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Rectangles and Quadtrees

While binary search trees typically work on one-dimensional key spaces, quadtrees let us search
on two-dimensional key spaces, and extensions to higher-dimensional spaces are obvious. These
kinds of trees are useful in many graphics applications and computer-aided design tools, say
for the design of VLSI (very large-scale integration) circuits. Instead of having at most two
children, quadtree nodes have at most four children.

Let us first briefly discuss how we will use these trees. We are given a possibly very large
collection of rectangles of the following type:

datatype rectangle = Rect of int * int * int * int

where a rectangle Rect(left, top, right, bottom) has left as x coordinate of the left edge,
top as y coordinate of the upper edge, right as x coordinate of the right edge, and bottom as y
coordinate of the bottom edge. The normal convention in Cartesian geometry is followed – the
coordinate system is such that as one goes toward the right and top, the x and y coordinates
increase, that is we assume the pre-condition bottom < top and left < right for any rectangle.
Note also that we thus do not consider degenerate rectangles, such as points or line segments.

A point with integer coordinates (x, y) on this plane is said to be inside a rectangle (left,

top, right, bottom) if and only if left ≤ x < right and bottom ≤ y < top. Note that
the points on the right and top boundaries of a rectangle are not inside it. We also say that a
rectangle contains any point inside it.

A quadtree allows us to represent a collection of rectangles such that one can efficiently
search for all rectangles containing a given point. One can obviously also do this by keeping all
the rectangles in a list, but when there are millions of rectangles (for instance, when designing
a microprocessor chip), this will be very inefficient. Quadtrees organise such two-dimensional
information in the following way:

• A quadtree covers a fixed rectangular region of the plane, itself represented by a rectangle,
called the extent.

• The centre point of the quadtree extent, say Rect(left, top, right, bottom), has
integer coordinates ((left + right) / 2, (top + bottom) / 2), where the symbol ‘/’
represents integer division.
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Figure 1: Storage of rectangles in a quadtree; the dashed lines are centre lines

• This centre point defines four smaller rectangles, called quadrants, located at its top
left, top right, bottom left, and bottom right. This can be extended recursively to smaller
quadrants within a quadrant, until some termination criterion, such as minimum rectangle
size. See Figure 1 for an example of how a quadtree stores rectangles.

Representing Rectangle Collections as Quadtrees

The quadTree datatype has the following definition:

datatype quadTree = EmptyQuadTree |

Qt of rectangle * rectangle list * rectangle list *

quadTree * quadTree * quadTree * quadTree

In a non-empty quadtree Qt (extent, horizontal, vertical, topLeft, topRight, bottomLeft,

bottomRight), the extent rectangle, say Rect(left, top, right, bottom), defines the re-
gion covered by the quadtree, while vertical is the list of rectangles containing some point
of the vertical centre line x = (left + right) / 2, and horizontal is the list of rectangles
containing some point of the horizontal centre line y = (top + bottom) / 2.

If both centre lines have some point inside a given rectangle, then this rectangle is inserted
only into the vertical list. For example, in Figure 1, rectangles 1 to 3 are on the vertical

list for the root extent, while rectangles 4 and 5 are on its horizontal list.
If none of the two centre lines has a point inside a given rectangle, then this rectan-

gle is inserted either into the bottomLeft subtree, which covers the extent (left, (top +
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bottom) / 2, (left + right) / 2, bottom), or into one of the other three subtrees, called
topRight, topLeft, and bottomRight, whose extents are defined similarly, such that none of
the two centre lines has a point inside any of the quadrants. The areas of these quadrants need
thus not be the same.

Example 1 For the extent Rect(0,4,5,0), the topLeft, topRight, bottomLeft, and bottomRight

extents are Rect(0,4,2,3), Rect(3,4,5,3), Rect(0,2,2,0), and Rect(3,2,5,0), respec-
tively.

A given rectangle is thus recursively inserted into either the vertical list or the horizontal
list associated with the subtree of the quadrant whose vertical respectively horizontal centre
line has a point inside that rectangle.

To search for the rectangles containing a given point (x, y), first collect the rectangles on
the vertical and horizontal lists of the root node containing (x, y). Then continue search
recursively in the subtree covering the quadrant, if any, containing the point; no additional
search is needed if (x, y) is on a centre line of the extent. For example, for the marked point
(x, y) in Figure 1, one searches in the vertical and horizontal lists of the root extent and
then only in the subtree covering the bottom-right quadrant.

Work To Be Done

Implement the following functions in a file called quadTree.sml, making sure that they pass the
training test cases (at http://www.it.uu.se/edu/course/homepage/pkd/ht12/assignments/
assignment2-training.sml), which are not be included:

• emptyQtree e non-recursively returns the empty quadtree with extent e;

• insert (q, r) returns the quadtree q with rectangle r inserted, under the pre-condition
that all points of r are within the extent of q. Do not write any code for catching
exceptions.

• query (q, x, y) returns the list (in any order) of rectangles of quadtree q containing
the point (x,y), where x and y are integers.

In a separate report in PDF format, do the following:

• Give an explicit reasoning (including recurrences and their closed forms) establishing the
worst-case runtime complexities of these functions, under the assumption that the size of
the extent at the root of the quadtree is a constant.

• Establish in similar fashion the runtime complexity of the query function for a quadtree
where there is a constant number of rectangles in the union of the horizontal and
vertical lists of every node and where all paths from the root to leaves are of the
same length.

Grading

Your solution is graded with 0 to 100 points in the following way:

1. If your solution was submitted by the deadline, your program loads under Poly/ML ver-
sion 5.5.0 (Uppsala modified 1) and passes all the training test cases, and your solution is
deemed to be a serious attempt at implementing, commenting (under at least the coding
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convention), and analysing all the requested functions, then you get 20 points; otherwise
(including when no solution was submitted by the submission deadline), you get a U grade
for this homework (even if an insufficiently commented program is actually correct). Hint:
Test your submitted code in a freshly started ML interpreter in order to make sure your
code does not work because of some old data or functions lying around in the interpreter.

2. Your program is run on an unspecified number of orthogonal grading test cases that
satisfy all pre-conditions but also check boundary conditions. Each test case is a quadtree
creation for some extent e, followed by a sequence of insertions of rectangles, whose points
are all inside e, followed by a sequence of queries for the lists (in any order) of rectangles
of the resulting quadtree that contain some given points. For each fully correct test result,
you get a suitable amount of points, the total being 40 points. We reserve the right to run
these tests automatically, so be careful to match exactly the imposed file names, function
names, and argument orders.

3. Your program is graded for style and comments (including function specifications, datatype
representation conventions and invariants, as well as recursion variants), provided it does
not fail on all the grading test cases. This covers 20 points.

4. Your complexity analysis is graded for correctness of results and explicitness of reasoning.
This covers the remaining 20 points.

We assume that by submitting a solution you are certifying that it is solely the work of your
group, except where explicitly attributed otherwise. We reserve the right to use plagiarism
detection tools and point out that they are extremely powerful.
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