An Introduction to Erlang

Part 2 - Concurrency

Richard Carlsson

E[."] Processes

fib(0) -> 1;
fib(1) -> 1;
fib(N) when N > 0 ->

fib(N-1) + fib(N-2).

* \Whenever an Erlang program is running, the
code is executed by a process

* The process keeps track of the current program
point, the values of variables, the call stack, etc.

 Each process has a unique Process Identifier
("Pid”), that can be used to find the process

* Processes are concurrent (they run in parallel)

E[."] Implementation

RLANG

* Erlang processes are implemented by the virtual
machine, not by operating system threads

* Multitasking is preemptive (the virtual machine
does its own process switching and scheduling)

* Processes use very little memory, and switching
between processes is very fast

* Erlang can handle large numbers of processes
- Some applications use more than 100.000 processes

* On a multiprocessor machine, Erlang processes
can run in parallel on separate CPUs

E[‘v'] Concurrency
e

* Different processes may be reading the same
program code at the same time

- They have their own data, program point, and stack —
only the text of the program is being shared

- The programmer does not have to think about other
processes updating the variables

."] Message passing

P1d2 ! Message

Message

* “1” is the send operator (often called “bang!”)
- The Pid of the receiver is used as the address

* Messages are sent asynchronously
- The sender continues immediately

* Any value can be sent as a message

["] Message queues
ERLANG

Mailbox
» Newest » QOldest

Message

* Each process has a message queue (mailbox)

- Arriving messages are placed in the queue
- No size limit — messages are kept until extracted

* A process receives a message when it extracts it
from the mailbox

- Does not have to take the first message in the queue

v'] Recelving a message
RLANG
Message
receive
Msg -> io:format(“~w\n”, [Msg])
end

* receive-expressions are similar to case switches

- Patterns are used to match messages in the mailbox

- Messages in the queue are tested in order

* The first message that matches will be extracted
A variable-pattern will match the first message in the queue

- Only one message can be extracted each time

E[."] Selective receive

receive
{foo, X} > ...;
{bar, X} when ... -> ...;

end

e Patterns and guards let you select which
messages you currently want to handle

- Any other messages will remain in the mailbox
* The receive-clauses are tried in order
- If no clause matches, the next message is tried

* |f no message in the mailbox matches, the
process suspends, waiting for a new message

E[R:'N'! Receive with time-out

receive
{foo, X} -> ...;
{bar, X} -> ...
after 1000 ->
% handle timeout

end

* A receive-expression can have an after-part

- The time-out value is either an integer (milliseconds), or
the atom "infinity' (wait forever)

- 0 (zero) means “just check the mailbox, then continue”

* The process will wait until a matching message
arrives, or the time-out limit is exceeded

- Soft real-time: approximate, no strict timing guarantees

E[."] Send and reply

RLANG

Pid ! {hello, self()},
receive
{reply, Pid, String} ->
10:put_ chars(Str1ng)

{hello,P1} —»
P1 : P2
< {reply,P2,”H1!"}
receive

{hello, Sender} ->
Sender ! {reply, self(), “H1!"}

end

end

* Pids are often included in messages (sel1f()), SO
the receiver can reply to the sender

- If the reply includes the Pid of the second process, it
IS easier for the first process to recognize the reply

E[."] Message order

FIFO order No guaranteed order
(same pair of sender and receiver) (different senders, same receiver)

@ 0 0-

* The only guaranteed message order is when
both the sender and receiver are the same for
both messages (First-In,First-Out)

- In the left figure, m1 will always arrive before m2 in
the message queue of P2 (if m1 sent before m2)

- In the right figure, the arrival order can vary

E[."] Selecting unordered messages

RLANG
° ml receive
ml -> io:format("Got ml!")
end,
receive
@ m2 m2 -> jio:format("Got m2!")
end

* Using selective receive, we can choose which
messages to accept, even if they arrive in a
different order

* |n this example, P2 will always print “Got m1!”
before “Got m2!”, even if m2 arrives before m1

- m2 will be ignored until m1 has been received

Starting processes

* The 'spawn’ function creates a new process

* There are several versions of 'spawn":
- spawn(fun(QQ-> ... end)

e can also do spawn(fun f/0)

- spawn(Module, Function, [Argl, ..., ArgnN])

e Module: Function/N must be an exported function

* The new process will run the specified function

* The spawn operation always returns immediately

- T
- T
- T

ne return value is the Pid of the new process
ne “parent” always knows the Pid of the “child”
ne child will not know its parent unless you tell it

E[."] Process termination

* A process terminates when:

- It finishes the function call that it started with

- There is an exception that is not caught
* The purpose of 'exit' exceptions is to terminate a process
e “exit(normal)” is equivalent to finishing the initial call

* All messages sent to a terminated process will be
thrown away, without any warning

- No difference between throwing away and putting in
mailbox just before process terminates

* The same process identifier will not be used
again for a long time

E[H A stateless server process

RLANG

run() ->
Pid = spawn(fun echo/0),

Pid | {hello, self(), 42},

receive
{reply, Pid, 42} ->
Pid ! stop
end.

] {hello,Pl,42} —»
Client P1 P2 Server
< {reply,P2,42}

echo() ->
receive
{hello, Sender, value} ->
Sender ! {reply, self(), value},
echo(); % loop!
stop ->
ok
end.

