
Project CS
Uppsala University

LoPEC
Low Power Erlang-based Cluster

Product Report

Fredrik Andersson
Axel Andrén
Niclas Axelsson
Fabian Bergström
Björn Dahlman

Christofer Ferm
Henrik Nordh

Vasilij Savin
Gustav Simonsson

Henrik Thalin

January 14, 2010

Abstract

This document describes the result produced by ten Computer Science stu-
dents at Uppsala University. The goal was to develop a energy-efficient
cluster entirely in Erlang that could utilize the processing power of GPUs.
We have developed a heterogeneous map-reduce framework that runs arbi-
trary code.

Contents

1 Introduction 4
1.1 Languages and frameworks 4

1.1.1 Erlang . 4
1.1.2 OTP . 4
1.1.3 OpenCL . 5
1.1.4 Nitrogen . 5
1.1.5 Distributed filesystems 5
1.1.6 Riak . 6

2 Architecture 7
2.1 Overview . 7
2.2 Map-reduce . 8
2.3 Master node . 8

2.3.1 The Database . 9
2.3.2 ECG - The cluster heartbeat monitor 10
2.3.3 Listener . 10
2.3.4 Examiner . 10
2.3.5 Dispatcher . 10

2.4 Slave Node . 10
2.4.1 Task Fetcher . 11
2.4.2 Computing Process . 11

2.5 Common Modules . 12
2.5.1 IO Module . 12
2.5.2 Chronicler - The System logger 12
2.5.3 Statistician . 13

2.6 Workflow . 13
2.6.1 The Workflow in the Cluster 13
2.6.2 The Workflow in the Master Node 14
2.6.3 The Workflow in the Slave Nodes 15

3 Example Programs 17
3.1 Example Programs . 17

3.1.1 RayTracer . 17

1

3.1.2 Image Filters . 17
3.1.3 Audio Filters . 18
3.1.4 Wordcount . 18
3.1.5 How To Run . 18

3.2 Languages . 18
3.2.1 C++ . 18
3.2.2 Ruby . 18

4 Results 19
4.1 Cluster Software . 19
4.2 Performance Testing . 20

5 Problems 22
5.1 NVIDIA OpenCL Compiler 22
5.2 PVFS . 22
5.3 Power Monitoring . 22
5.4 OTP Documentation . 23

6 Known Issues 24
6.1 Storage . 24
6.2 Logging . 24
6.3 Modules . 24
6.4 Example Programs . 25

6.4.1 The Raytracer . 25
6.4.2 Audio filters . 25

7 Future Work 26
7.1 Implement Problem-dependent Storage 26
7.2 Chronicler Maintenance . 26
7.3 Internode Communication . 26
7.4 Statistician . 26

7.4.1 Additional Features 26
7.4.2 Code Split Up . 27

7.5 Remove Pulling . 27
7.6 Improving the GUI . 27
7.7 Master Failover . 27

8 Conclusion 28

A Install Guide 29
A.1 Storage . 29
A.2 Dependencies . 29

A.2.1 Other Dependencies 29
A.3 LoPEC . 29

A.3.1 Master Node . 30

2

A.3.2 Slave Node . 30

B User Manual 31
B.1 User Manual Appendix . 31

B.1.1 Starting the Master 31
B.1.2 Web Interface . 31
B.1.3 Access the Cluster Through Command Line 32
B.1.4 Tune the Config File 32
B.1.5 Starting a Slave Node 32
B.1.6 Handling a Job in the Cluster 34
B.1.7 Getting Information About the Cluster 37
B.1.8 Adding a New Program to the Cluster 38
B.1.9 Add Program to the Cluster 41
B.1.10 Important Module APIs 41
B.1.11 Running the Example Programs 42

C Edoc 44

3

Nomenclature

CUDA (Compute Unified Device Architecture), a parallel computig frame-
work for NVIDIA devices, very similar to OpenCL

Embarrassingly parallel problems Problems for which little or no effort
is required to separate the problem into a number of parallel tasks.

FUSE (Filesystem in Userspace), kernel module for Unix-like operating
systems that enables non-privileged users to create file systems

GPU Graphical Processing Unit

GUI Graphical User Interface

NFS Network File System, a centralized network storage

OTP Open Telecom Platform

OpenCL Open Computing Language

PVFS Parallel Virtual File System. Distributed storage, transparent to
the file system

SDK Software Development Kit

4

Chapter 1

Introduction

The goal of the LoPEC project was to create a General Purpose GPU
cluster system using the Erlang programming language. It was planned to
run on Mac Mini computers, due to their cheap price and low power con-
sumption compared to other hardware at the time of the project. Hence
the acronym, Low-Power Erlang-based Cluster. By also utilizing OpenCL
(See sec. 1.1.3), a new standard for heterogeneous computing, we would
be able to perform parallel computing on both CPUs and GPUs of nodes
in our cluster environment. A custom control system was required to di-
vide and distribute a computational job to multiple nodes, monitoring the
computation, and merging the intermediate results of the sub-problems.

