
Project CS
Uppsala University

LoPEC
Low Power Erlang-based Cluster

Project Report

Fredrik Andersson
Axel Andrén
Niclas Axelsson
Fabian Bergström
Björn Dahlman

Christofer Ferm
Henrik Nordh

Vasilij Savin
Gustav Simonsson

Henrik Thalin

January 14, 2010

Abstract

This document describes the project methodology and development pro-
cess applied during the project which resulted in the LoPEC cluster system.
The project was carried out by ten computer science students at Uppsala
University during the autumn of 2009. In collaboration with Erlang Solu-
tions and Streamfile with the initial purpose of developing a power-efficient
GPGPU cluster. The focus of this document is the team’s reflections on the
entire development of the system.

Contents

1 Introduction 3

2 Methodology 4
2.1 Scrum . 4
2.2 Theory . 5

2.2.1 Scrum Roles . 5
2.2.2 Sprint Planning Meeting 5
2.2.3 Daily Scrum Meeting 6
2.2.4 Sprint Review Meeting 6
2.2.5 Retrospective . 6

2.3 How we did it . 6
2.3.1 Scrum Roles . 6
2.3.2 Sprint Planning Meeting 7
2.3.3 Daily Scrum Meeting 7
2.3.4 Sprint Review Meeting 7
2.3.5 Retrospective . 8

3 Milestones 9
3.1 Sprint 1 . 9
3.2 Sprint 2 . 9
3.3 Sprint 3 . 9
3.4 Erlang User Conference . 10
3.5 Sprint 4 . 10
3.6 Sprint 5 . 10
3.7 External Review . 10
3.8 Final Presentation . 10

4 Resources 11
4.1 The Team . 11
4.2 Hardware . 12
4.3 Training . 12

4.3.1 Course in Erlang . 12
4.3.2 Course in Scrum . 12

1

4.4 Tools . 12
4.4.1 Communication . 12
4.4.2 Version Control . 13
4.4.3 Issue Tracking and Continuous Integration 13
4.4.4 Development environment 13
4.4.5 Code Testing . 14

5 Problems 15
5.1 Not Being Proficient with Erlang 15
5.2 Nonexisting Backlog . 15
5.3 No Prior Experience with Clusters 15
5.4 Task Division . 16
5.5 Poor Testing and Continuous Integration Experience 16
5.6 Ignoring the Work Hours . 16
5.7 Issues in the Working Environment 17
5.8 Incommunicado . 17
5.9 Scrum Master . 17

6 What we learned 19
6.1 Development Process . 19
6.2 Project Rules . 20

7 Conclusion 21

A Individual Contributions 24

2

Nomenclature

Backlog item A project feature desired by customer

Erlang Solutions Former company name - Erlang Training & Consulting

Erlang Solutions Formerly Erlang Training & Consulting

Erlang A functional programming language developed by Ericsson

GPGPU General-purpose computing on graphical processing units

MoSCoW Must, Should, Could, Would - A system to prioritize things
inorder of importance.

OTP Open Telecom Platform, a collection of modules for Erlang

OpenCL A framework for writing programs that execute on a multitude
of processors such as CPUs and GPUs

Product backlog A prioritized list of all the desired features of the prod-
uct being developed, put together by the product owner.

Scrum An iterative incremental framework for managing complex work,
such as product development

Sprint backlog A list of tasks that should be completed during the current
sprint, based on features picked out from the product backlog.

Sprint A period of time during which the team works on agreed on tasks.
The recommended length is 2 to 4 weeks

Tasks Specific developments required to implement a feature

VCS Version Control System

3

Chapter 1

Introduction

The purpose of this project was to develop a low-power GPGPU cluster us-
ing off-the-shelf hardware. Our timespan was approximately three months,
and the main idea was to utilize Erlang and OpenCL to implement the
system, and measure how well it would fare. Our team consisted of ten Com-
puter Science students from Uppsala University, who developed the product
using the Scrum process.

Two main goals for the course, according to the official course descrip-
tion, was “give insights into how a big project is run (from planning to
realization), how to construct a complex distributed system”. The first
goal became a reality simply by the size of the project (ten students) in
combination with the use of Scrum, which included extensive planning and
structuring of work before any work commenced. While we in many ways
did not have defined requirements of the cluster early on, the cluster quickly
evolved towards the second goal, as the distributed property of the cluster
became a central part of its design.

4

Chapter 2

Methodology

2.1 Scrum

Figure 2.1: Scrum diagram

Scrum is an agile software development process, best suited for projects
with rapidly changing requirements.

