
Topic 12: Stacks and FIFO Queues1

(Version of 10th November 2010)

Pierre Flener

Computing Science Division
Department of Information Technology

Uppsala University
Sweden

Course 1DL201:
Program Construction and Data Structures

1Based on original slides by Yves Deville

http://user.it.uu.se/~pierref/

Stacks

FIFO Queues

Outline

1 Stacks

2 FIFO Queues

2010 / 2011 Course 1DL201 - 2 - Program Construction and Data Structures

Stacks

FIFO Queues

Outline

1 Stacks

2 FIFO Queues

2010 / 2011 Course 1DL201 - 3 - Program Construction and Data Structures

Stacks

FIFO Queues

Stacks

Stacks (“last-in first-out lists”) of elements of any type: ’a stack

Insertion (called push) of an element only to the top.

Extraction (called pop) only of the element at the top.

Value and Some Operations

empty
TYPE: ’a stack
VALUE: the empty stack

isEmpty S
TYPE: ’’a stack -> bool
PRE: (none)
POST: true if S is empty, and false otherwise

push (S, t)
TYPE: ’a stack * ’a -> ’a stack
PRE: (none)
POST: the stack S with t added as new top element

2010 / 2011 Course 1DL201 - 4 - Program Construction and Data Structures

Stacks

FIFO Queues

More Operations

top S
TYPE: ’a stack -> ’a
PRE: S is nonempty
POST: the top element of S

pop S
TYPE: ’a stack -> ’a * ’a stack
PRE: S is nonempty
POST: (t, S’), where t is the top element of S,

and S’ is S without t

walk S
TYPE: ’a stack -> ’a list
PRE: (none)
POST: the representation of S in list form,

with the top of S as head, and so on

2010 / 2011 Course 1DL201 - 5 - Program Construction and Data Structures

Stacks

FIFO Queues

Representation 1

Representation of a stack by a list:

datatype ’a stack = Stack of ’a list
REPRESENTATION CONVENTION: the head of the list is the top of

the stack, the 2nd element of the list is the element below
the top, and so on

REPRESENTATION INVARIANT: (none)

where stack is a type constructor
and Stack is a value constructor.

val empty = Stack []
fun isEmpty (Stack S) = (S = [])
fun push (Stack S, t) = Stack(t::S)
fun top (Stack(t::S)) = t
fun pop (Stack(t::S)) = (t, Stack S)
fun walk (Stack S) = S

Exercise: All these operations always take Θ(1) time.
2010 / 2011 Course 1DL201 - 6 - Program Construction and Data Structures

Stacks

FIFO Queues

Representation 2

Definition of a recursive new constructed type:

datatype ’a stack = EmptyStack | >> of ’a stack * ’a
infix >>
EXAMPLE: EmptyStack >> 5 >> 2 represents the stack with top 2
REPRESENTATION CONVENTION: the right-most value is the top of
the stack, its left neighbour is the element below the top, etc.
REPRESENTATION INVARIANT: (none)

val empty = EmptyStack
fun isEmpty S = (S = EmptyStack)
fun push (S, t) = S>>t
fun top (S>>t) = t
fun pop (S>>t) = (t, S)
VARIANT: |S|; TIME COMPLEXITY: Θ(|S|) (* Exercise! *)
fun walk EmptyStack = []

| walk (S>>t) = t :: (walk S)

We have thus defined a new list constructor, with Θ(1) time
(direct) access to the elements from the right!

2010 / 2011 Course 1DL201 - 7 - Program Construction and Data Structures

Stacks

FIFO Queues

Outline

1 Stacks

2 FIFO Queues

2010 / 2011 Course 1DL201 - 8 - Program Construction and Data Structures

Stacks

FIFO Queues

First-In First-Out (FIFO) Queues

First-in first-out queues of elements of any type: ’a queue
Insertion (enqueue) of an element only to the rear (tail).
Extraction (dequeue) only of element in front (head).