1.1 Languages and frameworks

1.1.1 Erlang

Erlang 1 is a programming language developed by Ericsson that recently has
seen a big surge in popularity, mostly because it allows one to develop fault-
tolerant, concurrent and distributed systems easier than other programming
languages. Erlang was used to write the cluster control and distribution sys-
tem. It has been a very convenient language to write this type of application
in, due to its process-driven design and its convenient and mostly transpar-
ent way of distributing work over a network.

1.1.2 OTP

OTP is a framework included in Erlang that extends Erlang with many fea-
tures such as supervision trees and abstraction of standard ways of writing
code by so called behaviours. All code written in the project is OTP com-
pliant. This made the project scale very well, and it helped us immensely,

1http://erlang.org

5

http://erlang.org

together with the built-in tools for working with OTP (e.g. Appmon). It
allowed us to write less boilerplate code, focus on delivering functionality
and simplify deployment.

1.1.3 OpenCL

Most of our test programs for the cluster were written in OpenCL2 which is a
framework for writing code that runs on heterogeneous platforms consisting
of different computing devices, for example CPUs and GPUs. The main
reason to pick OpenCL was its capability to utilize GPUs for computations
since they are more suitable for some computations compared to CPUs.
OpenCL comes with a built-in language based on C99 for writing kernels
that run on the different computing devices. We have tested different SDK s
from NVIDIA, AMD and Apple. In the beginning of the project NVIDIA’s
SDK was not available for Linux and they had no OpenCL drivers for the
graphics cards. Therefore there was no alternative to AMD’s OpenCL SDK.
Since our workstations did not have ATI graphics cards, OpenCL programs
were run only on CPUs, which was enough to get the hang of the language.
About a month after the project had begun, the NVIDIA SDK and drivers
were released for Linux, so we could run OpenCL programs on the graphics
cards as well. We also have had access to two Mac Mini Computers during
the project which ran their own implementation of OpenCL. Minor tweaks
were made to source code to make it work on both NVIDIA and Apple
machines.

1.1.4 Nitrogen

Nitrogen3 is a web framework that was used to create the GUI for our
cluster. It has helped us to make the UI simple but powerful. The user is
able to add jobs, lookup stats, etc. with ease.

1.1.5 Distributed filesystems

Our initial design was based on a shared filesystem that is accessible by
all cluster nodes. We used NFS in the beginning, because it was easy
to setup and use. It worked pretty well on a small scale but became a real
bottleneck when more than just a few nodes worked simultaneously, because
of the I/O limitations of the single hard drive and excess amount of network
communication traffic going in and out from one server. Later we tested our
cluster with PVFS4 which relieved the system of the stress of only using a
central storage.

2http://www.khronos.org/opencl
3http://nitrogen-erlang.tumblr.com
4http://www.pvfs.org

6

http://www.khronos.org/opencl
http://nitrogen-erlang.tumblr.com
http://www.pvfs.org

1.1.6 Riak

Riak5 is a distributed key-value store. It is written completely in Erlang,
so it is easily accessible from Erlang applications. Riak was chosen as the
storage solution alternative to the existing filesystem. The main reason to
pick Riak was the capability to store all data in memory, which allows fast
data access and transparent replication. Each physical node can thus act as
both a computational node and a storage node.

It was very easy to setup and run Riak and the learning curve for the
simple requirements we had in the project were quite shallow.

5http://riak.basho.com

7

http://riak.basho.com

Chapter 2

Architecture

2.1 Overview

Figure 2.1: Architecture Overview

The LoPEC cluster consists of one master nodes, that distribute work
to numerous slave nodes. Work is divided according to the map-reduce
implementation the user has written for his program.

8

2.2 Map-reduce

Map-reduce is a framework developed by Google for processing problems
with large amounts of data. It assumes there is a large number of computers
working together as a cluster to solve the problem.

The advantage of MapReduce is that it allows for distributed processing
of the map and reduction operations. Provided that each mapping operation
is independent, all maps and reduces can be performed in parallel. The
drawback of this is that you can only handle Embarrassingly parallel
problems.

Our implementation of MapReduce

Split step: The input data is chopped up into smaller pieces according to a
split function provided by the user’s program. One map task is created
for each created piece.

Map step: The pieces of the input are taken on by the slave nodes, and
they apply the map function given by the user’s program on the input
data. Each map task can generate several input files for the reduce
step, but several maps can generate input to one file as well.

Reduce step: This step will “merge” the data that was created by the map
step.

Finalize step: A step unique to our cluster; anything that is left to do is
done here, like merging of data, moving an output file, etc.

