Programming Embedded Systems

Lecture 5
Interrupts,
modes of multi-tasking

Wednesday Feb 1, 2012

Philipp RUmmer
Uppsala University

Philipp.Ruemmer@it.uu.se

1/31

| ecture outline

* |Interrupts

* Internal, external, software
 Interrupt service routines
« Deferred interrupt handlers

» Different kinds of multi-tasking

2/31

Interrupts

 Hardware feature of processor to react
to events

» Clock interrupts (“system tick”):
drives scheduler, determines time
slices

e Other “internal” interrupts: timers, etc.

« Software interrupts/traps/faults:
raised by executing particular
instructions

« External interrupts:
events from peripherals, pins, etc.

3/31

Interrupts (2)

 When interrupt occurs, MCU executes
an interrupt service routine (ISR) at
a pre-defined code location

* ISR locations are stored in “interrupt
vector table”

 For complete list of possible interrupts
on STM32F10x/CORTEX M3: see
reference manual,

4/31

http://www.st.com/stonline/products/literature/rm/13902.pdf

Clock interrupts

« Usually set up to occur reqgularly
(period =1 ms); frequency can be
chosen

* [In assignments/labs: every 1ms

* Driven by internal/external real-time
clock

* ISR is the scheduler, which might
decide to switch in another task when

tick occurs
5/31

Internal interrupts

 Timers can be set up to raise
Interrupts;
Most importantly: upon overflow

6/31

Software interrupts/traps

« Used to implement system calls if
kernel is running in privileged mode
(svcall interrupt)

* Signal fault conditions:
memory faults, bus faults, etc.

7131

External interrupts

« Explicit external-interrupt lines
(general-purpose I/O ports)

« Part of interface to peripherals and
buses (signal packet arrival, finished
transmission, etc):

DMA, CAN, I12C, USB, SPI, UART, ...

e Reset: Initialisation, invocation of main

 Non-maskable interrupt (NMl):
highest-priority, used e.qg. for

watchdogs
8/31

Setting up interrupts

e Typical parameters, chosen through
special-purpose registers:

 Enabled/disabled
(unmasked/masked)

Priority (important when multiple
Interrupts occur simultaneously)

ISR address

Pulse/pending interrupts
(cleared by itself/hardware or in ISR?)

Which events to observe

(e.q., rising or falling edges of signals)
9/31

Further parameters

 Pending:
Interrupt has been triggered, is waiting
for being served or currently being
served

 Active:
ISR Is executing

10/31

Interrupt handling

World/someone ..

1. makes interrupt = 9’ 2.

pending 3

6. marks interrupt as active
7. fetches address of ISR

. decides which interrupt to serve

. blocks all interrupts with

. invokes ISR (similar to d

12. unblocks interrupts,

Processor ... ISR ...
finishes current activities
saves state of current task
on stack (registers, PC)
“Interrupt

latency”

same/lower priority

from vector table

function invocation) 9. takes care of event

10. clears “pending” bit

é s 11.returns

restores old state 11/31

Interrupt latency

 Interrupt latency also depends on
other, pending, higher-priority
interrupts —» can vary

* Interrupt jitter:
amount of variation of latency

 Determines how fast system can react
to events

* In the very best case, latency is
12 cycles on CORTEX M3

12/31

Nested interrupts

* ISR can be interrupted itself by higher-
priority interrupts

« Applies in particular to CORTEX M3
(NVIC, nested vectored interrupt
controller)

— used by default

 Can be prevented by disabling
interrupts in ISR

13/31

Interrupt tail-chaining

* Directly execute a sequence of ISRs,
without returning to normal program in
between

« Safes some time
(storing/restoring program state
unnecessary)

e Also done by CORTEX M3 by default

14/31

Deferred interrupt
handling

Motivation

* Interrupts are generally
problematic in real-time systems

e outside of normal scheduling, usually
not pre-emptable for scheduler

e can occur with high frequency, create
high system loads

 With many OS kernels (e.g., FreeRTOS),
certain/most functions must not be
called from ISRs

* ISRs are normally not reentrant, or
even a “critical section” .

Solutions

« Avoiding interrupts (more later)

 Deferred/split-interrupt handling

« Common in most OSs,
not only in real-time systems

17/31

Deferred interrupt handling

« Keep ISR minimal
(“Immediate Interrupt Service”)

« Actual handling of event done later in
an ordinary task
(“Scheduled Interrupt Service”)

18/31

Processor ... ISR ...

9’ 2. finishes current a

3. saves state of cur[tlwtltﬁ rru pt h a n d | I n g

on stack (registers, PC)
4. decides which interrupt to serve

Worldisemepnes). Processor ... ISR ...
1. %mgkﬁ?viﬁ&norw 2. finishes current activities
peFrig =Lt 3. saves state of current task

6. marks interrupt as active on stack (registers, PC)

/. fetches address of ISR 4. decides which interrupt to serve

from vector table based on priorities) schedules actual
8. invokes ISR (similar to - -

|| interru t interrupt service
function mvocatlon same/

t
6. markDirftleRiDt B@%ﬂ% bi communication
12. unblocks interrupts, e_fmbhgs ERIMESs of ISR through queue

restores old state from vector table or semaphore

8. invokes ISR (similar to d
w 9 take are Of event
13. Scheduler switches in service task 10! cReamCRERRling” bit

handles event

12. unblocks inter 11. returns
St 19/31

FreeRTOS example

 Interrupt raised by timer

* ISR + scheduled interrupt task are
C functions, communicate via binary
semaphore

ISR is specified in file STM32F10x.s

« STM32F10x uses 4bit priorities [0, 16)
(split into preemption- and sub-priority)

 Important: most FreeRTOS functions
(Including semaphore functions) must

not be used In ISR
20/31

FreeRTOS example (2)

« External interrupt line, connected to
PORTA.O

21/31

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