E[."] A server process with state

RLANG

server(State) ->
receive
{get, Sender} ->
Sender ! {reply, self(), State},
server(State);
{set, Sender, value} ->
Sender ! {reply, self(), ok},
server(value); % loop with new state!
stop ->
ok
end.

* The parameter variables of a server loop can be
used to remember the current state

* Note: the recursive calls to server() are tail calls
(last calls) — the loop does not use stack space

e A server like this can run forever

E[R:vN'! Hot Code Swapping

-module(server).
-export([start/0, loop/1]).

start() -> spawn(fun() -> loop(0) end).
loop(State) ->
receive
{get, Sender} ->

server:loop(State);
{set, Sender, value} ->

éé%&er:1oop(Va1ue);

* When you use “module:function(...)”, Erlang
will always call the latest version of module

- If you recompile and reload the server module, the
process will jump to the new code after handling the
next message — you can fix bugs without restarting!

E[."] Hiding message details

get_request(ServerpPid) ->
ServerPid ! {get, self()}.

set_request(value, ServerpPid) ->
ServerPid ! {set, self(), value}.

wait_for_reply(ServerpPid) ->
receive
érep1y, ServerPid, value} -> value
end.

stop_server(ServerpPid) ->
ServerPid ! stop.

* Using interface functions keeps the clients from
knowing about the format of the messages

- You may need to change the message format later
* |tis the client who calls the self() function here

."] Registered processes

Pid = spawn(...),

register(my_server, Pid),
my_server ! {set, self(), 42},
42 = get_request(my_server),

Pid = whereis(my_server)

* A process can be registered under a name
- the name can be any atom

* Any process can send a message to a registered
process, or look up the Pid

* The Pid might change (if the process is restarted
and re-registered), but the name stays the same

."] Links and EXxit signals

exit(fubar)

fubar»» »
L "
@ fubar+

* Any two processes can be linked
- Links are always bidirectional (two-way)

* When a process dies, an exit signal is sent to all
linked processes, which are also killed

- Normal exit does not kill other processes

:vN'! Trapping exit S|gnals

* fubar,* Fubar s, #20%
™ ."
trap_ex1t = true

& @ AR

{"EXIT',P2,fubar}

ER

* |f a process sets its trap_exit flag, all signals will
be caught and turned into normal messages

- process_flag(trap_exit, true)
- {"EXIT', Pid, ErrorTerm}

* This way, a process can watch other processes
- 2-way links guarantee that sub-processes are dead

E[."] Robust systems through layers

RLANG

/'\

i ok e

* Each layer supervises the next layer and restarts
the processes if they crash

* The top layers use well-tested, very reliable
libraries (OTP) that practically never crash

* The bottom layers may be complicated and less
reliable programs that can crash or hang

E[R:vN'! Distribution

[foo.bar.se] $ erl -name fred
Erlang (BEAM) emulator version 5.5.1

Eshell v5.5.1 (abort with AG)
(fred@foo.bar.se)l> node().
'fred@foo.bar.se'
(fred@foo.bar.se)2>

* Running “er1” with the flag “-name xxx”

- starts the Erlang network distribution system

- makes the virtual machine emulator a “nhode”
e the node name is the atom 'xxx@host.domain'

* Erlang nodes can communicate over the network

- but first they must find each other
- simple security based on secret cookies

E[."] Connecting nodes

(fred@foo.bar.se)2> net_adm:ping('barney@foo.bar.se').
pong
(fred@foo.bar.se)3> net_adm:ping('wilma@foo.bar.se').

pang
(fred@foo.bar.se)4>

* Nodes are connected the first time they try to
communicate — after that, they stay in touch

- A node can also supervise another node

* The function “net_adm:ping(Node)” is the easiest
way to set up a connection between nodes

- returns either “pong” or “pang” :-)

* You can also send a message to a registered
process using “{Name,Node} ! Message”

E[."] Distribution Is transparent

RLANG
* You can send a Pid from one node to another

- Pids are unique, even over different nodes

* You can send a message to any process through
its Pid — even if the process is on another node

- There is no difference (except that it takes more time
to send messages over networks)

- You don't have to know where processes are

- You can make programs work on multiple computers
with no changes at all in the code (no shared data)

* You can run several Erlang nodes (with different
names) on the same computer — good for testing

E[."] Running remote processes

P = spawn('barney@foo.bar.se', Module, Function, ArgList),
global:register_name(my_global_server, P),

global:send(my_global_server, Message)

* You can use variants of the spawn function to start
new processes directly on another node

* The module 'global’ contains functions for
- registering and using named processes over the
whole network of connected nodes

* not same namespace as the local “register(...)”
e must use “global:send(...)”, not“!”

- setting global locks

E[."] Ports — talking to the outside

RLANG

PortId = open_port({spawn, “command”}, [binary]),
PortId ! {self(), {command, Data}}

Portid ! {self(), close}

* Talks to an external (or linked-in) C program
* A port is connected to the process that opened it

* The port sends data to the process in messages
- binary object
- packet (list of bytes)
- one line at a time (list of bytes/characters)

* A process can send data to the port

IERI.ANG_

Sorry, no more stuff this time

