
Shared Memory Programming

Frédéric Haziza <daz@it.uu.se>

Department of Computer Systems

Uppsala University

Summer 2009

Recall Analyzing concurrent program Example Atomicity Race Condition Next?

Shared Resource

Remark
Sequential program use shared variables
Convenience for Global data structure

Necessity
Concurrent program MUST use shared components

The only way to solve a problem: Communicate

The only way to communicate:
One writes into something which the other one reads.

Communication

Reading and Writing shared variables

Sending and Receiving messages

3 OS2’09 | Shared Memory Programming

Recall Analyzing concurrent program Example Atomicity Race Condition Next?

Synchronisation

Communication ⇒

Synchronisation

Synchronisation
Mutual Exclusion
Condition synchronisation

Example (Mutual Exclusion)
Whenever 2 processes need to take runs accessing shared objects

Example (Condition synchronisation)
Whenever one process needs to wait for another

4 OS2’09 | Shared Memory Programming

Recall Analyzing concurrent program Example Atomicity Race Condition Next?

Shared-Memory Programming

SIMD MIMD

Message Passing

Fine-grained Coarse-grained

Shared Memory

UMA NUMA COMA

5 OS2’09 | Shared Memory Programming

Recall Analyzing concurrent program Example Atomicity Race Condition Next?

Cache coherency

Shared Memory

A: B:

$

Thread

$

Thread

$

Thread
Read A

Read A

...

...

Read A

...

Read A

...

Write A

Read B

...

Read A

6 OS2’09 | Shared Memory Programming

Recall Analyzing concurrent program Example Atomicity Race Condition Next?

State

State?
All values of the program variables at a point in time
Explicit and implicit variables

Atomic actions

indivisibly

examine or change the program state

Concurrent program execution
A particular

interleaving

of atomic actions

Trace / History
s0 → s1 → s2 → ...→ sn

8 OS2’09 | Shared Memory Programming

Recall Analyzing concurrent program Example Atomicity Race Condition Next?

State Explosion

For each execution, a history

Number of history: ENORMOUS!!

Synchronization ⇒

Constraining the possible histories to the desirable ones

9 OS2’09 | Shared Memory Programming

Recall Analyzing concurrent program Example Atomicity Race Condition Next?

Program Verification

Does my program satisfy a given property?

Testing - Debugging

Run the program and see what happens

Operational reasoning

Exhaustive case analysis - Consider ALL interleavings of atomic actions

n processes with m atomic actions. Number of histories = (n.m)!
(m!)n

Example: 3 processes with 2 atomic actions. Number of histories = 90

Assertional Reasoning

Abstract analysis - Model the states with predicates. Compact representation of states

10 OS2’09 | Shared Memory Programming

Recall Analyzing concurrent program Example Atomicity Race Condition Next?

Finding pattern in a file

1: string line;
2: Read a line of input from stdin into line
3: while (!EOF) { .EOF = end of file

4: look for pattern in line
5: if pattern is in line {
6: print line;

}
7: read next line of input;

}

12 OS2’09 | Shared Memory Programming

Recall Analyzing concurrent program Example Atomicity Race Condition Next?

Independant parts

Writes

Reads

Part A

Writes

Reads

Part B

13 OS2’09 | Shared Memory Programming

Recall Analyzing concurrent program Example Atomicity Race Condition Next?

Finding pattern in a file - Parallel

string line;
Read a line of input from stdin into line
while (!EOF) { .EOF = end of file

look for pattern in line
if pattern is in line {

print line;
}

read next line of input;

}

14 OS2’09 | Shared Memory Programming

Recall Analyzing concurrent program Example Atomicity Race Condition Next?

Finding pattern in a file - Parallel

string line1, line2;
Read a line of input from stdin into line1
while (!EOF) { .EOF = end of file

.Process creation overhead. And dominant!

look for pattern in line1
if pattern is in line1 {

print line1;
}

read next line of input into
line2;

line1 = line2; . pure overhead! Not in the sequential program

}

15 OS2’09 | Shared Memory Programming

Recall Analyzing concurrent program Example Atomicity Race Condition Next?

Finding pattern in a file
Better parallel solution

string buffer; .contains one line of input
bool done = false; .to signal termination

.process 1 finds patterns

string line1;
while (true) {

wait for buffer to be full or done to be true;
if(done) break;
line1=buffer;
signal that buffer is empty
look for pattern in line1;
if pattern is in line1 {

print line1;
}

}

.process 2 reads new lines

string line2;
while (true) {

read next line of input into line2;
if(EOF)done=true; break;
wait for buffer to be empty;
buffer=line2;
signal that buffer is full;

}

buffer is the shared variable: the

communication channel

line1 and line2 are

local

copies

16 OS2’09 | Shared Memory Programming

Recall Analyzing concurrent program Example Atomicity Race Condition Next?

On the way to atomicity
A Bank account example

Balance b with initially 100 sek..
Person A wants to withdraw 70 sek, if possible.
Person B wants to withdraw 50 sek, if possible.
⇒ Balance should not be negative.

int b = 100; .initially 100 sek on the bank account

.Person A tries to withdraw 70 sek

if (b − 70 > 0) {
b = b − 70;

}

.Person B tries to withdraw 50 sek

if (b − 50 > 0) {
b = b − 50;

}

Can anything go wrong? b < 0 ??

