
Semaphores and Monitors

Frédéric Haziza <daz@it.uu.se>

Department of Computer Systems

Uppsala University

Summer 2009

Semaphores Monitors Conclusion

From locks and barriers...

Are busy-waiting protocols complex?
No clear distinction between variables used:

• for synchronization
• for computing results

Busy-waiting is often inefficient
• Usually more processes/threads than processors
• Processor executing a spinning process can be more

productively employed to execute another process

Semaphores
First synchronisation tool (and remains one of the most important).
⇒ Easy to protect critical sections.
⇒ Included in (almost) all parallel programming libraries.

2 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Semaphore

Shared variable with 2

atomic

methods:

down(Semaphore s) {
.Probeer (try) / Passeren (pass) / Pakken (grab)

< wait until c > 0, then c := c-1; >
.must be atomic once c > 0 is detected

}

up(Semaphore s) {
.Verhoog (increase)

< c = c + 1; > .must be atomic

}

Init(Semaphore s, Integer i){ c := i; }

4 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Semaphores, what for?

Critical section: Mutual exclusion
Barriers: Signaling events
Producers and Consumers
Bounded buffers: Resource counting

5 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Critical section

sem mutex; Init(sem,1);

1
0

while (true) { .Process 1

down(mutex);

Critical section

up(mutex);

NON-Critical section

}

while (true) { .Process 2

down(mutex);

Critical section

up(mutex);

NON-Critical section

}

6 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Barriers: Signaling events

sem arrive1, arrive2;
Init(arrive1,0); Init(arrive2,0);

0 0

Section A Section B

Barrier

. . . .process 1 in section A

up(arrive1);

.signal arrival

down(arrive2);

.Wait for the other process

. . . .process 1 in section B

. . . .process 2 in section A

up(arrive2);

.signal arrival

down(arrive1);

.Wait for the other process

. . . .process 2 in section B

7 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Semaphores: Procuders and Consumers

Producer Consumer

Shared Resource

8 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Semaphores: Procuders and Consumers

Producer Consumer

put take

Buffer

SEntry
1
SExit

0

Split Binary Semaphore
Both are binary semaphores

11 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Semaphores: Procuders and Consumers

typeT buf; .Buffer of some type T

sem sEntry, sExit;
Init(sEntry,1); Init(sExit,0);

SEntry
1

SExit

0

while (true) { .Producer

. . .

down(sEntry);

buf = data;

up(sExit);

. . .
}

while (true) { .Consumer

. . .

down(sExit);

result = buf;

up(sEntry);

. . .
}

12 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

In the last example...

Single communication buffer
No waiting if data are produced+consumed at the same rate
But in general, producer/consumer execution is bursty

Example
producer produces several items in a quick succession
does more computation
produces another set of items

Solution: Increase the buffer capacity

13 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Bounded buffer: Resource counting

Producer Consumer

put take

Buffer

SEntry
n
SExit

0

14 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

The Buffer

. . .

front

frontrear

Put: buf[rear] = data; rear = (rear + 1) %n
Take: result = buf[front]; front = (front + 1) %n

15 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Bounded buffer: Resource counting

typeT buf[n]; .Array of some type T

int front=0, rear=0;
sem sEntry, sExit;
Init(sEntry,n); Init(sExit,0);

SEntry
n

SExit

0

sem mutexP, mutexT; Init(mutexP,1), Init(mutexT,1);

while (true) { .Producer

. . .

down(sEntry);
down(mutexP);

buf[rear] = data;
rear = (rear+1) %n;

up(mutexP);
up(sExit);

. . .
}

while (true) { .Consumer

. . .

down(sExit);
down(mutexT);

result = buf[front];
front = (front+1) %n;

up(mutexT);
up(sEntry);

. . .
}

16 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Semi-Conclusion

1

Critical Section

0 0

Blocking
semaphore
Barriers/Signaling

SEntry

1

SExit

0

Split Binary
semaphore

n

Resource
Counting

17 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Dining Philosophers Problem

Five philosophers sit around a circular table. Each philosopher
spends his life alternately thinking and eating. In the center of the
table is a large patter of spaghetti. Because the spaghetti is long
and tangled – and the philosophers are not mechanically adept – a
philosopher must use two forks to eat a helping. Unfortunately, the
philosophers can afford only five forks. One fork is placed between
each pair of philosophers. And they agree that each will use only
the forks to the immediate left and right. The problem is to write a
program to simulate the behavior of the philosophers. The program
must avoid the unfortunate (and eventually fatal) situation in which
all philosophers are hungry but non is able to acquire both forks –
for example, each holds one fork and refuses to give it up.

