Server Peers

Divide and Conquer

double quad(double left, right, fleft, fright, oldarea) {

double mid = (left + right)/2; .find the middle point

double fmid = f(mid); .get its value

double larea = (fleft + fmid) ∗ (mid − left)/2;
double rarea = (fmid + fright) ∗ (right −mid)/2;

if |(larea + rarea)− oldarea| > ε {
.Recurse to integrate both halves

larea = quad(left,mid,fleft,fmid,larea);
rarea = quad(mid,right,fmid,fright,rarea);

}
return (larea + rarea);

}∫ b

a
f (x)dx ≈ quad(a, b, f (a), f (b), (f (a) + f (b)) ∗ (b − a)/2);

12 OS2’09 | Classical Paradigms (in concurrency)

Iterative Recursive Prod/Cons Client/Server Peers

Divide and Conquer - Parallel

double quad(double left, right, fleft, fright, oldarea) {

double mid = (left + right)/2; .find the middle point

double fmid = f(mid); .get its value

double larea = (fleft + fmid) ∗ (mid − left)/2;
double rarea = (fmid + fright) ∗ (right −mid)/2;

if |(larea + rarea)− oldarea| > ε {
.Recurse to integrate both halves

CO [] {
larea = quad(left,mid,fleft,fmid,larea);

.in parallel!

rarea = quad(mid,right,fmid,fright,rarea);
} .Must wait for larea and rarea

}
return (larea + rarea);

}

13 OS2’09 | Classical Paradigms (in concurrency)

Iterative Recursive Prod/Cons Client/Server Peers

Producer / Consumer

Producer Consumer

Shared Resource

15 OS2’09 | Classical Paradigms (in concurrency)

Iterative Recursive Prod/Cons Client/Server Peers

Client / Server

Client1

Clientn

...
...

Server

Request

Reply

Request

Reply

17 OS2’09 | Classical Paradigms (in concurrency)

Iterative Recursive Prod/Cons Client/Server Peers

Interacting Peers - Coordinator/Workers

Coordinator

Worker1 Workern−1
Results

Data

Results

Data

19 OS2’09 | Classical Paradigms (in concurrency)

Iterative Recursive Prod/Cons Client/Server Peers

Interacting Peers - Circular Pipeline

Worker1 ... Workern−1

20 OS2’09 | Classical Paradigms (in concurrency)

Iterative Recursive Prod/Cons Client/Server Peers

Interacting Peers

Coordinator/Workers

Coordinator

Worker1 Workern−1
Results

Data

Results

Data

Circular pipeline

Worker1 ... Workern−1

21 OS2’09 | Classical Paradigms (in concurrency)

	Iterative Parallelism
	Recursive Parallelism
	Producer/Consumer
	Client/Server
	Interacting Peers

