
An Introduction to Erlang

Richard Carlsson

Erlang Buzzwords
● Functional
● Single-assignment
● Dynamically typed
● Concurrent
● Distributed
● Message passing
● Soft real-time
● Fault tolerant
● No sharing

● Automatic Memory
Management (GC)

● Virtual machine
(BEAM)

● Dynamic code loading
● Hot-swapping code
● Multiprocessor support
● OTP (Open Telecom

Platform) libraries
● Open Source

Background
● Developed by Ericsson, Sweden

– Experiments 1982-1986 with existing languages
● Higher productivity, fewer errors
● Suitable for writing (large) telecom applications
● Must handle concurrency and error recovery

– No good match - decide to make their own
● 1986-1987: First experiments with own language
● Erlang (after Danish mathematician A. K. Erlang.)
● 1988-1989: Internal use
● 1990-1998: Erlang sold as a product by Ericsson

– Open Source (MPL-based license) since 1998
● Development still done by Ericsson

Erlang at Uppsala University
● Early interest at Computing Science Dep.

(Datalogi, now a part of the IT department)
● High Performance Erlang (HiPE) research group

formed c:a 1997
– Native code compiler (Sparc, x86, PowerPC,...)
– Program analysis and optimization
– Runtime system improvements
– Language development
– Programming tools

● Most results from HiPE have been included in the
official Erlang distribution

Hello, World!

● '%' starts a comment
● '.' ends each declaration
● Every function must be in a module

– One module per source file
– Source file name is module name + “.erl”

● ':' used for calling functions in other modules

%% File: hello.erl

-module(hello).

-export([run/0]).

run() -> io:format("Hello, World!\n").

A recursive function

● Variables start with upper-case characters!
● ';' separates function clauses
● Variables are local to the function clause
● Pattern matching and guards to select clauses
● Run-time error if no clause matches (e.g., N < 0)
● Run-time error if N is not a number (*,+)

-module(factorial).
-export([fac/1]).

fac(N) when N > 0 ->
 N * fac(N-1);
fac(0) ->
 1.

Tail recursion with accumulator

● The arity is part of the function name: fac/1≠fac/2
● Non-exported functions are local to the module
● Function definitions cannot be nested (as in C)
● Last call optimization: the stack does not grow if

the result is the value of another function call

-module(factorial).
-export([fac/1]).

fac(N) -> fac(N, 1).

fac(N, Product) when N > 0 ->
 fac(N-1, Product*N);
fac(0, Product) ->
 Product.

Recursion over lists

● Pattern matching selects components of the data
● “_” is a “don't care”-pattern (not a variable)
● “[Head|Tail]” is the syntax for a single list cell
● “[]” is the empty list (often called “nil”)
● “[X,Y,Z]” is a list with exactly three elements
● “[X,Y,Z|Tail]” has three or more elements

-module(list).
-export([last/1]).

last([Element]) -> Element;
last([_|Rest]) -> last(Rest).

List recursion with accumulator

● The same syntax is used to construct lists
● Strings are simply lists of character codes

– "Hello" = [$H, $e, $l, $l, $o] = [72,101,...]

– "" = []

● Avoid adding data to the end of a list!

-module(list).
-export([reverse/1]).

reverse(List) -> reverse(List, []).

reverse([Element|Rest], Result) ->
 reverse(Rest, [Element|Result]);
reverse([], Result) ->
 Result.

Numbers

● Arbitrary-size integers (but usually just one word)
● #-notation for base-N integers
● $-notation for character codes (ISO-8859-1)
● Normal floating-point numbers (standard syntax)

– cannot start with just a '.', as in e.g. C

12345
-9876
16#ffff
2#010101
$A
0.0
3.1415926
6.023e+23

Atoms

● Must start with lower-case character or be quoted
● Single-quotes are used to create arbitrary atoms
● Similar to hashed strings

– Use only one word of data (just like a small integer)
– Constant-time equality test (e.g., in pattern matching)
– At run-time: atom_to_list(Atom), list_to_atom(List)

true % boolean
false % boolean
ok % used as “void” value
hello_world
doNotUseCamelCaseInAtoms
'This is also an atom'
'foo@bar.baz'

