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Binary Trees

Binary trees of elements of arbitrary type: ’a bTree
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Terminology
Node, root,
leaf (plural: leaves),
internal (inner) node
Left and right subtree
Parent, left and right
child, sibling
Edge, path, branch
Level

Graphical Representation Convention
Empty trees are not drawn (but they consume memory).
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Value and Some Operations

empty
TYPE: ’a bTree
VALUE: the empty binary tree

isEmpty T
TYPE: ’’a bTree -> bool
PRE: (none)
POST: true if T is empty, and false otherwise

cons (r, L, R)
TYPE: ’a * ’a bTree * ’a bTree -> ’a bTree
PRE: (none)
POST: the binary tree with root r, left subtree L,

and right subtree R
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Some More Operations

left T
TYPE: ’a bTree -> ’a bTree
PRE: T is non-empty
POST: the left subtree of T

right T
TYPE: ’a bTree -> ’a bTree
PRE: T is non-empty
POST: the right subtree of T

root T
TYPE: ’a bTree -> ’a
PRE: T is non-empty
POST: the root of T
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Representation and Implementation

datatype ’a bTree = Void
| Bt of ’a * ’a bTree * ’a bTree

REPRESENTATION CONVENTION: the empty binary tree is represented by Void;
a binary tree with root r, left subtree L, and right subtree R
is represented by Bt(r,L,R)

REPRESENTATION INVARIANT: (none)
EX: Bt(4, Bt(2, Bt(1,Void,Void), Bt(3,Void,Void)),

Bt(8, Bt(6, Bt(5,Void,Void), Bt(7,Void,Void)), Bt(9,Void,Void)))

where bTree is a type constructor
while Void and Bt are value constructors.

val empty = Void
fun isEmpty T = (T = Void)
fun cons (r, L, R) = Bt(r,L,R)
fun left (Bt(r,L,R)) = L
fun right (Bt(r,L,R)) = R
fun root (Bt(r,L,R)) = r

Exercise: All these operations always take Θ(1) time.
2010 / 2011 Course 1DL201 - 7 - Program Construction and Data Structures



Binary Trees

Binary
Search Trees

Balanced
Binary
Search Trees

Walks

Definition
A walk of a data structure is a way of listing each of its
elements exactly once. For binary trees, we distinguish:

the preorder walk (first list the root, then
walk the left subtree, and last walk the right subtree)
the inorder walk (left, root, right)
the postorder walk (left, right, root)

Example
For the binary tree on page 4 :

preorder walk = 3 1 0 2 7 5 4 6 8
inorder walk = 0 1 2 3 4 5 6 7 8 (coincidence?)
postorder walk = 0 2 1 4 6 5 8 7 3
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Inorder Walk

inorder T
TYPE: ’a bTree -> ’a list
PRE: (none)
POST: inorder walk of T

VARIANT: |T|
fun inorder Void = []

| inorder (Bt(r,L,R)) =
(inorder L) @ (r :: inorder R)

Double recursion, but no tail recursion.
Program uses

no

X@Y , which takes Θ(|X |) time.
Exercise: inorder T takes:
– Θ(|T|) time at best (when L is always empty).
– Θ(|T| · lg |T|) time on average (when always |L| = |R|).
– Θ(|T|2) time at worst (when R is always empty).
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Generalisation by Accumulator Introduction

inorder’ (T, A)
TYPE: ’a bTree * ’a list -> ’a list
PRE: (none)
POST: (inorder walk of T) @ A

VARIANT: |T|
fun inorder’ (Void, A) = A

| inorder’ (Bt(r,L,R), A) =
inorder’ (L, r :: inorder’ (R, A))

fun inorder T = inorder’ (T, [])

Double recursion, but one tail recursion.
Program uses no X@Y , but the specif. of inorder’ does.
Exercise: inorder’ (T, A) and thus the new version of
inorder T always take Θ(|T|) time.
Exercise: Implement efficient preorder and postorder walks
of a binary tree, and analyse the designed algorithms.
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Structural Generalisation

inorders Ts
TYPE: ’a bTree list -> ’a list
PRE: (none)
POST: (inorder walk of T1) @ ... @ (inorder walk of Tm),

when Ts = [T1,...,Tm]

VARIANT: a tree is replaced by 0, 1, or 2 smaller trees
fun inorders [] = []

| inorders (Void::Ts) = inorders Ts
| inorders (Bt(r,Void,R)::Ts) = r::(inorders (R::Ts))
| inorders (Bt(r,L,R)::Ts) =

inorders (L::cons(r,Void,R)::Ts)
fun inorder T = inorders [T]