2.3 Master node

Figure 2.2: Master Node Architecture

The modules in the master node handle calls from users and slave nodes,
with the User API being handled by the Listener module, and the slave node
communication by the Dispatcher module. These two will redirect calls to

9

various backends, like the ECG module, which keeps track of whether nodes
are alive or not, or the database module, which stores metadata concerning
jobs and tasks.

2.3.1 The Database

The database is currently designed with the map-reduce structure in mind,
and runs Mnesia for the transactional backend. It stores metadata for all of
the jobs running on the cluster, as well as the metadata of all the subtasks
of these jobs.

Input and output data is handled by the IO module (see 2.5), so when a
slave node receives a task from the database, it will contain pointers to the
program and the data the node should process, rather than the data itself.

All jobs and tasks are assigned an unique id. This id is actually nothing
more than a time stamp, based on Erlang’s now()-function, but it is sufficient
for our purposes.

Job data is put in one table while all the subtasks are moved between
twelve different tables, depending on their type and current state. These
twelve tables are named type state, where type = [split, map, reduce, final-
ize], and state = [free, assigned, done]. An assigned task of type reduce
would therefore belong in the reduce assigned task table. These all refer to
what part of the map-reduce algorithm the task handles.

Although the jobs have states similar to the tasks, they always stay in the
same table. States a job can have are: free, stopped, paused, and no tasks.
Each job also has a flag attached to it called is bg indicating whether it is
a background job or not. Tasks of non-background jobs are always done
before tasks of any background job.

The database also contains separate tables for the relations between jobs,
tasks, nodes and users, called assigned tasks and task relations. These tables
are mostly used by internal queries to find specific items from the database.

Our API performs all operations needed to maintain a coherent struc-
tural workflow in the cluster. These operations include selecting which tasks
to return to available nodes, scheduling which jobs to run and handling users.
It may be worth noting that the database server currently runs on only one
master node even though Mnesia provides support for distributed databases.
It should not be too difficult to extend it to support multiple master nodes.

When a job is completed the database clears all metadata associated
with the job, to prevent the tables from growing forever and causing issues.

10

2.3.2 ECG - The cluster heartbeat monitor

The ECG 1 module monitors the slave nodes in the cluster for crashes.
Whenever a new node asks the dispatcher for a task, the ECG is notified
and adds that node to its list of nodes to monitor. When a slave node
crashes, the ECG will get a nodedown message and notify the master node
about node going down, so that any tasks the node was working on can be
unassigned and be completed by some other node.

2.3.3 Listener

The listener module acts as an interface to the cluster. It is mostly a wrapper
for some calls to the database and the dispatcher to create and control jobs.

2.3.4 Examiner

The examiner module keeps track of tasks that are created and assigned.
This way, it can track the progress of jobs and answer queries about progress.
This module was created because we thought letting the database handle
queries about progress would be too much of a performance bottleneck. In
hindsight, distributing the state of jobs lead to some complications and race
conditions and the database is now handling the progress queries from the
web interface.

2.3.5 Dispatcher

The dispatcher is a module bridging the database to the rest of the cluster.
It thus acts as a second layer for many different database activities, such
as adding new jobs, creating new tasks when some tasks have finished and
notifying processes when tasks fail. When slave nodes request more work to
be done, their requests are handled by the dispatcher on the master node.

By using the dispatcher as an additional layer there is no need to connect
the slave nodes to all different database nodes in case the database would
be distributed.

2.4 Slave Node

An idle slave node in the cluster will attempt to pull a task from the master
node at regular intervals via the Task fetcher module. When a task is
received, the Computing process module will spawn a new OS process to
run the task.

1as in electrocardiograph

11

Figure 2.3: Slave Node Architecture

2.4.1 Task Fetcher

The Task fetcher module is responsible for acquiring new tasks from the
master node and adding newly produced tasks from the computation. It
does this by polling the Dispatcher module on the master node for work.
When a task is done the Task fetcher collects and calculates all the necessary
statistics about the task and reports it to the Statistician. It does this with
two helper modules, net monitor and power check. New tasks are reported
to the master as the user program reports them to the slave.

2.4.2 Computing Process

When the Task fetcher on the slave nodes has received a task, it starts a
computing process. The Computing Process acts as a wrapper for the user
program. The computing process spawns the application and communicates
with it on the standard input and output streams, fetching input data when
the application requests it and saving output data when it is given. It also
tracks processes that the slave spawns so that they can all be killed if the
slave node is told to stop working on the task. Since it is spawned on the fly
with different arguments every time it is supervised by a dynamic supervisor
to make everything OTP compliant.

12

2.5 Common Modules

Some modules are used by both the master and slaves, like the Statistician
which collects various statistics from the cluster, or the Chronicler, our
logging system.