Tuples

● Tuples are the main data constructor in Erlang
● A tuple whose 1st element is an atom is called a

tagged tuple - this is used like constructors in ML
– Just a convention – but almost all code uses this

● The elements of a tuple can be any values
● At run-time: tuple_to_list(Tup), list_to_tuple(List)

{}
{42}
{1,2,3,4}
{movie, “Yojimbo”, 1961, “Kurosawa”}
{foo, {bar, X},
 {baz, Y},
 [1,2,3,4,5]}

Other data types
● Functions

– Anonymous and other
● Binaries

– Chunks of bytes
– <<0,1,2,...,255>>

● Process identifiers
– Usually called 'Pids'

● References
– Unique “cookies”
– R = make_ref()

● No separate booleans
– atoms true/false

● Erlang values in
general are often
called “terms”

● All terms are ordered
and can be compared
with <, >, ==, etc.

Type tests and conversions
● Note that is_list only

looks at the first cell of
the list, not the rest

● A list cell whose tail is
not another list cell or
an empty list is called
an “improper list”.
– Avoid creating them!

● Some conversion
functions are just for
debugging: avoid!
– pid_to_list(Pid)

is_integer(X)
is_float(X)
is_number(X)
is_atom(X)
is_tuple(X)
is_pid(X)
is_reference(X)
is_function(X)
is_list(X) % [] or [_|_]

atom_to_list(A)
list_to_tuple(L)
binary_to_list(B)

term_to_binary(X)
binary_to_term(B)

Built-in functions (BIFs)
● Implemented in C
● All the type tests and

conversions are BIFs
● Most BIFs (not all) are

in the module “erlang”
● Many common BIFs

are auto-imported
(recognized without
writing “erlang:...”)

● Operators (+,-,*,/,...)
are also really BIFs

length(List)
size(Tuple_or_Binary)
element(N, Tuple)
setelement(N, Tuple, Val)
make_ref()

abs(N)
round(N)
trunc(N)

throw(Term)
halt()

time()
date()
now()

self()
spawn(Function)
exit(Term)

Standard Libraries
● Application Libraries

– Kernel
● erlang
● code
● file
● inet
● os

– Stdlib
● lists
● dict
● sets
● ...

● Written in Erlang
● “Applications” are

groups of modules
– Libraries
– Application programs

● Servers/daemons
● Tools
● GUI system (gs)

Expressions
● Boolean and/or/xor are

strict (always evaluate
both arguments)

● Use andalso/orelse for
short-circuit evaluation

● “==” for equality, not “=”
● Always use

parentheses when not
absolutely certain
about the precedence!

%% the usual operators

(X + Y) / -Z * 10 – 1

%% boolean

X and not Y or (Z xor W)
(X andalso Y) orelse Z

%% bitwise operators

((X bor Y) band 15) bsl 2

%% comparisons

X /= Y % not !=
X =< Y % not <=

%% list operators

List1 ++ List2

Fun-expressions
● Anonymous functions

(lambda expressions)
– Usually called “funs”

● Can have several
clauses

● All variables in the
patterns are new
– All variable bindings in

the fun are local
– Variables bound in the

environment can be
used in the fun-body

F1 = fun () -> 42 end
42 = F1()

F2 = fun (X) -> X + 1 end
11 = F2(10)

F3 = fun (X, Y) ->
 {X, Y, Z}
 end

F4 = fun ({foo, X}, A) ->
 A + X*Y;
 ({bar, X}, A) ->
 A - X*Y;
 (_, A) ->
 A
 end

F5 = fun f/3

F6 = fun mod:f/3

Pattern matching with '='

● Match failure causes runtime error (badmatch)
● Successful matching binds the variables

– But only if they are not already bound to a value!
– Previously bound variables can be used in patterns
– A new variable can also be repeated in a pattern

