
Message Passing

Frédéric Haziza <daz@it.uu.se>

Department of Computer Systems

Uppsala University

Summer 2009

Dist. Prog Comm. Link Examples Conclusion

MultiProcessor world - Taxonomy

SIMD MIMD

Message Passing

Fine-grained Coarse-grained

Shared Memory

UMA NUMA COMA

3 OS2’09 | Message Passing

Dist. Prog Comm. Link Examples Conclusion

Scenario

Several cars want to drive from point A to point B.

Sequential Programming
They can compete for space on the same road and end up either:

following each other

or competing for positions (and having accidents!).

Parallel Programming
Or they could drive in parallel lanes,
thus arriving at about the same time without getting in each other’s way.

Distributed Programming
Or they could travel different routes, using separate roads.

4 OS2’09 | Message Passing

Dist. Prog Comm. Link Examples Conclusion

Distributed Programming

No shared-memory ⇒
Have to exchange messages with each other.

Important to define communication interface
Reads and writes like reads/writes on shared-memory?
⇒

No! it would mean busy-waiting synchronization

Instead, a better approach is to define special network operations
that include synchronization (in the same way as semaphores were
special operations on shared variables)

5 OS2’09 | Message Passing

Dist. Prog Comm. Link Examples Conclusion

Distributed Programming

Channels

are typically the only objects processes share

⇒ Each variable is

local to one process

⇒ No concurrent access

⇒

No special mechanism for mutual exclusion is required

6 OS2’09 | Message Passing

Dist. Prog Comm. Link Examples Conclusion

Communication in the channel

One-way or two-way information flow
Asynchronous or synchronous communication
(non-blocking/blocking)

Direct or indirect communication
(mailbox/ports)

Automatic or explicit buffering

7 OS2’09 | Message Passing

Dist. Prog Comm. Link Examples Conclusion

4 communication patterns

Remote
Procedure

Call
Rendez-vous

Asynchronous
message
passing

Synchronous
message
passing

Clie
nts

/Se
rve

rs

Pro
duc

ers/
Con

sum
ers

Inte
rac

ting
Pee

rs

8 OS2’09 | Message Passing

Dist. Prog Comm. Link Examples Conclusion

Relation between concurrent mechanism

Busy-waiting

Semaphores

Monitors Message Passing

RPC Rendez-vous

9 OS2’09 | Message Passing

Dist. Prog Comm. Link Examples Conclusion

Channels

send

send

receive

receive

Shared channel

send

send

ch
an
ne
l 3

11 OS2’09 | Message Passing

Dist. Prog Comm. Link Examples Conclusion

send is blocking or non-blocking
receive is blocking

send

send

receive

receive

Shared channel

12 OS2’09 | Message Passing

Dist. Prog Comm. Link Examples Conclusion

receive has blocking semantics...

... so the receiving process does not have to use busy-waiting to
poll the channel if it has nothing else to do until a message arrives.

Assumption
Access to the content of each channel is atomic and that message
deliver y is reliable and error-free.

13 OS2’09 | Message Passing

Dist. Prog Comm. Link Examples Conclusion

Naming convention

Mailbox

Sending to and receiving from any channel

Port

exactly one receiver
eventually many senders

Link

exactly one receiver
exactly one sender

14 OS2’09 | Message Passing

Dist. Prog Comm. Link Examples Conclusion

Clients / Server

Client1

Clientn

...
...

Server

Request

Reply

Request

Reply

16 OS2’09 | Message Passing

Dist. Prog Comm. Link Examples Conclusion

Clients/Server with one operation op

channel request(int clientID, types of input values);
channel reply[n](types of results);

process Client { .i= 0,...,n-1

send request(i, value arguments);
receive reply[i](result arguments);

}

process Server {
int clientID;

.declaration of other permanent variables

.initialization code;

while (true) {
receive request(clientID, input values);