Single recursion: it is even a tail recursion in two clauses.
Exercise: For binary trees with a total of n nodes, inorders
and the new version of inorder always take Θ(n) time.
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Structural Generalisation: Sample Trace

inorders [Bt(3,Bt(1,Void,Void),Bt(7,Void,Void))]
= inorders [Bt(1,Void,Void), Bt(3,Void,Bt(7,Void,Void))]

by fourth clause
= 1 :: inorders [Void, Bt(3,Void,Bt(7,Void,Void))]

by third clause
= 1 :: inorders [Bt(3,Void,Bt(7,Void,Void))]

by second clause
= 1 :: 3 :: inorders [Bt(7,Void,Void)]

by third clause
= 1 :: 3 :: 7 :: inorders [Void]

by third clause
= 1 :: 3 :: 7 :: inorders []

by second clause
= 1 :: 3 :: 7 :: []

by first clause
= [1,3,7]

by definition
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Even More Operations

exists (T, k)
TYPE: ’’a bTree * ’’a -> bool
PRE: (none)
POST: true if T contains node k, and false otherwise

insert (T, k)
TYPE: ’a bTree * ’a -> ’a bTree
PRE: (none)
POST: T with node k

delete (T, k)
TYPE: ’’a bTree * ’’a -> ’’a bTree
PRE: (none)
POST: if k exists in T, then T without one occurrence

of node k, otherwise T
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Yet More Operations

nbNodes T
TYPE: ’a bTree -> int
PRE: (none)
POST: the number of nodes of T

nbLeaves T
TYPE: ’a bTree -> int
PRE: (none)
POST: the number of leaves of T

Exercises
Implement efficient algorithms for these five functions.
Show that these algorithms at worst take Θ(|T|) time,
if not Θ(1) time.
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Height

Definition
The height of a node is the length of the longest path
(measured in its number of nodes) from that node to a leaf.
The height h(T ) of a tree T is the height of the root of T .

Example: The binary tree on page 4 has height 4.

height T
TYPE: ’a bTree -> int
PRE: (none)
POST: h(T)
VARIANT: h(T) (note that |T| is also a variant)
fun height Void = 0

| height (Bt(r,L,R)) = 1 + Int.max (height L, height R)

Double recursion, but no tail recursion.
Exercise: height T always takes Θ(|T|) time.
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Generalisation by Accumulator Introduction

Note that height’ (T, a) = a + h(T)
does not suffice to get a tail recursion: Why?!

height’ (T, a, hMax)
TYPE: ’a bTree * int * int -> int
PRE: (none)
POST: max(a + h(T), hMax)

VARIANT: h(T)
fun height’ (Void, a, hMax) = Int.max (a, hMax)

| height’ (Bt(r,L,R), a, hMax) =
height’ (L, a+1, height’ (R, a+1, hMax))

fun height T = height’ (T, 0, 0)

Double recursion, but one tail recursion.
Exercise: height’ (T, a, hMax) and thus the new
version of height T also always take Θ(|T|) time, but
much less space than the old version of height T.
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Binary Search Trees

Binary search trees of elements with integer keys and
values of arbitrary type: ’a bsTree
We specialise binary trees by a representation invariant:

REPRESENTATION INVARIANT: for a binary search tree
with (k,v) in the root, left subtree L, and right subtree R:
- every element of L has a key smaller than k
- every element of R has a key larger than k
and recursively so on, for L and R

Example: The binary tree on page 4 is a binary search tree
(whose values are not depicted).
Note that we (arbitrarily) ruled out duplicate keys.
Benefit: The inorder walk of a binary search tree lists its
nodes by increasing order of their keys.
Question: Do we now have linear-time sorting?!
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Representation and Implementation

datatype ’b bsTree = Void
| Bst of (int * ’b) * ’b bsTree * ’b bsTree

REPRESENTATION CONVENTION: the empty binary search tree is represented
by Void; a binary search tree with key-value pair (k,v) in the root,
left subtree L, and right subtree R is represented by Bst((k,v),L,R)

REPRESENTATION INVARIANT: (see previous page)

empty
TYPE: ’b bsTree
VALUE: the empty binary search tree

val empty = Void

isEmpty T
TYPE: ’’b bsTree -> bool
PRE: (none)
POST: true if T is empty, and false otherwise

TIME COMPLEXITY: Θ(1) always
fun isEmpty T = (T = Void)
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Existence Check

exists (T, k)
TYPE: ’b bsTree * int -> bool
PRE: (none)
POST: true if T contains a node with key k,

and false otherwise

VARIANT: h(T)
TIME COMPLEXITY: Θ(|T|) at worst (when h(T)=|T|)
fun exists (Void, k) = false

| exists (Bst((key,value),L,R), k) =
if k = key then true
else if k < key then exists (L, k)

else exists (R, k)
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Search

search (T, k)
TYPE: ’b bsTree * int -> ’b
PRE: k exists in T
POST: the value associated to key k in T

