
1/31

Programming Embedded Systems

Lecture 5
Interrupts,

modes of multi-tasking

Wednesday Feb 1, 2012

Philipp Rümmer
Uppsala University

Philipp.Ruemmer@it.uu.se

2/31

Lecture outline

● Interrupts
● Internal, external, software
● Interrupt service routines
● Deferred interrupt handlers

● Different kinds of multi-tasking

3/31

Interrupts

● Hardware feature of processor to react
to events

● Clock interrupts (“system tick”):
drives scheduler, determines time
slices

● Other “internal” interrupts: timers, etc.
● Software interrupts/traps/faults:

raised by executing particular
instructions

● External interrupts:
events from peripherals, pins, etc.

4/31

Interrupts (2)

● When interrupt occurs, MCU executes
an interrupt service routine (ISR) at
a pre-defined code location

● ISR locations are stored in “interrupt
vector table”

● For complete list of possible interrupts
on STM32F10x/CORTEX M3: see
reference manual,
http://www.st.com/stonline/products/literature/rm/13902.pdf

http://www.st.com/stonline/products/literature/rm/13902.pdf

5/31

Clock interrupts

● Usually set up to occur regularly
(period ≥1ms); frequency can be
chosen

● In assignments/labs: every 1ms
● Driven by internal/external real-time

clock
● ISR is the scheduler, which might

decide to switch in another task when
tick occurs

6/31

Internal interrupts

● Timers can be set up to raise
interrupts;
Most importantly: upon overflow

7/31

Software interrupts/traps

● Used to implement system calls if
kernel is running in privileged mode
(SVCall interrupt)

● Signal fault conditions:
memory faults, bus faults, etc.

8/31

External interrupts

● Explicit external-interrupt lines
(general-purpose I/O ports)

● Part of interface to peripherals and
buses (signal packet arrival, finished
transmission, etc):
DMA, CAN, I2C, USB, SPI, UART, …

● Reset: initialisation, invocation of main

● Non-maskable interrupt (NMI):
highest-priority, used e.g. for
watchdogs

9/31

Setting up interrupts

● Typical parameters, chosen through
special-purpose registers:

● Enabled/disabled
(unmasked/masked)

● Priority (important when multiple
interrupts occur simultaneously)

● ISR address
● Pulse/pending interrupts

(cleared by itself/hardware or in ISR?)
● Which events to observe

(e.g., rising or falling edges of signals)

10/31

Further parameters

● Pending:
Interrupt has been triggered, is waiting
for being served or currently being
served

● Active:
ISR is executing

11/31

Interrupt handling

1. makes interrupt
 pending

4. decides which interrupt to serve
 (based on priorities)

2. finishes current activities

3. saves state of current task
 on stack (registers, PC)

7. fetches address of ISR
 from vector table

5. blocks all interrupts with
 same/lower priority

8. invokes ISR (similar to
 function invocation)

6. marks interrupt as active

World/someone ... Processor ... ISR ...

9. takes care of event

10. clears “pending” bit

11. returns
12. unblocks interrupts,
 restores old state

“Interrupt
latency”

12/31

Interrupt latency

● Interrupt latency also depends on
other, pending, higher-priority
interrupts → can vary

● Interrupt jitter:
amount of variation of latency

● Determines how fast system can react
to events

● In the very best case, latency is
12 cycles on CORTEX M3

13/31

Nested interrupts

● ISR can be interrupted itself by higher-
priority interrupts

● Applies in particular to CORTEX M3
(NVIC, nested vectored interrupt
controller)
→ used by default

● Can be prevented by disabling
interrupts in ISR

14/31

Interrupt tail-chaining

● Directly execute a sequence of ISRs,
without returning to normal program in
between

● Safes some time
(storing/restoring program state
unnecessary)

● Also done by CORTEX M3 by default

15/31

Deferred interrupt
handling

16/31

Motivation

● Interrupts are generally
problematic in real-time systems

● outside of normal scheduling, usually
not pre-emptable for scheduler

● can occur with high frequency, create
high system loads

● With many OS kernels (e.g., FreeRTOS),
certain/most functions must not be
called from ISRs

● ISRs are normally not reentrant, or
even a “critical section”

17/31

Solutions

● Avoiding interrupts (more later)
● Deferred/split-interrupt handling

● Common in most OSs,
not only in real-time systems

18/31

Deferred interrupt handling

● Keep ISR minimal
(“Immediate Interrupt Service”)

● Actual handling of event done later in
an ordinary task
(“Scheduled Interrupt Service”)

19/31

Interrupt handling

1. makes interrupt
 pending

4. decides which interrupt to serve
 (based on priorities)

2. finishes current activities

3. saves state of current task
 on stack (registers, PC)

7. fetches address of ISR
 from vector table

5. blocks all interrupts with
 same/lower priority

8. invokes ISR (similar to
 function invocation)

6. marks interrupt as active

World/someone ... Processor ... ISR ...

9. takes care of event

10. clears “pending” bit

11. returns
12. unblocks interrupts,
 restores old state

4. decides which interrupt to serve
 (based on priorities)

2. finishes current activities

3. saves state of current task
 on stack (registers, PC)

7. fetches address of ISR
 from vector table

5. blocks all interrupts with
 same/lower priority

8. invokes ISR (similar to
 function invocation)

6. marks interrupt as active

World/someone ... Processor ... ISR ...

9. takes care of event

10. clears “pending” bit

11. returns
12. unblocks interrupts,
 restores old state

schedules actual
interrupt service

13. Scheduler switches in service task
14. Service task
 handles event

communication
through queue
or semaphore

20/31

FreeRTOS example

● Interrupt raised by timer
● ISR + scheduled interrupt task are

C functions, communicate via binary
semaphore

● ISR is specified in file STM32F10x.s

● STM32F10x uses 4bit priorities [0, 16)
(split into preemption- and sub-priority)

● Important: most FreeRTOS functions
(including semaphore functions) must
not be used in ISR

21/31

FreeRTOS example (2)

● External interrupt line, connected to
PORTA.0

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