.code from body of operation op;

send reply[clientID](results);
}

}
17 OS2’09 | Message Passing

Dist. Prog Comm. Link Examples Conclusion

Clients/Server with multiple operation

type op_kind, arg_type, result_type;

channel request(int clientID, op_kind, arg_type);
channel reply[n](res_type);

process Client { .i= 0,...,n-1
arg_type myargs; result_type myresults;
. place value arguments in myargs;

send request(i, opj , myargs); .“call” opj
receive reply[i](myresults); .wait for reply

}

process Server {
int clientID; op_kind kind; arg_type args; res_type results;
. declaration of other permanent variables;
. initialization code;

while (true) {
receive request(clientID, kind, args);
if (kind == op1){body of op1}
...
else if (kind == opn){body of opn}
send reply[clientID](results);

}
}

18 OS2’09 | Message Passing

Dist. Prog Comm. Link Examples Conclusion

Interacting Peers

Coordinator/Workers

Coordinator

Worker1 Workern−1
Results

Data

Results

Data

Circular pipeline

Worker1 ... Workern−1

Each worker has a local value.
Task: Sort the smallest and biggest values among the workers.

19 OS2’09 | Message Passing

Dist. Prog Comm. Link Examples Conclusion

Interacting peers – Workers/Coordinator

channel values(int);
channel results[n](int smallest, int largest);

process Pi=1,...,n−1 {
int val; .Assume val has been initialized
int smallest, int largest;
send values(val);
receive results[i](smallest,largest);

}

P0P1

P2

P3

P4

P5

process

Coordinator (= P0)

{
int val; .Assume val has been initialized
int new, smallest = val, largest = val; .initial state

for [i = 1 to n-1] { .gather values and save the smallest and largest

receive values(new);
if (new < smallest) smallest = new;
if (new > largest) largest = new;

}

for [i = 1 to n-1] { .Send the result to the other processes

send results[i](smallest,largest);

}
}

20 OS2’09 | Message Passing

Dist. Prog Comm. Link Examples Conclusion

Interacting peers – Symmetric solution

channel values[k](int); .k =
n∗(n+1)

2

P1

P2

P3

P0

P5

P4process Pi=0,...,n−1 {
int val; .Assume val has been initialized
int new, smallest = val, largest = val; .initial state

.send my value to the other processes
for [j = 0 to n-1 but j 6= i] {

send values[j](val);
}

.gather values and save the smallest and largest
for [j = 0 to n-1 but j 6= i] {

receive values[i](new);
if (new < smallest){ smallest = new; }
if (new > largest){ largest = new; }

}
}

21 OS2’09 | Message Passing

Dist. Prog Comm. Link Examples Conclusion

Interacting peers – Circular pipeline
channel values[n](int smallest, int largest);

process P1,...,n−1 {
int val; .Assume val has been initialized
int smallest, int largest; .initial state
.receive smallest and largest so far then update them by comparing their value to val

receive values[i](smallest,largest);
if (val < smallest){ smallest = val; }
if (val > largest){ largest = val; }

.send the result to the next process and then wait to get the global result

send values[(i+1)%n](smallest,largest);
receive values[i](smallest,largest);
if (i < n-1) send values[i+1](smallest,largest);

}

P1

P2

P3

P0

P5

P4

process

P0

{ .initiates the exchanges
int val; .Assume val has been initialized
int smallest = val, largest = val; .initial state

.send val to the next process, P1

send values[1](smallest,largest);

.get global smallest and largest from Pn−1 and pass them on to P1

receive values[0](smallest,largest);
send values[1](smallest,largest);

}

22 OS2’09 | Message Passing

Dist. Prog Comm. Link Examples Conclusion

Conclusion

Tools:
MPI
Java RMI
CORBA
SOAP
RPC
used in
Microkernels
Erlang

Message passing systems have been called “shared
nothing” systems because the message passing
abstraction hides underlying state changes that may
be used in the implementation of sending messages.

Message passing model based programming
languages typically define messaging as the (usually
asynchronous) sending (usually by copy) of a data
item to a communication endpoint (Actor, process,
thread, socket, etc...)

23 OS2’09 | Message Passing

	Distributed Programming
	About the communication link
	Examples
	Clients/Server
	Interacting Peers

	Conclusion