This chapter briefly covers the scrum theory 1 2 3 and how we used Scrum
ourselves in the project.

1http://www.controlchaos.com/about/
2http://www.scrumalliance.org/
3http://www.mountaingoatsoftware.com/scrum/overview

5

http://www.controlchaos.com/about/
http://www.scrumalliance.org/
http://www.mountaingoatsoftware.com/scrum/overview

2.2 Theory

2.2.1 Scrum Roles

Product Owner - acts as a spokesman for the customer, and defines fea-
tures of the product based on each Backlog item or each specific
request of the customer. He should prioritize these features according
to the market value, decide on a release date for the product, and is
responsible for the profitability of the product. The product owner
should also adjust the contents of the features and their priority after
every Sprint , and decide if what has been produced is acceptable.

Scrum Master - responsible for making sure a Scrum team lives by the
values and practices of Scrum, and for removing any impediments to
the progress of the team. As such, he should shield the team from
external interferences, and ensure that the Scrum process is followed,
including issuing invitations to the daily Scrum meetings (See 2.2.3),
sprint reviews (See 2.2.4) and the sprint planning meetings (See 2.2.2).

Scrum Team - the group of people developing the product. There is no
personal responsibility in Scrum, the whole team fails or succeeds as
a single entity.

2.2.2 Sprint Planning Meeting

The sprint planning meeting is attended by the product owner, the Scrum
master, the team and any interested stakeholders. During the meeting, the
product owner and the team will go through the vision, the roadmap, the
release plan, and the Product backlog to develop a detailed plan for the
upcoming sprint.

Together, the product owner and the team define a sprint goal, which is a
short description of what should be completed at the end of the sprint. The
success of the sprint will later be assessed during the sprint review meeting
(See 2.2.4) against the sprint goal, rather than against each specific item
selected from the product backlog.

Since the product owner decides the scope of a feature, the team usually
requires the product owner to answer all of their questions to estimate the
time it will take to finish a backlog item.

The team needs to be well prepared for this meeting. They should ded-
icate some time during a sprint to think ahead how the upcoming backlog
items could be designed and implemented. Especially if the team is inex-
perienced and cannot produce a confident estimate of the effort required to
complete a backlog item on their own and needs some additional informa-
tion.

The team decides how much work they can successfully take into the
sprint based on the team size, available hours, and the estimated level of

6

productivity. When the team has selected and committed to deliver a spe-
cific set of features from the highest priority items in the backlog, the Scrum
master leads the team in a planning session to break these features down
into Tasks, and form the Sprint backlog .

2.2.3 Daily Scrum Meeting

The daily Scrum meeting is a short meeting where the team members inform
each other of what they have done, what they plan to do and if they have
any impediments. This is to make sure that the whole team knows what is
happening and to make sure noone is stuck alone with a single problem for
several days. It is timeboxed to 15 minutes to ensure that the team spends
more time developing than talking about developing.

2.2.4 Sprint Review Meeting

At the end of each sprint, a sprint review meeting is held. The first half
of the meeting is set aside to demonstrate the potentially shippable pro-
totype to the product owner that has been developed during the sprint.
The product owner leads this part of the meeting and invites all interested
stakeholders to attend. The product owner determines which items on the
product backlog have been completed in the sprint. It is usually not allowed
to use PowerPoint slides and spend more than two hours preparing for the
demonstration.

2.2.5 Retrospective

After the sprint review meeting the Scrum team goes through a retrospective
of the sprint with the Scrum master. The team assesses the way they worked
together in the sprint and identifies things that went well and should be
encouraged in the future, as well as things that could be improved. The
results of this should be visible to the team during the following sprints. It
is vital, therefore, that the feedback received at the retrospective be followed
up on. Otherwise, the team may quickly see it as a waste of time.

2.3 How we did it

2.3.1 Scrum Roles

Product Owner

Jan-Henry Nyström, an Erlang Training and Consulting representative, was
the product owner for this project, and acted as spokesman for Kimmo
Gläborg, the de facto customer.

7

Scrum Master

Several team members wanted to try being a Scrum master, so the role went
to a different member at the beginning of most sprints.

Scrum Team

There were no predefined roles in our team that we took on, but people
tended to stick to the modules they developed and became ’experts’ in their
areas.

In order to ensure that we did not end up relying on something only one
person in the team really understood, we ensured every task was reviewed
by another team member, one that was not originally involved. We also
tried to spread the competence using pair programming.