18 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Dining Philosophers Problem

Philopher0

Philopher1

Philopher2

Philopher3

Philopher4

Spaghetti

while (true) { .Philosopheri
think;
acquire forks;
eat;
release forks;

}

sem fork[5] = {1,1,1,1,1}
while (true) { .Philosopher0,1,2,3,4

think;
down(fork[i]);down(fork[i+1]);
eat;
up(fork[i]);up(fork[i+1]);

}

19 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Deadlocks: Resource Allocation Graph

P1 P2 P3

R1

R2

R3

R4

Deadlock?
No cycle ⇒
No process is deadlocked

If cycle,
deadlock may exist

20 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Cycle in the Graph?

If each resource has ONE instance

cycle ⇒ deadlock

Each process involved in the cycle is deadlocked
Both necessary and sufficient condition for deadlock

If each resource has SEVERAL instance

cycle ; deadlock

Necessary but not sufficient condition for deadlock

21 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

RAG example

P1 P2 P3

R1

R2

R3

R4

P1→R1→P2→R3→P3→R2→P1

P2→R3→P3→R2→P2

P1,P2,P3 are deadlocked

22 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Conditions

Mutual exclusion
At least one resource must be nonsharable
(only one process can use it)

Hold and wait
At least one process holds at least one resource and waits for more resources which are
held by other processes

No preemption
Only the process holding a resource can release it.

Circular wait
A set of processes are waiting for resources held by others in a circular manner
< P0, ..., Pn > where Pi waits for a resource held by P(i+1)%n

23 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Dining Philosophers Starvation ...solved

Philopher0

Philopher1

Philopher2

Philopher3

Philopher4

Spaghetti

while (true) { .Philosopher0,1,2,3
think;
down(fork[i]);down(fork[i+1]);
eat;
up(fork[i]);up(fork[i+1]);

}

while (true) { .Philosopher4
think;
down(fork[0]);down(fork[4]);
eat;
up(fork[0]);up(fork[4]);

}

24 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Readers/Writers

Shared Resource

WriterReaders
WriterWriter

Example of selective mutual exclusion
Example of general condition synchronization

25 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Readers/Writers as an Exclusion Problem

First Solution:
1

Overconstrain

the problem
2

Relax

the constraints

Let rw be a mutual exclusion semaphore⇒ Init(rw,1);

Readers 1,..,M

while (true) {
. . .
down(rw); .grab exclusive access lock
Read the database
up(rw); .release the lock
. . .

}

Writers 1,..,N

while (true) {
. . .
down(rw); .grab exclusive access lock
Write the database
up(rw); .release the lock
. . .

}

Readers – as a group – need to lock out writers
but only the first needs to grab the lock (i.e. down(rw))
Subsequent readers can directly access the database

26 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Relaxing constraints

int nr = 0; .number of active readers
sem rw; Init(rw,1); .lock for reader/writer exclusion
sem mutexR; Init(mutexR,1); .lock for reader access to nr

Readers 1,..,M

while (true) {
. . .
down(mutexR);
nr = nr + 1; .if first, get lock
if (nr == 1) down(rw);
up(mutexR);
Read the database
down(mutexR);
nr = nr - 1; .if last, release lock
if (nr == 0) up(rw);
up(mutexR);
. . .

}

Writers 1,..,N

while (true) {
. . .
down(rw); .grab exclusive access lock
Write the database
up(rw); .release the lock
. . .

}

27 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Readers/Writers using Condition Synchronization

Second Solution:
1 Count the number of each kind of processes trying to access

the database
2 Constrain the values of the counters

Let nr and nw be nonnegative counters;
BAD: (nr > 0 ∧ nw > 0) ∨ nw > 1
Symmetrically, good states, RW = BAD
RW: (nr == 0 ∨ nw == 0) ∧ nw ≤ 1

28 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Coarse-grained solution using Condition
Synchronization

int nr = 0, nw = 0;
.RW: (nr == 0 ∨ nw == 0) ∧ nw ≤ 1

Readers 1,..,M

while (true) {
. . .
<await(nw == 0)nr=nr+1;>
Read the database
<nr=nr−1;>
. . .

}

Writers 1,..,N

while (true) {
. . .
<await(nr == 0 and nw == 0)nw=nw+1;>
Write the database
<nw=nw−1;>
. . .

