Classical Paradigms in concurrency

Frédéric Haziza <daz@it.uu.se>

Department of Computer Systems Uppsala University

Summer 2009

Classical Paradigms

- Trivial parallelism
- Data parallelism
- Task parallelism / Functional parallelism
- 5 paradigms:
 - Iterative parallelism
 - Recursive parallelism
 - Producer/Consumer
 - Client/Server
 - Interacting peers

Iterative Recursive Prod/Cons Client/Server

Peers

Iterative Parallelism: Matrix multiplication

What can we parallelize? Line 5 to 8 \Rightarrow c[i,j] is written to, and a[i,k], b[k,j] are only read \Rightarrow every c[i,j] computation!

Iterative Parallelism: Matrix multiplication

Parallelizing the rows

Iterative Parallelism: Matrix multiplication

Parallelizing the columns

Iterative Parallelism: Matrix multiplication

Parallelizing all rows and columns

Iterative Recursive Prod/Cons Client/Server Peers

Recursive Parallelism: Adaptive Quadrature

Recursive Client/Server Peers Iterative **Recursive Parallelism: Adaptive Quadrature** double fleft = f(a), fright, area = 0.0; 1: double width = (b-a)/INTERVALS; 2: for x = (a+width) to b by width { 3: fright = f(x); 4: 5: Compute the small rectangle area area = area + (fleft + lfright) * width / 2;6: fleft = fright; >the right-hand value becomes the new left-hand value 7: ł

Prod/Cons

Client/Server

Peers

Divide and Conquer

Recursive

Prod/Cons

Client/Server

Peers

Divide and Conquer

double quad(double left, right, fleft, fright, oldarea) {

double mid = (left + right)/2; \triangleright find the middle point double fmid = f(mid); \triangleright get its value double larea = (fleft + fmid) * (mid - left)/2; double rarea = (fmid + fright) * (right - mid)/2;

 $\int_a^b f(x) \mathrm{d}x \approx quad(a, b, f(a), f(b), (f(a) + f(b)) * (b - a)/2);$

Recursive

Prod/Cons

Peers

Divide and Conquer - Parallel

double quad(double left, right, fleft, fright, oldarea) {

```
double mid = (left + right)/2; \triangleright find the middle point
double fmid = f(mid); \triangleright get its value
double larea = (fleft + fmid) * (mid - left)/2;
double rarea = (fmid + fright) * (right - mid)/2;
```


Iterative	Recursive	Prod/Cons	Client/Server	Peers
Client	/ Server			

Peers

Interacting Peers - Coordinator/Workers

Prod/Cons

Client/Server

Peers

Interacting Peers - Circular Pipeline

