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Introduction

The purpose of data compression is to take an input file A and, within a reasonable amount of
time, transform it into an output file B in such a way that B is smaller than A and that it is
possible to reconstruct A from B. A program that converts A into B is called a compressor, and
one that undoes this operation is called a decompressor. Programs such as gzip perform this
function. Compression enables us to store data more efficiently on storage devices or transmit
data faster using communication facilities, since fewer bits are needed to represent the actual
data.

A compressor cannot guarantee that B will always be smaller than A. Indeed, if this were
possible, then what would happen if one just kept compressing the output of the compressor?!
Any compressor that succeeds in compressing some files must thus also actually fail to compress
some other files. Nevertheless, compressors tend to work pretty well on the kinds of files that
are typically found on computers, and they are widely used in practice, especially for pictures,
movies, and sounds.

The Ziv-Lempel Algorithm

We here consider a version of the Ziv-Lempel data compression algorithm, which is the basis for
most popular compression programs, such as gzip, zip, and winzip. You may find this algorithm
a little difficult to understand at first, but your program could be quite short.

It is an example of an adaptive data compression algorithm: the code used to represent a
particular sequence of bytes in the input file may be different for distinct input files, and may
even be different if the same sequence appears in more than one place in the input file.

Compressor

The Ziv-Lempel compressor maps strings of input characters to numeric codes. To begin with,
each character of the set of characters, called the alphabet, that may occur in the text file is
assigned a code. For example, suppose the input file starts with the string:

aaabbbbbbaabaaba



This string is composed of the characters a and b. Assuming the alphabet is just {a, b}, initially
a is assigned the code 0 and b the code 1. The mapping between character strings and their
codes is kept in a dictionary. Each dictionary entry has two fields: a code and a string. The
character string represented by the field code is stored in the field string. The initial dictionary
for our example is given by the first two columns below:

code 0|1 2 3 4 5 6 7
string | a | b | aa | aab | bb | bbb | bbba | aaba

Beginning with the dictionary initialised as above, the Ziv-Lempel compressor repeatedly finds
the longest prefix p of the unprocessed part of the input file that is in the dictionary and outputs
its code. Furthermore, if there is a next character ¢ in the input file, then pc (denoting the
string p followed by the character c¢) is assigned the next available code and inserted into the
dictionary. This strategy is called the Ziv-Lempel rule.

Example 1 Consider the example string aaabbbbbbaabaaba above. The longest prefix of
the input that is in the initial dictionary is a. Its code 0 is output and the string aa (for p = a
and ¢ = a) is assigned the code 2 and entered into the dictionary. Now, aa is the longest
prefix of the remaining string that is in the dictionary. Its code 2 is output and the string aab
(for p = aa and ¢ = b) is assigned the code 3 and entered into the dictionary. Even though
aab has the code 3 assigned to it, the code 2 for aa is actually output! The suffix b will be
a prefix of the string corresponding to the next output code. The reason for not outputting
3 is that the dictionary is not part of the compressed file. Instead, the dictionary has to be
reconstructed during decompression using the compressed file. This reconstruction is possible
only if we adhere strictly to the Ziv-Lempel rule: see the next subsection. Following the output
of the code 2, the code 1 for b is output and bb is assigned the code 4 and entered into the
dictionary. Then, the code 4 for bb is output and bbb is entered into the dictionary with code
5. Next, the code 5 is output and bbba is entered into the dictionary with code 6. Then, the
code 3 is output for aab and aaba is entered into the dictionary with code 7. Finally, the code
7 is output for the entire remaining string aaba. The example string is thus encoded as the
sequence 0214537 of codes, and the final dictionary is as given above.

Decompressor

For decompression, we read the codes one at a time and replace them by the strings they denote.
The dictionary can be dynamically reconstructed as follows. The codes assigned for all possible
single-character strings are entered as (code, string) pairs into the dictionary at the initialisation
(just as for compression). This time, however, the dictionary is searched for an entry with a
given code (rather than with a given string).

Given a code z of the compressed file, we denote by string(x) the corresponding segment of
the decompressed text. Also, given a string s, we denote its first character by fe(s).

The first code in the compressed file necessarily corresponds to a single character of the
alphabet, which is already in the dictionary, and so that character is output.

For each other code x in the compressed file, let us assume that it follows code ¢, which
necessarily has already been decompressed into string(q). This means that code sequence gz in
the compressed file corresponds to the concatenation string(q)string(z) in the decompressed file.
The pair (g, string(q)) is already in the dictionary, while string(x) is what we want to compute.
We have two cases to consider, depending on whether pair (z, string(x)) is also already in the
dictionary or not:

e If the pair (z, string(x)) is already in the dictionary, then we output string(z). Further-
more, we have to apply the Ziv-Lempel rule in order to augment the dictionary, the way it



was done by the compressor when outputting code ¢q. So we enter the pair (next available
code, string(q)fe(string(x))) into the dictionary.

e If the code z is not yet in the dictionary, then we must be in the situation where the
compressor, after having generated a new code z (by the Ziv-Lempel rule) upon outputting
code ¢ for string(q), has immediately used = to encode the next text segment, namely
string(x). This means that string(z) must be of the form string(q)c, with ¢ being the
character following string(q) in the decompressed file. But since x has been immediately
used, c is indeed the first character of string(x), which in turn is fe(string(q)). Hence, we
can infer that string(x) = string(q)fc(string(q)). So we output string(q)fec(string(q)) and
put the pair (z, string(q)fc(string(q))) into the dictionary.