}

29 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

So ... semaphores, really?

Common use in programming languages that do not
intrinsically support other forms of synchronization.
They are the primitive synchronization mechanism in many
operating systems.

The trend in programming language development, though, is
towards more structured forms of synchronization, such as monitors.

Inadequacies in dealing with (multi-resource) deadlocks
Do not protect the programmer from the easy mistakes of
taking a semaphore that is already held by the same process,
and forgetting to release a semaphore that has been taken.

30 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Outline

1 Semaphores

2 Monitors
ADT
Mutual Exclusion
Condition Variables
Bounded Buffer
Readers/Writers

3 Conclusion

32 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Monitor – an abstract data type

< Monitormname >

Encapsulated
data

Operationsopname

Mutual exclusion is provided implicitly
by ensuring that procedures in the
same monitor are not executed
concurrently
Easier programming
call mname.opname(args)

Designed in isolation
Maintain the

monitor invariant

Programmer Library Language
Operating
System

33 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Mutual exclusion

Monitor procedures by definition execute with

mutual exclusion

34 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Condition Variables

used to delay a process that cannot safely continue executing
until the monitor’s state satisfies some boolean condition.
used to awaken delayed processes when the condition becomes
true.

cond cv;

The value of the condition variable cv is a FIFO queue
of delayed processes.

Hidden to the programmer.

Somebody is waiting? → Check isEmpty(cv);

A process blocks on a condition variable by executing
wait(cv);

signal(cv); awakens the front of the queue

< Cond Variable >

P0 P1 P2

isEmpty

wait
signal

35 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Signaling and waking up...Dilemma

Signal and

Continue

(non-preemptive)
→ The signaler continues and the signaled process executes at
some later time.
Signal and

Wait

(preemptive)
→ The signaler waits until some later time and the signaled
process executes now.

36 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Bounded buffer with Monitors

Producer Consumer

put take

Buffer

Entry
n
Exit

0

< Cond Variable >

P0 P1 P2

isEmpty
wait
signal

37 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Bounded Buffer – Code

monitor Bounded_Buffer {

typeT buf[n]
int front=0, rear=0, count=0; . rear = (front+count)%n

cond not_full, . signaled when count < n
not_empty; . signaled when count > 0

procedure put(typeT data) {
while(count == n)wait(not_full);
buf[rear] = data; rear=(rear+1)%n; count=count+1;
signal(not_empty);

}

procedure take(typeT &result) {
while(count == 0)wait(not_empty);
result = buf[front]; front=(front+1)%n; count=count-1;
signal(not_full);

}

}

38 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Readers/Writers

Shared Resource

Writer

Readers Writer

< Grant access >

R0 R1 R2

W0 W1 W2

isEmpty
wait/signal
grant/release

request_read
request_write
release_read
release_write

39 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Readers/Writers – Code
monitor RW_Controller {

int nr=0, nw=0; .RW: (nr == 0 v nw == 0) ∧ nw ≤ 1
cond oktoread, . signaled when nw == 0
cond oktowrite, . signaled when nr == 0 and nw == 0

procedure request_read() {
while(nw > 0) wait(oktoread);
nr = nr + 1;

}

procedure release_read() {
nr = nr - 1;
if(nr == 0) signal(oktowrite); . awaken one writer

}

procedure request_write() {
while(nr > 0 || nw > 0) wait(oktowrite);
nw = nw + 1;

}

procedure release_write() {
nw = nw - 1;
signal(oktowrite); . awaken one writer
signal_all(oktoread); . and all readers

}

}

40 OS2’09 | Semaphores and Monitors

Semaphores Monitors Conclusion

Conclusion

Semaphore
• Fundamental
• Easy to program mutual exclusion and signaling
• Easy to make errors
• Global to all processes:
⇒ Hard to understand the program

Monitors
• Data structure abstraction
• Operations are the only means to manipulate data
• Implicit mutual exclusion (Not the programmer’s task)
• Condition variables (FIFO queue)
• Awaking disciplines

42 OS2’09 | Semaphores and Monitors

	Semaphores
	Critical section
	Barriers
	Prods/Consumers
	Resource counting
	Dining Philosophers
	Deadlocks
	Readers/Writers
	Conclusion

	Monitors
	ADT
	Mutual Exclusion
	Condition Variables
	Bounded Buffer
	Readers/Writers

	Conclusion