2.3.2 Sprint Planning Meeting

Most of the time our sprint planning meetings went as planned, though some
times the product owner was unavailable. In these cases the meeting simply
needed to be scheduled one or two days later. These extra days would come
in handy for cleaning up what we had produced the earlier sprint.

We used planning poker to reach a consensus on how complex each task
would be. It is a “game” where the team votes on issues by placing a card
upside-down, until everyone has placed a card - then they are all flipped
at once. If the results are not unanimous, they are discussed, and usually
require another round. Eventually everyone would end up voting on one of
two adjacent values for each task, and we let the majority decide which we
would go with.

2.3.3 Daily Scrum Meeting

Our daily Scrums took place at 9.15. People could arrive as early as 8.00 and
work until then, but as long as they did arrive before the meeting started it
did not matter (formally).

We do recommend people trying Scrum to be really strict about the daily
meeting since it is such a central part of the methodology. One possibility
is to have the meeting at 8 sharp or 8.15, starting the day with the meeting.
Then everyone would be able to start working directly, but you would miss
out on the opportunity to recall what exactly you worked on the day before,
as well as deciding which task to work on each day.

2.3.4 Sprint Review Meeting

Our review meetings were always held on Fridays. The product owner would
visit the team project room along with any other interested parties, and the

8

team would demonstrate new features on a live system, and answer any
questions that might arise during the demo.

Usually we would spend one or two days before the demo checking if
everything was working, and run test demonstrations internally.

2.3.5 Retrospective

During the course we had several retrospectives. We wrote what we thought
was good and what could be improved on post-its, and put all these on a
whiteboard. Then every team member would put three dots next to one or
more notes. When every member had done so, we counted the marks and
tried to come up with solutions to the notes with most dots. A typical note
could be “People commit code that does not compile”; we would then try
to come up with a solution to that problem, e.g. “test if your code compiles
before you commit”. It is important to make sure everyone knows that the
team works as one unit so that no team-member feels that a note is all their
fault.

9

Chapter 3

Milestones

3.1 Sprint 1

The first sprint we had no contact with the product owner and due to this
we were somewhat in the dark. This sprint only lasted one and a half week,
so we decided to do some research in areas we knew would come in handy,
and some basic design.

3.2 Sprint 2

This was our first real sprint and the first time we had contact with our
product owner. The duration of this sprint was three weeks.

We had many discussions about which implementation we should use
in our cluster. We narrowed the options down to two possibilities, Intern-
ode communication or Map-Reduce. Since we knew that the timeframe for
this project was 15 weeks we chose Map-Reduce for it’s simplicity. To test
everything we developed a simple wordcount program.

In the end of this sprint we had a working prototype which could solve
Map-Reduce problems.

3.3 Sprint 3

The third sprint lasted three weeks, and was devoted to extending our proto-
type with functionality that updates the user on certain events, and finishing
a raytracer program in OpenCL that our system could run. We also created
a poster which we presented at the Erlang User Conference.

10

3.4 Erlang User Conference

Before the Erlang User Conference we spent three days entirely to further
develop the poster and leaflets for our project. The conference went great
and we got the opportunity to have rewarding conversations with many of
the attendants, among them the creators of Disco 1, an implementation of
the Map-Reduce framework by Nokia.

3.5 Sprint 4

This two-week sprint was mostly devoted to adding the features of running
background jobs in the system, and monitor the disk and memory usage
across all connected nodes. Moreover, we started working on other user
applications in OpenCL, such as image and audio filters.

3.6 Sprint 5

In the beginning of this sprint we decided that we could take more work
than usual since all the other sprints had ended with very little to do. This
backfired on us. We ended the sprint after two weeks with a cluster which
could not run our existing example programs since we abstracted the I/O
into a separate module. Apart from this we fixed the web interface which
serves as the interface towards the users, and finalized some of the signal
processing filters.

3.7 External Review

The external review was held in the end of the fifth sprint. This was done
in the form of a oral presentation of the project done by two members of the
team. Attending the review was experts in the field, both from the academic
and industrial worlds, stakeholders and other invited guests. The presen-
tation was followed by questions from the audience answered by members
from the whole team.

3.8 Final Presentation

The final presentation was held on the 14th of januari 2010. This was
done in the form of a oral presentation by one member of our team. This
presentation was open for the public to attend. Following the presentation
there was a short questions session and later a poster and demoing session
outside the presentation area.

