
Locks and Barriers

Frédéric Haziza <daz@it.uu.se>

Department of Computer Systems

Uppsala University

Summer 2009

Recall Demo Locks Barriers

Scenario

Several cars want to drive from point A to point B.

Sequential Programming
They can compete for space on the same road and end up either:

following each other

or competing for positions (and having accidents!).

Parallel Programming
Or they could drive in parallel lanes,
thus arriving at about the same time without getting in each other’s way.

Distributed Programming
Or they could travel different routes, using separate roads.

3 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

What do you remember from ... yesterday?

Communication
Reading and Writing shared variables
Sending and Receiving messages

Communication ⇒ Synchronisation

Synchronisation
Mutual Exclusion
Condition synchronisation

4 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Cache coherency

Shared Memory

A: B:

$

Thread

$

Thread

$

Thread
Read A

Read A

...

...

Read A

...

Read A

...

Write A

Read B

...

Read A

5 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Memory ordering

Thread 1

LD A
ST B’
LD C

ST D’
LD E
...
...

Thread 2

ST A’
LD B’
ST C’
LD D

ST E’
...
...

Thread 1

LD A
ST B’
LD C

ST D’
LD E
...
...

Thread 2

ST A’
LD B’
ST C’
LD D

ST E’
...
...

6 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Memory model

Memory model flavors
Sequentially Consistent: Programmer’s intuition
Total Store Order: Almost Programmer’s intuition
Weak/Release Consistency: No guaranty

Memory model is tricky

7 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Dekker’s algorithm, in general

Initially A = 0,B = 0
“fork”

A := 1
if(B==0)print(“A wins”);

B := 1
if(A==0)print(“B wins”);

Can both A and B win?

The answer depends on the memory model

“Contract” between the HW and SW developers.

8 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Demo – on Dekker’s algorithm

int data = 0; .Shared variable

int n = ...; .Iterations counter

.process 1 increments

int a; .local copy

for n iterations {
a=data;
a++;
data=a;

}

.process 2 decrements

int b; .local copy

for n iterations {
b=data;
b−−;
data=b;

}

if(data==0){print(“No problem”);}
else{print(“Eh??”);}

10 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Demo – Adding locks

Declaration: pthread_mutex_t my_lock;

Initialization: pthread_mutex_init(&my_lock,NULL);

Locking: pthread_mutex_lock(&my_lock);
Unlocking: pthread_mutex_unlock(&my_lock);

11 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

What about the Compiler?

Usage of the

volatile

keyword in C.

int data = 0; .Shared variable

for n iterations {
data++;

}

for 20 times {
if (data==0) {

print(“No changes);
} else {

print(“I saw one”);
}

}

12 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Locks How do we make a thread wait?

A solution:

Busy waiting

Check repeatedly a condition until it becomes true.

Virtue: We can implement it using only the machine
instructions available on modern processors

Inefficient for single-processors

but powerful for multi-proc
Even hardware uses busy-waiting
(ex: synch of data transfers on memory busses)

Another solution:

Blocking

Waiting threads are de-scheduled
High overhead
Allows processor to do other things

Hybrid methods: Busy-wait a while, then block
14 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

What for?

Critical Section Problem
LOCK(bank_account) .Wait for your turn

if (sum_to_withdraw > account_balance) {
account_balance = account_balance - sum_to_withdraw;

}
UNLOCK(bank_account) .Release the lock

Critical Section Problem – Correct?
if (sum_to_withdraw > account_balance) {

LOCK(bank_account) .Wait for your turn

account_balance = account_balance - sum_to_withdraw;
UNLOCK(bank_account) .Release the lock

}

15 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Critical Section

CO [Process i = 1 to n] {
while (true) {

LOCK(resource);
Do critical section work; (using that resource)
UNLOCK(resource);
↪→ Do NON-critical section work; ←↩

}
}

Assumption
A process that enters its CS will eventually exit
⇒ A process may only terminate in its NON-critical section

16 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Challenge

Task
Design the LOCK and UNLOCK routines.

Ensuring:
Mutual Exclusion
No deadlocks
No unnecessary delays
Eventual Entry

17 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

LOCK / UNLOCK must ensure:

Mutual Exclusion
At most one process at a time is executing its CS.
Bad state: 2 processes are in their CS.

No deadlocks
If two or more processes are trying to enter their CSs, at least one will succeed.
Bad state: all processes are waiting to enter their CS, but none is able to.

No unnecessary delays
If a process is trying to enter its CS and the other processes are executing their non-CSs or have
terminated, the first process is not prevented from entering its CS.
Bad state: A process that wants to enter cannot do so, even though no other process is in its CS.

Eventual Entry
A process that is attempting to enter its CS will eventually succeed.

