
Pointers again

I A pointer is an address to a memory location.

I Addresses can be saved in pointer variables.

I Pointer variables are declared using the unary operator *.

Examples: int *m, *n;
double *x;

I We can get the address of a variable using the unary operator & .

Examples: int b = 0;
int *ip = &b;

(22 november 2017 – T03 1)

Pointers cont.

I The dereference operator * is used to access the pointed place.

Examples: int b = 0;
int *ip = &b;
*ip = *ip + 1; Same as n = n + 1;

I There is one pointer constant NULL meaning ”pointer to nothing”.
NULL has actually the integer value 0 so it is regarded as false in tests.

I It is illegal to dereference a NULL-pointer.

(22 november 2017 – T03 2)

Example of usage

Suppose we want a function that solves the quadratic equation

x2 + px + q = 0.

The solution is given by the formula: x1,2 = −p
2 ±

√
(p2)

2 − q

Since a function only can return ONE value, we use two pointer parameters
to tell the function were to store the result.

The function value is used to indicate if there are complex roots (which we
can’t handle) or real roots.

(22 november 2017 – T03 3)

Exmaple: A quad function

int quad(double p, double q, double *x1, double *x2) {

double d = p*p/4. - q;

if (d < 0) {
return 0; // Complex roots

}
d = sqrt(d);
*x1 = -p/2 + d;
*x2 = -p/2 - d;
return 1; // Real roots

}

(22 november 2017 – T03 4)

Usage of quad function

int main() {
double p, q;
double x1, x2;
while (1) {

printf("Give p and q: ");
if (scanf("%lf %lf)", &p, &q) != 2) {

break;
}
if (quad(p, q, &x1, &x2) == 1) {

printf(" x1: %lg\n x2: %lg\n", x1, x2);
} else {

printf("Complex roots\n");
}

}
}

Link to quadEquation.c

(22 november 2017 – T03 5)

http://www.it.uu.se/edu/course/homepage/progbrygg/ht17/c/talks/t03/code/quadEquation.c

Dynamically allocated memory

There are two types of memory area available to the C-programmer:

I the stack and

I the heap.

The stack is used for all local variables i.e. variables declared inside
functions (and not declared static).

Almost all variables we have used so far have been allocated on the stack.

The local variables are automatically allocated when the execution enters a
function and deallocated when the function returns.

Thus, no values are saved between calls.

(22 november 2017 – T03 6)

Using the heap

There are several ways to allocate memory on the heap:

I Put the declaration in the file but outside all functions (as myDigits)
Such variable retains its value during the complete execution of the
program. It is also accessible from all functions in the file.

I Declare a variable in a function as static.
Such variables will keep their values between different calls to the
function but can not be accessed from other functions.

I Use one of the memory allocation functions: malloc, calloc and
realloc. These functions take the desired amount of memory as
parameter and return a pointer to the first memory location in the
allocated area.

(22 november 2017 – T03 7)

Example

Suppose we want to simulate a lottery where we can pull numbered tickets
in such way that each number only occurs once.

We would like to be able to run a program like this:

int main() {
int m;
printf("Number of tickets: ");
scanf("%d", &m);
setUp(m);
for (int i = 0; i < m; i++) {

printf("%d ", pull());
}
printf("\n");

}

(22 november 2017 – T03 8)

Example cont.

Algorithm

I Use an array int theTickets[m] for storing the tickets.
It should be initialised with the numbers 1, 2, 3, 4, ... , m.

I Use a variable n to keep track of the number of tickets left.

I To pull a ticket we generate a random number r in the interval
[0, n-1]. Take the ticket at index r and move the last ticket to index
r and decrease n.
Return the taken ticket.

(22 november 2017 – T03 9)

Example

Thus two functions:

I void setUp(int size) for initialising the tickets and
I int pull() for getting a ticket

(Remark: size is a better variable name than m).