1http://discoproject.org

11

http://discoproject.org

Chapter 4

Resources

4.1 The Team

Figure 4.1: The team - From the top left: Fredrik Andersson, Henrik Nordh,
Niclas Axelsson, Vasilij Savin, Christofer Ferm, Gustav Simonsson, Axel
Andrén, Henrik Thalin, Björn Dahlman, Fabian Bergström

The team consisted of ten computer science students, nine of which were
native swedes and one an international student. We had different areas of
expertise but noone had experience in a project of this scale which included

12

design, coding, integration, testing and documentation.
As a majority of the team were swedes, we used both English and Swedish

when communicating within the group, though all important meetings were
entirely in English.

4.2 Hardware

Every team member was supplied with a PC desktop workstation, which was
mainly used for the development. All workstations ran Linux, most used
the Ubuntu 9.04 distribution, while one person opted for running Gentoo.
Apart from these computers we had an additional PC dedicated as a server
for things such as revision control, issue tracking, common file storage and
continuous integration. Our customer also provided us with four Mac Minis
as the cluster hardware.

4.3 Training

4.3.1 Course in Erlang

In the beginning of the course we got the opportunity to learn Erlang from
Erlang Solutions. Usually these courses are taught for two weeks, but
due to the lack of time the teaching schedule was compressed to only one
week. We learned a lot of Erlang and OTP during this training. Since most
of the people did not know Erlang from before, this course proved vital for
the project.

4.3.2 Course in Scrum

Apart from the Erlang introduction we also had a crash course in the
methodology of Scrum, since we were planned to incorporate it in our de-
velopment. The course lasted approximately a week, and was of immense
help.

4.4 Tools

4.4.1 Communication

We set up a googlegroup to use as a mailing list for our team, though it
was not used extensively. It was nice to have it when we wanted to contact
everyone or if our product owner wanted to come in contact with everyone.
We also collected contact information such as email and phone numbers
which came in handy if people were absent.

13

The largest part of communication took place on our IRC channel. The
benefits of using IRC were mostly the immediate response you would get,
and the ease of pasting useful links for team members to visit.

4.4.2 Version Control

Managing a project with ten developers without a VCS is practically im-
possible. We were instructed on how to use Subversion during the first weeks
of training and did not think too much about changing to something else in
the beginning. Although we did not have any great trouble with Subversion
a distributed system such as GIT or Mercurial would have made it easier to
move code from single developers without having to break the repository.

One member of the team used GIT to interface to the Subversion repos-
itory and that worked without any problem.

4.4.3 Issue Tracking and Continuous Integration

For continous integration we used Hudson. Hudson is rather basic but just
having a continuous integration tool is powerful enough. In the early stages
of the project we even had an IRC bot inside of the IRC channel which would
alert us when the build was broken and list who was responsible. This lead
to a quick response from the responsible person which was great. Sadly the
bot stopped working after a couple of weeks and we did not put any effort
into fixing it which caused us to stop looking at Hudson.

The issue tracker we used for the project was Redmine. In the later
sprints we also used the issue tracker to keep track of our Scrum tasks. We
did so, because it allowed us to preserve the history of old sprints. This
proved really valuable writing the final report, as we had all the important
sprint information at hand. Also, post-it notes were too small to put all
information related to the issue.

4.4.4 Development environment

Most of us preferred using simple text editors, such as Emacs or Vim, though
one person opted for using ErlIDE 1.

Emacs

Emacs2 is an editor with the excellent support for Erlang, both from official
and third party channels. The team members using Emacs extended its
functionality with some plugins:

1http://erlide.sourceforge.net/
2http://www.gnu.org/software/emacs

14

http://erlide.sourceforge.net/
http://www.gnu.org/software/emacs

FlyMake 3 - Plugin for checking compiler errors and warnings before
compiling manually.
Erlware-mode 4 - As an extension of the original erlang emacs mode
which extends it with better skeletons that include edoc code and some
fixes. Have many other useful features that we didn’t use, we wanted it for
its autogeneration of skeletons.
Distel 5 - ”Distel extends Emacs Lisp with Erlang-style processes and
message passing, and the Erlang distribution protocol. With this you can
write Emacs Lisp processes and have them communicate with normal
Erlang processes in real nodes.”

4.4.5 Code Testing

We started out using EUnit for our unit testing, and for that task it is a
good tool. It has a nice a quite simple syntax and produces good error
reports when a test fails. However when we started to look at integration
testing EUnit was simply not powerful enough for our communication heavy
testing. We then switched to OTP’s CommonTest framework which was
much simpler to write large tests in.