18 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Reformulation

Let in1 and in2 be boolean variables.
in1 is true if Process 1 is in its CS, false otherwise
in2 is true if Process 2 is in its CS, false otherwise
Avoid that both in1 and in2 are true

MUTEX: ¬(in1 ∧ in2)

A solution:
wait_until(!in2) and then in1 = true; //ATOMICALLY!!
<wait_until(!in2) and then in1 = true;>

19 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Coarse-grained solution

bool in1 = false, in2 = false;
.MUTEX: ¬(in1 ∧ in2)

.Process 1

while (true) {
< wait_until(!in2) and then
in1 = true;>
Do critical section work
in1=false;
Do NON-critical section

}

.Process 2

while (true) {
< wait_until(!in1) and then
in2 = true;>
Do critical section work
in2=false;
Do NON-critical section

}

But n processes ⇒ n variables...

20 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Coarse-grained solution

Only 2 interesting states: locked and unlocked
⇒ 1 variable is enough

bool lock = false;

while (true) { .Process 1

< wait_until(!lock) and then
lock = true;>
Do critical section work
lock=false;
Do NON-critical section

}

while (true) { .Process 2

< wait_until(!lock) and then
lock = true;>
Do critical section work
lock=false;
Do NON-critical section

}

21 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

How to?

< await(!lock) and then lock = true;>

Read-Modify-Write atomic primitives

Test and Set

(TAS):
Value at Mem[lock_addr] loaded in a specified register.
Constant “1” atomically stored into Mem[lock_addr]

Swap

:
Atomically swaps the value of REG with Mem[lock_addr]

Compare and Swap

(CAS):
Swaps if Mem[lock_addr]==REG2

Fetch and Add

(FA):
Increments a value by a given constant and returns the old value

22 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Test And Set

bool TAS(bool lock) {
<

bool initial = lock;

.Save the initial value

< lock = true;

.Set lock

< return initial;

> .Return initial value

}

23 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Spin Lock

bool TAS(bool lock) {
< bool initial = lock; .Save the initial value

<

lock = true; .Set lock

<

return initial; > .Return initial value

}

lock(lock_variable) {

while(TAS(lock_variable)==true){};

.Bang on the lock until free

}

unlock(lock_variable) {

lock_variable:=false;

.Reset to the initial value

}

What’s bad in this version?

24 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Handing over the lock

Interconnect

CS ...L==1

Interconnect

L:=0 ...

L:=0

Interconnect

L=0 L=0 L=0 L=0 L=0 L=0...
N reads
L==0

High traffic

at handover. Even worse with TAS (N writes)

26 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Test and Test and Set

lock(lock_variable) {
while(TAS(lock_variable)==true){};

}

lock(lock_variable) { .More optimistic solution

while (true) {
if(TAS(lock_variable)==false) break;

.Bang on the lock once

while(lock_variable==true){};
}

}

Less traffic

for coherence, but still a lot at handover

27 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Fair solution?

lock(lock_variable) {
while (true) {

if(TAS(lock_variable)==false) break; .Bang on the lock once

while(lock_variable==true){};
}

}

Can the same thread

succeed to grab the lock

perform its critical section

release the lock

perform its non-critical section

and race back to grab the lock again?

28 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Tie Breaker – Petersson’s algorithm

Remember who had the lock latest!

bool in1 = false, in2 = false;
int last = ?;

.Process 1
while (true) {

in1=true, last = 1;
while(in2 and last==1){};
Do critical section work
in1=false;
Do NON-critical section work

}

.Process 2
while (true) {

in2=true, last = 2;
while(in1 and last==2){};
Do critical section work
in2=false;
Do NON-critical section work

}

29 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Lower traffic at handover

Queue-based locks

30 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Traditional chart for lock performance
on a NUMA machine (round-robin scheduling)

Benchmark:

for i = 1 to 10000 {
lock(L);
A = A + 1;
unlock(L);

}

31 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Ticket-based lock

CO [Process i = 1 to n] {
while (true) {

<turn[i] = number; number = number+1;>
< await(turn[i] == number);>
Do critical section
< next = next+1;>
Do NON-critical section

}
}

Fetch and Add (FA)

Increments a value by a given constant and returns the old value

CO [Process i = 1 to n] {
while (true) {

turn[i] = FA(number,1);
while(turn[i] != next){}; .Can even have a back-off
Do critical section
next = next+1; .Is that safe?
Do NON-critical section

}
}

32 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Barriers

Barrier synchronisation
CO [Process i = 1 to n] {

while (true) {
code for task i
↪→ wait for all n tasks to complete ←↩

}
}

Definition (A barrier)
coordination mechanism (an algorithm) that forces processes which
participate in a concurrent (or distributed) algorithm to wait until
each one of them has reached a certain point in its program. The
collection of these coordination points is called the barrier. Once all
the processes have reached the barrier, they are all permitted to
continue past the barrier

34 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Halt !... Papier, bitte. . .

B
ar
rie

r

A

B

C

D

B
ar
rie

r

A

B

C

D

B
ar
rie

r

A

B

C

D

time

36 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Why?

Using barriers, often, enables significant simplification of design for
concurrent programs

The programmer may design an algorithm under the assumption
that the algorithm should work correctly only when it executes in a
synchronous environment (where processes run at the same speed
or share a global clock).

Then by using barriers for synchronisation, the algorithm can be
adapted to work also an asynchronous environment.

37 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

How?

Reusable barrier

Wish: employ

local spinning

in order to

minimize traffic.