Value and Some Operations

empty
TYPE: ’a queue
VALUE: the empty queue

isEmpty Q
TYPE: ’’a queue -> bool
PRE: (none)
POST: true if Q is empty, and false otherwise

head Q
TYPE: ’a queue -> ’a
PRE: Q is nonempty
POST: the head element of Q

2010 / 2011 Course 1DL201 - 9 - Program Construction and Data Structures

Stacks

FIFO Queues

More Operations

enqueue (Q, t)
TYPE: ’a queue * ’a -> ’a queue
PRE: (none)
POST: the queue Q with t added as new tail element

dequeue Q
TYPE: ’a queue -> ’a * ’a queue
PRE: Q is nonempty
POST: (h, Q’), where h is the head element of Q,

and Q’ is Q without h

walk Q
TYPE: ’a queue -> ’a list
PRE: (none)
POST: the representation of Q in list form,

with the head of Q as head, and so on

2010 / 2011 Course 1DL201 - 10 - Program Construction and Data Structures

Stacks

FIFO Queues

Representation 1

Representation of a FIFO queue by a list:

datatype ’a queue = Queue of ’a list
REPRESENTATION CONVENTION: the head of the list is the head of

the queue, the 2nd element of the list is behind the head of
the queue, and so on, and the last element of the list is the
tail of the queue

REPRESENTATION INVARIANT: (none)

Example

The queue
head tail

3 8 7 5 0 2

is represented by the list [3,8,7,5,0,2].
Exercises

Implement this representation of the ’a queue type.
What is the time complexity of enqueuing an element?
What is the time complexity of dequeuing an element?

2010 / 2011 Course 1DL201 - 11 - Program Construction and Data Structures

Stacks

FIFO Queues

Representation 2

Representation of a FIFO queue by a pair of lists:

datatype ’a queue = Queue of ’a list * ’a list
REPRESENTATION CONVENTION: the term

Queue([x1,x2,...,xn],[y1,y2,...,ym]) represents the
queue x1,x2,...,xn,ym,...,y2,y1 with head x1 and tail y1

REPRESENTATION INVARIANT: (see next slide)

Analysis
It is now possible to enqueue in Θ(1) time.
It is still possible to dequeue in Θ(1) time,
but only if n ≥ 1.
What if n = 0 and m > 0?!
The same queue can be represented in different ways.

2010 / 2011 Course 1DL201 - 12 - Program Construction and Data Structures

Stacks

FIFO Queues

Normalisation

Objective: Avoid the case where n = 0 and m > 0.
When this case appears, transform (or: normalise)
the term Queue([], [y1, . . . , ym]) with m > 0 into
the term Queue([ym, . . . , y1], []),
which represents the same queue.

REPRESENTATION INVARIANT: a non-empty queue is
never represented by Queue([],[y1,y2,...,ym])

normalise Q
TYPE: ’a queue -> ’a queue
PRE: (none)
POST: if Q is of the form Queue([],[y1,y2,...,ym]),

then Queue([ym,...,y2,y1],[]),
else Q

2010 / 2011 Course 1DL201 - 13 - Program Construction and Data Structures

Stacks

FIFO Queues

Operations

val empty = Queue([],[])
TIME COMPLEXITY: Θ(1) always
fun isEmpty Q = (Q = (Queue([],[])))
TIME COMPLEXITY: Θ(1) always
fun head (Queue(h::xs,ys)) = h

local
TIME COMPLEXITY: Θ(|Q|) at worst (* Exercise! *)
fun normalise (Queue([],ys)) = Queue(rev ys,[])

| normalise Q = Q
in

TIME COMPLEXITY: Θ(1) always (* Exercise! *)
fun enqueue (Queue(xs,ys), t) = normalise (Queue(xs,t::ys))
TIME COMPLEXITY: Θ(1) on average
fun dequeue (Queue(h::xs,ys)) = (h, normalise (Queue(xs,ys)))

end

TIME COMPLEXITY: Θ(|Q|) always (* Exercise! *)
fun walk (Queue(xs,ys)) = xs @ (rev ys)

2010 / 2011 Course 1DL201 - 14 - Program Construction and Data Structures

	Stacks
	FIFO Queues