Tuple = {foo, 42, “hello”},
{X, Y, Z} = Tuple,

List = [5, 5, 5, 4, 3, 2, 1],
[A, A | Rest] = List,

Struct = {foo, [5,6,7,8], {17, 42}},
{foo, [A|Tail], {N, Y}} = Struct

Case-switches
● Any number of clauses
● Patterns and guards,

just as in functions
● “;” separates clauses
● Use “_” as catch-all
● Variables may also

begin with underscore
– Signals “I don't intend

to use this value”
– Compiler won't warn if

variable is not used

case List of
 [X|Xs] when X >= 0 ->
 X + f(Xs);
 [_X|Xs] ->
 f(Xs);
 [] ->
 0
 _ ->
 throw(error)
end

%% boolean switch:

case Bool of
 true -> ...;
 false -> ...
end

If-switches and guard details
● Like a case-switch

without the patterns
and the “when” keyword

● Use “true” as catch-all
● Guards are special

– Comma-separated list
– Only specific built-in

functions (and all
operators)

– No side effects
– Can use old type tests:
integer(X),etc.

if
 X >= 0, X < 256 ->
 X + f(Xs);
 true ->
 f(Xs)
end

List comprehensions
● Left of the “||” is an

expression template
● “Pattern <- List” is a

generator
– Elements are picked

from the list in order
● The other expressions

are boolean filters
● If there are multiple

generators, you get all
combinations of values

%% map
[f(X) || X <- List]

%% filter
[X || X <- Xs, X > 0]

%% quicksort example

qsort([P|Xs]) ->
 qsort([X || X <- Xs,
 X < P])
 ++ [P] % pivot element
 ++ qsort([X || X <- Xs,
 X >= P]);
qsort([]) ->
 [].

Catching exceptions
● Three classes of

exceptions
– throw: user-defined
– error: runtime errors
– exit: end process
– Only catch throw

exceptions, normally
(implicit if left out)

● Re-thrown if no catch-
clause matches

● “after” part is always
run (side effects only)

try
 lookup(X)
catch
 not_found ->
 use_default(X);
 exit:Term ->
 handle_exit(Term)
end

%% with 'of' and 'after'

try lookup(X, File) of
 Y when Y > 0 -> f(Y);
 Y -> g(Y)
catch
 ...
after
 close_file(File)
end

Old-style exception handling
● “catch Expr”

– Value of “Expr” if no
exception

– Value X of “throw(X)”
for a throw-exception

– “{'EXIT',Term}” for
other exceptions

● Hard to tell what
happened (not safe)

● Mixes up errors/exits
● In lots of old code

Val = (catch lookup(X)),

case Val of
 not_found ->
 % probably thrown
 use_default(X);
 {'EXIT', Term} ->
 handle_exit(Term);
 _ ->
 Val
end

Record syntax
● Records are just a

syntax for working with
tagged tuples

● You don't have to
remember element
order and tuple size

● Good for internal work
within a module

● Not so good in public
interfaces (users must
have same definition!)

-record(foo, {a=0, b}).

{foo, 0, 1} = #foo{b=1}

R = #foo{}
{foo, 0, undefined} = R

{foo, 0, 2} = R#foo{b=2}

{foo, 2, 1} = R#foo{b=1,
 a=2}

0 = R#foo.a
undefined = R#foo.b

f(#foo{b=undefined}) -> 1;
f(#foo{a=A, b=B})
 when B > 0 -> A + B;
f(#foo{}) -> 0.

Preprocessor
● C-style token-level

preprocessor
– Runs after tokenizing,

but before parsing
● Record definitions

often put in header
files, to be included

● Use macros mainly for
constants

● Use functions instead
of macros if you can
(compiler can inline)

-include("defs.hrl").

-ifndef(PI).
-define(PI, 3.1415926).
-endif.

area(R) -> ?PI * (R*R).

-define(foo(X), {foo,X+1}).

{foo,2} = ?foo(1)

% pre-defined macros
?MODULE
?LINE

End

Resources:
www.erlang.org

- Getting Started
- Erlang Reference Manual

- Library Documentation

http://www.erlang.org/