VARIANT: h(T)
TIME COMPLEXITY: Θ(|T|) at worst (when h(T)=|T|)
fun search (Bst((key,value),L,R), k) =

if k = key then value
else if k < key then search (L, k)

else search (R, k)
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Insertion

Compare with the specification for binary trees on page 13 ,
so as to handle the assumed absence of duplicates in
binary search trees:

insert (T, k, v)
TYPE: ’b bsTree * int * ’b -> ’b bsTree
PRE: (none)
POST: if k exists in T, then T with v as value for key k,

else T with node (k,v)

VARIANT: h(T)
TIME COMPLEXITY: Θ(|T|) at worst (when h(T)=|T|)
fun insert (Void, k, v) = Bst((k,v),Void,Void)

| insert (Bst((key,value),L,R), k, v) =
if k = key then Bst((k,v),L,R)
else if k < key then Bst((key,value), insert (L, k, v), R)

else Bst((key,value), L, insert (R, k, v))
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Deletion Issues

When deleting a node (key,value) whose subtrees L
and R are both non-empty, we must not violate the
representation invariant.

One option is:
1 Replace (key,value) by the node with the maximal

key of L, as that key is smaller than the key of any
node of R.

2 Remove this replacement node from L.

The other option is to replace (key,value) by the node with
the minimal key of R, as that key is larger than the key of
any node of L, and to remove that replacement node from R.
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Help Function for Deletion

So we need a help function:

extractMax T
TYPE: ’b bsTree -> (int * ’b) * ’b bsTree
PRE: T is non-empty
POST: (max, T’), where max is the node of T with

the maximal key, and T’ is T without max

VARIANT: the number of elements larger than the root of T
TIME COMPLEXITY: Θ(|T|) at worst (when h(T)=|T|)
fun extractMax (Bst(r,L,Void)) = (r, L)

| extractMax (Bst(r,L,R)) =
let val (max, newR) = extractMax R
in (max, Bst(r,L,newR)) end
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Deletion

Compare with the specification for binary trees on page 13 :
delete (T, k)
TYPE: ’b bsTree * int -> ’b bsTree
PRE: (none)
POST: if k exists in T, then T without the node with key k,

else T

ALGORITHM: when both subtrees of node of key k are non-empty, replace
that node by the node of maximal key in its left subtree

VARIANT: h(T)
TIME COMPLEXITY: Θ(|T|) at worst (when h(T)=|T|)
fun delete (Void, k) = Void

| delete (Bst((key,value),L,R), k) =
if k < key then Bst((key,value), delete (L, k), R)
else if k > key then Bst((key,value), L, delete (R, k))

else (* k = key *)
case (L,R) of

(Void,_) => R
| (_,Void) => L
| (_, _) => let val (max, newL) = extractMax L

in Bst(max,newL,R) end
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Observations

The search time in a binary search tree depends on the
shape of the tree, that is on the order in which its elements
were inserted.
The A pathological case: The n elements are inserted by
increasing order on the keys, yielding something like a
linear list (but with a worse space complexity), with Θ(n)
search time at worst. Consider the tree on the right:
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More Observations

Search, retrieval, insertion, and deletion take worst-case
time proportional to the height of the binary search tree.

The height h of a binary tree of n elements is such that
lg n < h ≤ n, so the four operations at worst take Θ(n) time.

The height of a randomly built (via insertions only, all keys
being of equal probability) binary search tree of n elements
is Θ(lg n).

In practice, one can however not always guarantee that
binary search trees are built randomly. Binary search trees
are thus only interesting when they are “relatively complete.”

So we must look for a further specialisation of binary search
trees, whose worst-case performance on the basic tree
operations can be guaranteed to be logarithmic at most.
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Balanced Binary Search Trees

“Definition”: A balanced tree is a tree where every leaf is
“not more than a certain distance” away from the root than
any other leaf.
The balancing invariants defining “not more than a certain
distance” differ between various kinds of balanced trees:

AVL trees (focus of this course)
Red-black trees
. . .

