
1

J2ME part 2
Magnus Bladh

Streetmedia 7 AB

User interface
The UI classes of of MIDP javax.microedition.lcdui package can be divided into two logical
groups:

High level group

Low level group

2

High level API
The classes of the high-level group are
perfect for development of MIDlets that target
the maximum number of devices, because
these classes do not provide exact control
over their display

Minimal control over look and feel

Look and feel is managed by device

Good portability.

Used for forms.

High level API Classes
Alerts are best used in informational or error
messages that stay on the screen for a short
period of time.

A list contains one or more choices
(elements).

Text is entered by the user using a textbox.

A form is a collections of instances of the
Item interface

There are eight Item types: StringItem,
DateField, Textfield, ChoiceGroup, Spacer,
Gauge, ImageItem, CustomItem.

3

Low level API
●

The classes of the low-level group are
perfect for MIDlets where precise control
over the location and display of the UI
elements is important and required.

●
Used for games and other applications

●
With more control comes less portability

Low level API classes
Good portability.

Used for forms.

4

The “Displayable interface”
For you to be able to show a UI element on a
device screen, whether high- or low-level, it
must implement the Displayable interface.

A displayable class may have a title, a ticker,
and certain commands associated with it.

This implies that both the Screen and
Canvas classes and their subclasses
implement this interface

A Displayable class is a UI element that can
be shown on the device's screen. Display
class abstracts the display functions of a
device's screen and makes them available to
you. It provides methods to gain info about
the screen and to show or change the UI
element that you want displayed.

Handling User Commands
A MIDlet interacts with a user through commands. A command is the equivalent of a button or a
menu item in a normal application, and can only be associated with a displayable UI element.

The Displayable class allows the user to attach a command to it by using the method
addCommand(Command command).

The Command class holds the information about a command. This information is encapsulated in
four properties. These properties are: a short label, an optional long label, a command type, and a
priority.

5

Network Programming with J2ME
● The networking in J2ME has to be very flexible to support a variety

of devices and has to be very device specific at the same time.

● To meet these challenges, the Generic Connection framework is
first introduced in the CLDC.

● There is 1 Connection class and 7 connection interfaces.

● The 7 connection interfaces define the abstractions of 6 basic
types of communications: basic serial input, basic serial output,
datagrams communications, sockets communications, notification
mechanism in a client-server communication, and basic HTTP
communication with a Web server.

Connections!!!
● The 7 connection interfaces define the abstractions of 6 basic

types of communications: basic serial input, basic serial output,
datagrams communications, sockets communications, notification
mechanism in a client-server communication, and basic HTTP
communication with a Web server.

● To create a connection you use the following code:

− Connector.open(String connect);
● The parameter connect is a String variable. It has a URL-like

format: {protocol}:[{target}][{params}]

− Connection hc = Connector.open("http://www.test.com");

6

Http connection
● The HttpConnection class is defined in J2ME MIDP to allow developer to

handle http connections in their applications.

● The HttpConnection class is guaranteed available on all MIDP devices.

Example
HttpConnection hc = (HttpConnection);
Connector.open("http://www.wirelessdevnet.com");

InputStream is = new hc.openInputStream();
int ch; // Check the Content-Length first
long len = hc.getLength();
if(len!=-1) {

for(int i = 0;i<len;i++)
if((ch = is.read())!= -1)

System.out.print((char) ch));
}
else { // if the content-length is not available

while ((ch = is.read()) != -1)
System.out.print((char) ch));

}
is.close();
hc.close();

7

SOCKET CONNECTIONS
● New interfaces added to enable low-level IP networking in midp2.0:

● The SocketConnection interface defines the socket stream connection.
You use it when writing MIDlets that access TCP/IP servers.

● Socket Connection: Connector.open("socket://java.sun.com:port");

Example
SocketConnection client = (SocketConnection) Connector.open("socket://" +
hostname + ":" + port);
// set application-specific options on the socket. Call setSocketOption to set
other options
client.setSocketOption(DELAY, 0);
client.setSocketOption(KEEPALIVE, 0);

InputStream is = client.openInputStream();
OutputStream os = client.openOutputStream();

// send something to server
os.write("some string".getBytes());
// read server response
int c = 0;
while((c = is.read()) != -1) {

// do something with the response
}
is.close(); // close streams and connection
os.close();
client.close();