3http://flymake.sourceforge.net
4http://code.google.com/p/erlware-mode/
5http://fresh.homeunix.net/~luke/distel/

15

http://flymake.sourceforge.net
http://code.google.com/p/erlware-mode/
http://fresh.homeunix.net/~luke/distel/

Chapter 5

Problems

During the course of the project, we faced a number of obstacles, the most
important of which are described in this chapter.

5.1 Not Being Proficient with Erlang

None of us had written a large program in Erlang before, and some of us had
not written any Erlang at all. Even though the project did not grow very
large, the complexity of having ten people working on the same code base
was noticeable. If we had had more Erlang experience, we could probably
have prepared better for a large project like this.

5.2 Nonexisting Backlog

One would expect to receive a complete backlog from the customer or prod-
uct owner before starting a project of this size, but with our product owner
absent, what we got was a list with a few guidelines. This meant we had
to create a backlog of our own, using the very vague project description
we were given. Thus we had to devote one and a half week to read up on
several different subjects we had little to no knowledge of and do an overall
system design before we could do any other work. This method obviously
had some flaws, but we were also given a greater degree of freedom than
normal, which certainly felt invigorating at times.

5.3 No Prior Experience with Clusters

Since we had no prior experience of implementing cluster frameworks, we did
not know where to start. Should we write something with message passing
like MPI? We eventually decided to use a map-reduce inspired framework, as
map-reduce seemed easy to implement and we had a too limited timeframe
for anything more intricate.

16

5.4 Task Division

We experienced problems throughout the project with having too little to
do. This was related to how we subdivided our tasks in the beginning of
the sprints, resulting in tasks that were poorly defined or simply too big
to be solved immediately. These large tasks would still be worked on by
team members towards the end of a sprint while others were left with empty
hands.

5.5 Poor Testing and Continuous Integration Ex-
perience

We decided from the beginning to write tests for all our code. Unfortu-
nately, noone in the team had any prior experience with any kind of testing
framework. As a result of this we unwittingly wrote code that a unit testing
framework could not easily test. Ultimately we managed to produce tests
for a most of the codebase, but we could have been more efficient in our
testing since a lot of time was spent rewriting tests that broke because of
our coding.

We switched testing frameworks from EUnit to Common Test mid-
project and a fair amount of time was spent redoing the tests to work with
the new framework. Common Test was better suited to our modules, as
they generally communicated much, which EUnit wasn’t equipped to han-
dle. but if we had been more up to speed with continuous integration, we
could probably have saved time and caught more bugs earlier by using the
right framework from the start.

5.6 Ignoring the Work Hours

A problem we experienced throughout the project was people arriving late.
For a week or so we waited each day for everyone to arrive before we started
the daily Scrum meeting, but eventually we decided to start the meeting
even if not all team-members were present.

We also tried introducing a rule to punish latecomers, by forcing them
to buy cookies or cake, which did get us some nice fikabröd but was not
much of a punishment. So we tried having a wall of shame, where members
would get ticks every time they arrived late. It may not be entirely fair for
a person coming one minute late to get the same punishment as a person
showing up two hours late, but we stuck to it. It didn’t make much of a
difference, though. Possible improvements could be to tick a person for each
hour he or she comes late, and to wait with the ticks until the person arrives
to make it extremely clear that they are recieving a punishment. We reset
the wall every sprint though, to give people a chance to improve.

17

A related problem was team-members taking long lunches, in extreme
cases an hour longer than intended. Also, we were supposed to work from
eight to five, yet some members were coming in to work at nine and still
ended their work days at five. However, in the long run, we never felt
impeded by this as the productivity of the team was severely reduced in the
late afternoons anyway.

5.7 Issues in the Working Environment

Our surroundings had some shortcomings when the project began. The
ventilation in our room was half broken, and was not fixed until a few
months later, forcing us to choose between breathable air or a comfortable
temperature. We also had to contact the institution a number of times to
fix issues with our key cards not letting some members of the team in.

As we were working with a cluster application, we also needed network
equipment, which took several weeks for the IT admins could deliver.

5.8 Incommunicado

There were problems with our communication with the product owner. This
can probably be blamed on both parties - partly because of him having other
engagements, partly because we never really were in such a dire situation
that we needed immediate answers from him. Besides the contact we had
with our product owner, we also spoke with the customer himself from time
to time, who was generally available. But it would occasionally result in
some confusion regarding what to do, as they would request very different
features from us.

Most of the time though, we made our own design and implementation
choices. We mostly saw them on sprint review meetings.