On

cache-coherent

system, local spinning if:
busy-waits only on locally-cached data
stops waiting when the data on which it spins change

38 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Atomic counter

Counter initially set to 0
As soon as a process reaches the barrier,

• < counter = counter + 1; >
• busy-waits

when counter = n
• the last process to increment the counter signals the other

processes that they may continue to run past the barrier
• resets to 0 the value of counter (← reusable)

Waiting and signaling work on a single bit go.
The last process flips the bit.

39 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Atomic counter

shared counter .Initially 0, Ranges over {0,...,n}

shared go .Atomic bit

local local.go .A bit

local.go = go; .remembers the current value

< counter = counter + 1; > .atomically increment the counter

if (counter == n) { .last to arrive at the barrier

counter = 0; .reset

go = 1 - go; .notify all

} else {
while(local.go == go){}; .not the last

}

40 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Atomic counter – a bit better

shared counter .Initially 0, Ranges over {0,...,n}

shared go .Atomic bit, initially 1

local local.go .A bit, initially 1

local.go = 1 - local.go; .toggle its local bit

< counter = counter + 1; > .atomically increment the counter

if (counter == n) { .last to arrive at the barrier

counter = 0; .reset

go = local.go; .notify all

} else {
while(local.go 6= go){}; .not the last

}

41 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Atomic counter – Local spinning

shared counter .Initially 0, Ranges over {0,...,n}

shared go[1..n] .array of atomic bit

local local.go .A bit

local.go = go[i]; .remembers current value

< counter = counter + 1; > .atomically increment the counter

if (counter == n) { .last to arrive at the barrier

counter = 0; .reset

for (j = 1 to n) { .notify all

go[j] = 1 - go[j]; .toggling all bits

}
} else {

while(local.go == go[i]){}; .not the last

}

42 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Atomic counter
Without memory initialization

shared counter .Ranges over {0,...,n-1}

shared go .Atomic bit

local local.go .A bit

local local.counter .Atomic register

local.go = go; .remembers current value

local.counter = counter; .remembers current value

<counter = counter+1;[n]> .atomically increment mod n

repeat {
if(counter == local.counter) .all processes have arrived

then { go = 1-go; } .notify all

} until(local.go != go);

Who toggles the go bit?

43 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Atomic counter – Exercise – Correct?

shared counter .Initially 0, Ranges over {0,...,n}

shared go .Atomic bit

local local.go .A bit

local.go = go; .remembers the current value

< counter = counter + 1; > .atomically increment the counter

if (counter == n) { .last to arrive at the barrier

go = 1 - go; .notify all

counter = 0; .reset

} else {
while(local.go == go){}; .not the last

}

45 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Outline

1 Recall

2 Demonstration

3 Locks

4 Barriers
Strategies
Performance improvement through parallelization

46 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

...to multicores

Past
Minimize communication between processors
Maximize scalability (thousands of CPUs)

Multicores today
Communication is “for free”
Scalability is limited to 32 threads
The caches are tiny
Memory bandwidth is scarce

⇒

Data locality

is the key!!

47 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Case Study: Gauss-Seidel

Poisson’s equation

∆ϕ = f , in Ω

ϕ = 0, in ∂Ω

In 2D cartesian coordinates,

(
∂2

∂x2 +
∂2

∂y2)

∆

ϕ(x , y) = f (x , y), (x , y) ∈ Ω

ϕ(x , y) = 0, (x , y) ∈ ∂Ω

Used in fluid theory, electrostatics, ...

To the lab

48 OS2’09 | Locks and Barriers

http://www.it.uu.se/edu/course/homepage/os2/st09/assignments/labB

Recall Demo Locks Barriers

49 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Discretization

x

y

Ω

ui ,j−1 ui ,j ui ,j+1

?? ∂2

∂x2

ui−1,j

ui ,j

ui+1,j ∂2

∂y2

∂2

∂x2+
∂2

∂y2

ui ,j ←
ui,j+ui+1,j+ui−1,j+ui,j+1+ui,j−1

5

50 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Discretization – Gauss-Seidel

Cache line

Ω

Thread0 Thread1 Thread2

51 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Sequential Sweep

Ω

52 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Convergence

while (not converged) {
Do a sweep;

}

while (‖Mnew −Mold‖ > ε) {
Mold = Mnew ;
Mnew =SWEEP(Mnew);

}

But we simplify: Just do 20 sweeps!

53 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Parallel Sweep

Ω

Thread0 Thread1 Thread2

Flags

Barriers

54 OS2’09 | Locks and Barriers

Recall Demo Locks Barriers

Barrier strategy – Not reausable

Shared counter
CO [Process i = 1 to n] {

Code to implement task i
< count = count + 1; >
< await(count == n); >

}

FA(count,1); .If no FA, use count++ and mutex

while(count != n){};

Flag
row_done[t]=line; .Safe, since only one writer

Problem: reset the counter for the barrier
Solution: throw away that counter and use another fresh one at the
beginning of each sweep: counter[iter]

55 OS2’09 | Locks and Barriers

	Recall
	Demonstration
	Locks
	Barriers
	Strategies
	Performance improvement through parallelization