Example 2 Consider the example string aaabbbbbbaabaaba, which was compressed in Ex-
ample (1] into the code sequence 0214537. The dictionary is initialised with the pairs (0, a)
and (1,b). The first code is 0, so its string a is output. The next code, 2, is still unde-
fined. Since the previous code 0 has string(0) = a and fc(string(0)) = a, we have string(2) =
string(0)fc(string(0)) = aa, so aa is output and (2,aa) is entered into the dictionary. The
next code, 1, triggers output b and (3, string(2)fec(string(1))) = (3,aab) is entered into the
dictionary. The next code, 4, is not yet in the dictionary. The preceding code is 1, so
string(4) = string(1)fc(string(1)) = bb. The pair (4,bb) is entered into the dictionary and
bb is output. Similarly for the next code, 5, where (5, bbb) is entered into the dictionary and
bbb is output. The next code, 3, is already in the dictionary, so string(3) = aab is output and
the pair (6, string(5)fe(string(3))) = (6, bbba) is entered into the dictionary. Finally, when the
code 7 is read, the pair (7, string(3)fc(string(3))) = (7,aaba) is entered into the dictionary and
aaba is output. The original example string has been reconstructed, and the final dictionary is
again as given on the previous page.

Implementing the Ziv-Lempel Algorithm

The data structure to be used by the compressor is a hash table storing integer codes for
string keys. New codes are entered into the hash table for given strings, and the hash table is
queried with strings for the corresponding codes, if any. For this assignment, we limit ourselves
to the codes 0 through 4048. The ASCII codes 0 through 255 will be used for single-character
strings, even though the character with ASCII code 0 will never be encountered in the input
file. So the first new code that the compressor actually assigns will be 256. If more than 4049
codes are needed, then do not generate new codes but use the available ones; this may give less
compression, but otherwise is not a problem.

The decompressor can actually be simpler. Since we just query on integer codes, rather
than on strings, use a vector of 4049 strings and initialise it for the first 256 single-character
strings. For instance, vector position 65 (which corresponds to ASCII symbol A) must contain
the string “A”. Starting with position 256, new strings are dynamically entered into this vector.

Work To Be Done

Implement the following functions in a file called zivLempel.sml, making sure that they pass the
training test cases (at http://www.it.uu.se/edu/course/homepage/pkd/ht12/assignments/
assignment3-training.sml), which are mot be included:

e compress compresses a file, given as a list of characters. Use the Poly/ML hash-table
implementation described at http://www.it.uu.se/edu/course/homepage/pkd/ht12/
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assignments/assignment3-hashing.txt. To avoid a number of problems, make this
function return the sequence of codes as a list of integers. Actual compression would in-
volve rather advanced SML details, such as binary input/output, bit packing, etc, which
are really beyond the scope of this assignment. There may thus not be any actual com-
pression here in terms of bytes consumed.

e decompress decompresses a list of integer codes between 0 and 4048 inclusive into a
list of characters. Use the vector implementation of the Standard ML Basis Library (at
http://www.standardml.org/Basis/vector.html)).

If both functions are correct, then decompress (compress cs) = cs, for any character list cs.
Hint: For converting a character into a string, do not use Char.toString (which behaves
strangely with special characters) but rather use String.str (or just str, as the String library
is opened automatically).

In a separate report in PDF format, give an explicit reasoning establishing the worst-case
runtime complexities of these functions.

Example 3 The character list is [a,a,a,b,b,b,b,b,b,a,a,b,a, a, b, a] if and only if the code
list is [97, 256,98, 258,259, 257, 261], once we adjust the codes of Examples [I| and 2 as above.

Grading

Your solution is graded with 0 to 100 points in the following way:

1. If your solution was submitted by the deadline, your program loads under Poly /ML ver-
sion 5.5.0 (Uppsala modified 1) and passes all the training test cases, and your solution is
deemed to be a serious attempt at implementing, commenting (under at least the coding
convention), and analysing all the requested functions, then you get 20 points; otherwise
(including when no solution was submitted by the submission deadline), you get a U grade
for this homework (even if an insufficiently commented program is actually correct). Hint:
Test your submitted code in a freshly started ML interpreter in order to make sure your
code does not work because of some old data or functions lying around in the interpreter.

2. Your program is run on an unspecified number of orthogonal grading test cases that satisfy
all pre-conditions but also check boundary conditions. Each test case is a decompression
with your decompress function of a code list obtained with our compress function, or
vice-versa. We reserve the right to fail a correct program that has a quite sub-
optimal time complexity and thus takes an unreasonable amount of time on
very large test cases. For each fully correct test result, you get a suitable amount of
points, the total being 40 points. We reserve the right to run these tests automatically, so
be careful to match exactly the imposed file names, function names, and argument orders.

3. Your program is graded for style and comments (including function specifications, datatype
representation conventions and invariants, as well as recursion variants), provided it does
not fail on all the grading test cases. This covers 20 points.

4. Your complexity analysis is graded for correctness of results and explicitness of reasoning.
This covers the remaining 20 points.

We assume that by submitting a solution you are certifying that it is solely the work of your
group, except where explicitly attributed otherwise. We reserve the right to use plagiarism
detection tools and point out that they are extremely powerful.
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