Adding to our disappointment was the lack of any kick-off activities,
which distanced us further from customer and product owner.

5.9 Scrum Master

Our method of choosing a new Scrum master every sprint did not give the
Scrum masters a chance to reflect on his performance and improve, since
most people only got one try, so deciding on one or two people to be scrum
master from the start would have been better.

There were some issues initially, like forgetting to go through with spe-
cific parts of the methodology, but these all went away as we became more
experienced in using Scrum.

Our Scrum masters did not spend that much time on Scrum activities.
Their role was mostly to keeping our task board and issue tracker up-to-

18

date, writing down new tasks, and leading the Scrum meetings. Apart from
that they were ordinary team members. We did not calculate the project
velocity, as it was judged to be too much overhead for a project three months
long.

19

Chapter 6

What we learned

6.1 Development Process

As we were working according to the methodology of SCRUM we had to
define the length of our sprints. We experimented with different sprint
lengths, ranging from one to three weeks. We found that three weeks felt
most suitable for our team.

The first sprint was the shortest, approximately one and a half week,
since we dedicated it solely to research and design. For this particular in-
stance the sprint length worked fine, but during later stages of the project,
it would have introduced too much overhead.

For the entire duration of the project we kept track of our progress using
a task board. Later on we complemented this with an issue tracker on our
server, and both of these were the scrum master’s responsibility to update.
We also used the MoSCoW system to some degree. According to the
MoSCoW system, all tasks are assigned a priority [Must be done, Should be
done, Could be done and Would be nice and people are supposed to work
on higher-priority tasks before taking low-priority ones.

We performed pair programming occasionally and found it to be efficient,
helpful, and reducing the amount of mistakes and bugs in the produced code.

One of our main ideologies was to use a continuous integration process
during development. This partially worked, the problems were mostly due
to our VCS not handling different branches in the repository well enough, so
it was difficult to maintain a stable build all the time. We avoided creating
branches, since we thought it will be difficult to merge them with the trunk
later on. In the hindsight, we should have used a more advanced distributed
VCS.

Whiteboards were used intensely for all design phases we went through.
We mostly worked in pairs or groups of three when designing, and once a
draft of a particular design was finished, it was presented to the whole team
for feedback and input, until it became finalized. Overall, whiteboards are

20

extremely useful for brainstorming and designing.
We also let our server build the latest version automatically and contin-

uously in order to make sure that everything worked as it should.

6.2 Project Rules

Early on, we realized we needed some firm rules to keep the project going, so
we set up some team rules. The most basic of these were the rules concerning
our weekly schedule, with work days from eight to five and the daily scrum
at 9.15. We also had a one-hour flextime possibility, thus changing the work
hours from nine to six instead.

For keeping track of scheduled absence among the team members we
used a dedicated part of a whiteboard where you could announce when you
would be absent. This worked surprisingly well.

21

Chapter 7

Conclusion

The working environment and administrative tasks surrounding the project
was both good and bad. The room was situated very nicely with a great
view to the outside, but it was very cold due to the thermostat not working
properly, so we had to choose between breathable air or a warm room.

We are quite pleased with the end product we produced. It mostly does
what was planned from the beginning and throughout the different sprints,
though later changes to the cluster were occasionally difficult to implement
due to the original design being flawed.

The training before the project ensued was really good, however the pace
of the training was perceived by some as somewhat high. The Scrum trainers
did an excellent job during practice sessions to encourage group work, which
contributed significantly to team building - at least for our team. We feel
that more lecturing on different project tools such as Hudson would have
been very helpful. Overall, the Erlang and OTP courses were good, and did
not feel that rushed even though they were given in half the time they were
supposed to.

Concerning the test frameworks we used we conclude that EUnit is not
suitable for testing communication intensive applications, and we recom-
mend using CommonTest for thoose kind of tests. We lost some time in
the transition between these two, and want to emphasize the importance of
choosing a good test framework from the start. Many modules in the cluster
are also, by their very nature, hard to test as a single unit, as they depend
strongly on other modules, if not the entire cluster, being up and running.
This complicated testing, and it was in some cases quite hard to reach a full
coverage of test cases for a module.

Our experience tells us that SVN was not fully satisfying and that GIT,
for example, could have been suggested in the beginning of the course as a
more suitable VCS.

In conclusion, aside from the experience of using Erlang, OpenCL and the
many other tools used in the project, much was also learned about working

22

in a larger project. A greater understanding of group communication and
group organization have likely been as great a benefit from the course as the
technical knowledge gained.