18 OS2’09 | Shared Memory Programming

Recall Analyzing concurrent program Example Atomicity Race Condition Next?

Atomicity
Another bank account example

Balance b = 0 sek .
Person A does a deposit of 100 sek.
Person B does a deposit of 200 sek
⇒ Balance should be 300 sek.

A Balance b B
0 load R4, b

load R2, b 0
add R2, #100
store b, R2 100

add R4, #200
200 store b, R4

Solution: Synchronisation (Locks,Semaphores,Monitors,Retry loops,...)

19 OS2’09 | Shared Memory Programming

Recall Analyzing concurrent program Example Atomicity Race Condition Next?

The programmer’s nightmare begins

The programmer must implement correct synchronization!

Example (lock S and Q)

P1 P2

lock(S) lock(Q)
lock(Q) lock(S)

...
unlock(Q) unlock(S)
unlock(S) unlock(Q)

Leads to deadlock: Both P1 and P2 are waiting for each other
Additionally, bad implementation can lead to starvation.

20 OS2’09 | Shared Memory Programming

Recall Analyzing concurrent program Example Atomicity Race Condition Next?

Atomicity
Another example

sum:=0

print(sum)

while (sum < N)
sum:=sum+1while (sum < N)

sum:=sum+1while (sum < N)
sum:=sum+1while (sum < N)

sum:=sum+1

What is printed?How many additions?

Anything between N
and N+3

Anything between N
and N*4

21 OS2’09 | Shared Memory Programming

Recall Analyzing concurrent program Example Atomicity Race Condition Next?

Race Condition

Definition
A situation in a shared-variable concurrent program in which one
process writes a variable that a second process reads, but the first
process continues execution – namely races ahead – and changes
the variable again before the second process sees the result of the
first change. This usually lead to an incorrectly synchronized
program.

Definition (alternative)
The possibility of incorrect results in the presence on unlucky
timing in concurrent programs – getting the right answer relies on
lucky timing

23 OS2’09 | Shared Memory Programming

Recall Analyzing concurrent program Example Atomicity Race Condition Next?

Every day life race condition

Meeting at Wayne’s coffee at 16.00, downtown

Wayne’s A Wayne’s B

16.00

16.10 Where is he?

16.15

the system may
have changed

25 OS2’09 | Shared Memory Programming

Recall Analyzing concurrent program Example Atomicity Race Condition Next?

Check-then-act

Example (Lazy initialization: Not safe)

p u b l i c c l a s s La z y I n i tRa c e {

p r i v a t e Expen s i v eOb j e c t i n s t a n c e = n u l l ;

p u b l i c Expen s i v eOb j ev t g e t I n s t a n c e () {

i f (i n s t a n c e == n u l l) {
i n s t a n c e = new Expen s i v eOb j e c t () ;

}
r e t u r n i n s t a n c e ;

}

}

26 OS2’09 | Shared Memory Programming

Recall Analyzing concurrent program Example Atomicity Race Condition Next?

Read-Modify-Write

Example (We’ve seen that before!)
count++;

27 OS2’09 | Shared Memory Programming

Recall Analyzing concurrent program Example Atomicity Race Condition Next?

Compound actions

Example (Caching Factorizer: Not safe)

p u b l i c c l a s s Uns a f eCa ch i n gFa c t o r i z e r imp l ement s S e r v l e t {
p r i v a t e f i n a l AtomicReference<B i g I n t e g e r > lastNumber

= new AtomicReference<B i g I n t e g e r >() ;
p r i v a t e f i n a l AtomicReference<B i g I n t e g e r [] > l a s t F a c t o r s

= new AtomicReference<B i g I n t e g e r [] >() ;

p u b l i c v o i d s e r v i c e (S e r v l e tR equ e s t req , S e r v l e tRe s pon s e r e s p) {
B i g I n t e g e r i = getNumberFromRequest (r eq) ;
i f (i . e q u a l s (lastNumber . ge t ()))

encode In toResponse (resp , l a s t F a c t o r s . ge t ()) ;
e l s e {

B i g I n t e g e r [] f a c t o r s = f a c t o r (i) ;
las tNumber . s e t (i) ;
l a s t F a c t o r s . s e t (f a c t o r s) ;
encode In toResponse (resp , f a c t o r s) ;

}
}

}

28 OS2’09 | Shared Memory Programming

Recall Analyzing concurrent program Example Atomicity Race Condition Next?

Out-of-thin-air safety

Example
Non-atomic 64-bit operations

Hardware may read in 2 steps, and use a temporary value in
between.

Better than random.

29 OS2’09 | Shared Memory Programming

Recall Analyzing concurrent program Example Atomicity Race Condition Next?

What’s next?

Locks/Barriers

Semaphores

Monitors

Implementation

31 OS2’09 | Shared Memory Programming

	Recall
	Analyzing concurrent program
	Example
	Atomicity
	Race Condition
	What's next