Insertion and deletion involve transforming the tree if its
balancing invariant is violated.
These re-balancing transformations must also take Θ(lg n)
time at worst, so that the effort is worth it. These
transformations are built from operators (introduced on the
next page) that are independent of the balancing invariant.
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Rotations of Binary Trees

Definition
A rotation of a binary tree transforms the tree so that its
inorder walk is preserved.
We distinguish left rotation and right rotation:

inorder walk = A x B y C
preorder walk = y x A B C preorder walk = x A y B C

postorder walk = A B x C y postorder walk = A B C y x

Exercise: Implement both rotations to take Θ(1) time.
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AVL Trees (Adel’son-Velskii & Landis, 1962)

AVL trees, the first dynamically balanced trees, are not
perfectly balanced, but guarantee Θ(lg n) worst-case
search, insertion, deletion times for trees of initially n nodes.

Definition
An AVL tree is a binary search tree with balancing invariant:
The subtrees at every node differ in height by at most 1.

and conversely (when the left and right subtrees are
exchanged) or when both subtrees are of height h − 1.
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Two Examples and One Counter-Example

Let us annotate each node with a balance factor for the tree
rooted at the considered node:
• if the tree is stable (when r − ` = 0)
− if the tree is left-heavy (when r − ` = −1)
+ if the tree is right-heavy (when r − ` = +1)
−− if the tree is left-unbalanced (when r − ` < −1)
++ if the tree is right-unbalanced (when r − ` > +1)
where ` and r are the heights of the left and right subtrees.
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What Can We Expect from AVL Trees?

Key Questions
What is the maximum height hMax(n)
of an AVL tree with n nodes?
What is the minimum number nMin(h) of nodes
of an AVL tree of height h?

Equivalent questions, but the second is easier to answer.

Recurrence:

nMin(h) =


0 if h = 0
1 if h = 1
1 + nMin(h − 1) + nMin(h − 2) if h > 1
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Search

Compare the nMin series with the Fibonacci series:

h 0 1 2 3 4 5 6 7 8 . . .
nMin(h) 0 1 2 4 7 12 20 33 54 . . .
fib(h) 0 1 1 2 3 5 8 13 21 . . .

Observe: nMin(h) = fib(h + 2)− 1. (Exercise: Prove this.)

Equivalently, the maximum height hMax(n) of an AVL tree
with n elements is the largest h such that:

fib(h + 2)− 1 ≤ n

which simplifies into hMax(n) ≤ 1.44 · lg(n + 1)− 1.33,
so that search in an AVL tree takes Θ(lg n) time at worst.
Note that the exists and search algorithms for binary
search trees work unchanged for AVL trees.
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Insertion

How to insert — in logarithmic time — an element into an
AVL tree such that it remains an AVL tree?

After locating the insertion place and performing a standard
binary-search-tree insertion, there are only five cases:

1 Every subtree remains balanced (•, −, or +): done.
2 A left-heavy subtree became left-unbalanced (−−):

a The balanced left subtree became left-heavy (−):
right-rotate the left subtree toward the root.

b The balanced left subtree became right-heavy (+):
first left-rotate the right subtree of the left subtree
toward its parent, and then right-rotate the left subtree
toward the root.

3 A right-heavy subtree became right-unbalanced (++):
symmetric Cases 3a and 3b to Cases 2a and 2b above.
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Insertion: Case 2a

Right-rotate left-heavy pivot 3 toward left-unbalanced root 5:

The inserted element is 2 (if C and D are empty) or a leaf of C or D.
The trees A and B have height h, while the tree rooted at 2 had height h
before the insertion and obtained height h + 1 after the insertion.
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Insertion: Case 2b

First left-rotate the stable pivot 4 toward the right-heavy
root 3, and then right-rotate the now left-heavy pivot 4
toward the still left-unbalanced root 5:

The inserted element is 4 (if C and D are empty) or a leaf of C or D.
The trees A and B have height h, while the tree rooted at 4 had height h
before the insertion and obtained height h + 1 after the insertion.
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Insertion and Deletion

Insertion Property

An insertion includes re-balancing
⇒ (:)

that insertion does not modify the height of the tree.

Insertion: Insertion requires at most two walks of the path
from the root to the added element, plus at most two
constant-time rotations, hence insertion indeed takes
Θ(lg n) time at worst on an AVL tree of initially n nodes.

Deletion: The deletion of a node of given key from an AVL
tree of initially n nodes can also be performed in Θ(lg n)
time at worst. (The algorithm is not studied in this course.)
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When to Use Balanced Search Trees?

Dynamically balanced binary search trees trees are
interesting when:

The number n of elements is large (say n ≥ 50),
and
The keys are (suspected of) not appearing randomly,
and
The ratio of the expected number s of searches to the
expected number i of insertions is large enough (say
s/i ≥ 5) to justify the costs of dynamic re-balancing.

2010 / 2011 Course 1DL201 - 39 - Program Construction and Data Structures


	Binary Trees
	Binary Search Trees
	Balanced Binary Search Trees