23

Bibliography

[1] Henrik Kniberg, Scrum and XP from the trenches.
http://www.infoq.com/minibooks/scrum-xp-from-the-trenches

24

http://www.infoq.com/minibooks/scrum-xp-from-the-trenches

Appendix A

Individual Contributions

Henrik Thalin In the beginning of the project, I did some research con-
cerning math problems we could eventually implement, and worked
with the initial protocol design. I was also interviewed by two groups of
first-year students for their assignment concerning our project. When
we started implementing our design I took care of implementing the
database. However, after our first sprint of implementing, our cluster
design had changed and settled quite a bit, and it was obvious the
database needed a serious redesign. I was then involved in this re-
design and implementation. For the remainder of the project, I have
from time to time made revisions and additions to the database, such
as adding the user handling. I also worked in extending the Statisti-
cian module to account for the disk and memory usage in the cluster.
For the final weeks of the project I worked with implementation of
some new user applications, namely the image and sound filters.

Björn Dahlman At the start of the project I did research on OpenCL,
and worked on the design of the communication between Erlang and
the external processes that would eventually be running. In the initial
coding stages I mainly worked on the slave with modules for fetching
and running tasks. Later on I did alot of “glueing” of the different
components in the cluster when we first tried the whole cluster in
it is wholeness. After that I worked on the Statistician and the IO
Module and rewrote quite a bit on the slave. I have also done some
small work here and there in modules like Listener, Dispatcher, Db
and implemented smaller things like NetMonitor. During the work
with the IO Module I did alot of work on getting Riak up and running
and making it compliant with our cluster.

25

Christofer Ferm In the begining of the project I worked with researching
possible hardware to use for the project. I investigated and compared
the Mac Mini’s against Nvidia ION based platforms. After that I
did some research on OpenCL and I wrote the first simple example
program using OpenCL, it just added two arrays and printed out the
result. After that I started to work on the raytracer. It took some time
to get the hang of OpenCL so this task has been with me through-
out out the project. I have also worked on adding functionality for
background jobs in the cluster. I later researched Image filters and
worked on the Image filtering application. I also researched Audio fil-
tering and worked on a simple program wich adds echos to a wave file.
Then I started porting the image filter application to use OpenCL. I
was Scrum master for our fifth sprint. My main area throughout the
project has been working on cluster applications using OpenCL.

Gustav Simonsson In the early stages of the project I did research into
OpenCL and Erlang. I worked on the overall design of the modules
of the cluster, in the stage before we began implementing them. After
this I worked on the ECG module until it was later redesigned. I
designed and imlemented the statistician module; later on I worked on
its alarm functionality. I also worked on the master supervisor. Later
on I researched a few different backends for parallel file-systems and
added/clarified comments in a bunch of other modules. Finally some
minor refactoring of various parts of the code and validation of tasks
done by other project members.

Fredrik Andersson I started out doing some hardware research. We in-
vestigated the Mac Minis and a couple of Nvidia ION based platforms
as potential candidates for the project. When implementation began
I worked alot on the slave node making the initial application and
writing the first basic supervisors for that. During sprint 2 I was in-
terviewed by the first year students on the computer science program.
I also investigated on how to create OTP applications since we were
all new to it. During sprint three I took the role as scrum master. My
main responsability was the logging system Chronicler that we devel-
oped, it is probably the single part of the system I have spent most
time on. The first solution was put togheter quite fast but it proved
not to be supporting the stuff functionality wanted in the web inter-
face so I had to rewrite larger parts of it near the end of the project.
I also worked on the web interface where I did the log viewing page
and the filtering mecanishm found therein. In the end I also held the
final presentation.

26

Axel Andrén Early on while we were still researching and unsure of what
to do, I made the heartbeat module, a module for keeping track of
which nodes in the cluster are alive. But we discarded it when found
that there was a feature like that built into Erlang already. I focused
on the dispatcher instead, but it was given over to other team-members
before the sprint was finished.

The first major thing I worked on was the Statistician module, which
I have been helping maintain throughout the project. It’s seen a lot
of additions and updates as we thought of more things the user might
want to know.

Then there was less coding and more getting PVFS to work, which
was a real pain - partly because of a bug that I found that prevented
us from running it properly. But it was fixed soon enough after it was
discovered, and once we got past the lengthy setup on every computer
it works well.