The array with tickets as wells the number of tickets left (n) must be
accessible from both functions so we place them outside the functions.

Since the number of tickets is not known at compile time we must allocate
the array using malloc or calloc.

(22 november 2017 – T03 10)

Example cont.

int *theTickets;
int ticketsLeft;

void setUp(int size) {
theTickets =

(int *) malloc(size*sizeof(int));
for (int i = 0; i<size; i++) {

theTickets[i] = i + 1;
}
ticketsLeft = size;

}

”Global” variables. Will exist
during the complete execution.

Allocate using malloc

Array notation!

Note: I sizeof(data type)
I The typecast (int *)

(22 november 2017 – T03 11)

Example cont.

int pull() {
int nbr = rand()%ticketsLeft;
int ticket = theTickets[nbr];
theTickets[nbr] =

theTickets[ticketsLeft-1];
ticketsLeft--;
return ticket;

}

rand returns an integer random
number

Link to urn.c

What happen when we run the program several times?

(22 november 2017 – T03 12)

http://www.it.uu.se/edu/course/homepage/progbrygg/ht17/c/talks/t03/code/urn.c

A new data type: the struct

Suppose we want to represent persons in a program. Every person should
have a name and an age.

Such an object can be defined using a struct:

struct Person {
char name[10];
int age;

};

We can then declare variables of this type:

struct Person p, persons[100];

We can access the different fields in a struct using a ”dot” notation:

strcpy(p.name, "Eva");
p.age = 42;

(22 november 2017 – T03 13)

Type aliases: typedef

typedef
struct Person {

char name[10];
int age;

} Person, *pLink;

We can then declare variables of this type:

Person p, persons[100];

and

pLink pl; //pointer to a Person-struct

if we want a pointer to a Person.

(22 november 2017 – T03 14)

A linked list

Suppose we want to store an unknown number of person objects. Instead
of using an array we will make a linked list.

We can add a pointer field in each person struct:

struct Person {
char name[10];
int age;
struct Person *next;

}

first

next next

next

next

(22 november 2017 – T03 15)

Alternative

Since ”next” is an unnatural property for a person we could do like this:

first

typedef
struct Person {

char name[10];
int age;

} Person, *pLink;

typedef
struct Node {

pLink thePerson;
struct Node *next;

} Node, *link;

(22 november 2017 – T03 16)

Linked lists cont.

Since we do not know the length of the list we allocate both person- och
node-structs using malloc

pLink makePerson(char * name, int age) {
pLink res = (pLink) malloc(sizeof(Person));
strcpy((*result).name, name);
(*res).age = age;
return res;

}

link makeNode(pLink p, link next) {
link res = (link) malloc(sizeof(Node));
(*res).thePerson = p;
(*res).next = next;
return res;

}

(22 november 2017 – T03 17)

Linked list cont.

A print function can be conveniently to have:
void printPerson(pLink p) {

printf("%s \tof age %d\n", (*p).name, (*p).age);
}

And a demonstration program
int main() {

link list = NULL;
list = makeNode(makePerson("Sue",12), NULL);
list = makeNode(makePerson("Kim",9),list);
list = makeNode(makePerson("Eva",9),list);
list = makeNode(makePerson("Don",7),list);
list = makeNode(makePerson("Pete",7),list);
for (link p = list; p!=NULL; p = (*p).next) {

printPerson((*p).thePerson);
}

} Link to personList.c
(22 november 2017 – T03 18)

http://www.it.uu.se/edu/course/homepage/progbrygg/ht17/c/talks/t03/code/personList.c

A new operator: ->

The expression (*p).f where

I p is a pointer to a struct and
I f is a field in that struct

can be written p -> f

Using that in, for example, makeNode gives:

link makeNode(pLink p, link next){
link result = (link) malloc(sizeof(Node));
result->thePerson = p;
result->next = next;
return result;

}

(22 november 2017 – T03 19)