On the side I have been fiddling with EDoc and other documentation,
trying to keep it up to date as well as not crashing our compilation
process. There was also a number of tests that were causing issues,
and so had to be rewritten - now they are almost all Common Test
tests, rather than EUnit kind of tests, which were not appropriate for
this kind of software.

Henrik Nordh In the beginning of the project, like everyone else, I was
doing research. My area was other clusters and distributed systems.
During this period I looked a lot into the DISCO project by Nokia.
After that the design phase of the project began. During this period
I was involved in the Master node design. We also thought long and
hard about the Erlang-OpenCL communications.

A redesign of the database was done in the third sprint. I was involved
in that redesign and implementation of the new version. Later I have
made various additions to the database module. I also started to work
with the tests, most of the test coding was done with the help of
pairprogramming. After that I added support for background jobs on
the master node and the DB module. During the length of the project
I have been doing validation of various tasks and testing.

I was involved in the poster for the Erlang user conference and I made
preparations for the trip to EUC in Stockholm. I was responsible for,
and held the presentation on the external review.

I was appointed “security officer” for the entire course, this involved
trying to get everyone access to the rooms and building and talking to
the administer of the card system a lot.

I also acted as the group leader for our team, this involved various

27

administrative tasks such as holding a presentation for the first year
students about this course, and also getting interviewed by these same
students about the course and the projects.

Vasilij Savin I was the first Scrum master for our team during the first
two sprints. It was not the best idea, since we struggled a bit get-
ting Scrum running well. In the beginning, I was also working on the
general system architecture and master node design. I tried to under-
stand different components needed for our cluster and how they would
interact. Also during the first sprint I studied principles of distributed
systems design.

During the development phase I worked mostly on implementing the
master node components. My major responsibility were the Dispatcher,
the ECG and later the Listener modules. Eventually, I also converted
the master node into a OTP application. As everyone in the team, I
was also writing tests for the code I was developing. That proved to
be a difficult task, since I really struggled with the EUnit tests, but
once we switched to CommonTest it became a much more pleasant ex-
perience. After the second sprint, I was involved in database redesign
during design phase. During the final sprint, I was mostly fiddling
with the slave node code, refactoring I/O and streamlining the code
base. I have implemented the abstract I/O functionality and facilities
to develop the new storage plugins, as well as developing reference
implementations for NFS and Riak based storage solutions.

I was also involved preparing our marketing materials - the poster,
presentations, and the leaflets. In addition, I delivered the project
presentation during the external review.

Fabian Bergström I have been involved in several places but not really
had a clear main area of work. I did some research of solutions for
distributed computing in the beginning, then I worked mostly with
the general design of the system, and on the design of our map-reduce
implementation.

Later on I implemented additions to the server for handling back-
ground jobs. I also worked on the design and implementation of the
communication between our cluster and the applications, both in the
previous file system based incarnation and later when we moved to
communicating on the standard input and output streams. I wrote
our ruby scripts to glue the cluster together with the OpenCL code.

I was also the Scrum master for our fourth sprint. The sprint was
only two weeks, so it was quite stressful at the end. We had no signif-
icant impediments for me to handle during the sprint, so I was mostly

28

synchronizing our task board with our issue tracker and updating the
burndown.

Niclas Axelsson In the beginning I was involved in many of the initial
discussions of the cluster design. Later on I researched on how to
measure power consumptions on our mac minis and designed a module
that estimated it. I have also worked on the listener and web interface.
In the end I was involved in installing PVFS. I also had the role as
system administrator.

29

	Introduction
	Methodology
	Scrum
	Theory
	Scrum Roles
	Sprint Planning Meeting
	Daily Scrum Meeting
	Sprint Review Meeting
	Retrospective

	How we did it
	Scrum Roles
	Sprint Planning Meeting
	Daily Scrum Meeting
	Sprint Review Meeting
	Retrospective

	Milestones
	Sprint 1
	Sprint 2
	Sprint 3
	Erlang User Conference
	Sprint 4
	Sprint 5
	External Review
	Final Presentation

	Resources
	The Team
	Hardware
	Training
	Course in Erlang
	Course in Scrum

	Tools
	Communication
	Version Control
	Issue Tracking and Continuous Integration
	Development environment
	Code Testing

	Problems
	Not Being Proficient with Erlang
	Nonexisting Backlog
	No Prior Experience with Clusters
	Task Division
	Poor Testing and Continuous Integration Experience
	Ignoring the Work Hours
	Issues in the Working Environment
	Incommunicado
	Scrum Master

	What we learned
	Development Process
	Project Rules

	Conclusion
	Individual Contributions