2.5.1 IO Module

The IO Module works as a frontend for fetching and retrieving data. It is
a key value store that requires a backend to function. There are two pre-
defined backends, one for Riak and one for any Erlang-compliant filesystems.
These filesystems have to be distributed in some manner though, like NFS
for example.

The cluster provides different storage backends that take care of the
results. Data is stored using a two-level key, the first part of the key is
called ”bucket”, and is used to differentiate input for unique tasks. The
second part of the key is called ”key” and together with the bucket, it
defines one unique input data entry to a task. A task can have several input
data entries. The cluster will ensure that the given bucket does not interfere
with buckets in other jobs, or other tasks in the same job.

A backend only needs to implement three callbacks;

init(Args) Should set up everything necessary, Args is backend-specific stuff.

put(Bucket, Key, Value) Should put Value in a place identified by Bucket,
Key.

get(Bucket, Key) Should return the value corresponding to Bucket, Key.

2.5.2 Chronicler - The System logger

The Chronicler system is based on two parts, the slave chronicler is respon-
sible for collecting logs and sending them to the main chronicler and the
main chronicler just receives the logs and saves them. The system will log
to a local file and can as an alternative also log to the screen.

2.5.2.1 Slave Chronicler

The slave chronicler is responsible for collecting and sending the log messages
from the local system to the master chronicler, it will, however, not fail if
the Master Chronicler is not present and will still produce a local log file
to allow for better debugging of a running system. There are five available
logging levels, see section B.1.10.2 for more info.

13

Figure 2.4: Chronicler Architecture

2.5.2.2 Main Chronicler

The Main Chronicler has a local hash table to store and allow lookups of log
messages. This was done so the user interface could look up log messages and
it allows for filtering of message by either a direct API call for some queries
or custom queries to allow for a dynamic system. If the Main Chronicler is
present it will produce a log for the entire system (all messages it receives)
and write this file to disk for further reading. Nothing is saved in the hash
table between restarts or crashes. Currently the hash table is not cleaned
up periodically, although support for this is planned.

2.5.3 Statistician

Information on power usage, network traffic, disk usage etc. in the cluster
is stored by the Statistician module. A statistician process runs on every
node, periodically checking the network traffic, memory usage, and disk
usage. Power consuption is at the moment estimated using the processor
load and numbers from external measurements on the computers done prior.
The statistician also tracks how much time is spent working on each task,
and how many tasks have been restarted.

The statistics are then sent periodically from the slave nodes to the
master node so that it can be queried for the collected statistics. Queries
can be made on e.g. statistics for individual jobs, nodes, and users.

2.6 Workflow

2.6.1 The Workflow in the Cluster

The user adds a job and uploads its input data through the web interface.
The master node creates the initial split task for the job. The slave nodes
request tasks, work on them and submit request to create new tasks as

14

needed. When new tasks are added, they become available for nodes to
work on. Reduce tasks can only be assigned when all map tasks related to
the job are completed, while finalize tasks only get assigned when all reduce
tasks related to the job are done. The web interface shows job progress so
the user knows when a job is done and can collect the results.

Figure 2.5: Workflow Overview

2.6.2 The Workflow in the Master Node

A job is added from the web interface (Step 1). This interface talks with the
listener (Step 2) which acts as an interface to the cluster. When jobs are
added via Listener module, the listener calls the dispatcher (Step 3) which
tells the database (Step 4) to insert a new job and then creates the first split
task.

The dispatcher is the interface between the database and the slave nodes,
it waits for task requests (Step 5) from the slaves and distributes tasks from
the database on request (Step 6). When the slaves complete tasks, they
report back to the dispatcher, which tells the database about the task that
was completed and whether new tasks need to be created. The dispatcher
then tells the database to create any new tasks, if needed. The dispatcher

15

keeps the examiner informed on task creations, assignments, completions
and failures.

Figure 2.6: Master Node workflow

2.6.3 The Workflow in the Slave Nodes

The task fetcher requests tasks from the master node. When a task is re-
ceived, a computing process, wrapping the user application, is started. The
computing process gets input data from the IO module to the application
slave. When the user application completed its work and wants to store re-
sults, the computing process stores them using the IO module and informs
the master node about the completed task and a new task is requested by
the Task fetcher. If the application crashes or sends an error message, the
task is reported as failed to the master.

16

Figure 2.7: Slave Node workflow

17

Chapter 3

Example Programs

3.1 Example Programs

3.1.1 RayTracer

The raytracer is written using C++ and OpenCL. It is fairly basic and can
as of now only render spheres of different (as of now predefined) colors from
a simple, user-defined scene file. This scene file, together with the resolution
of the image, and how large a part of the scene it should do (i.e. how many
rows of the final image it should calculate) forms the input for the program.
This is very useful when the raytracer is run on the cluster as each node
can do a different part of the image. The tracing is done by an OpenCL
kernel. The kernel is run once for each pixel and it can be run for several
pixels in parallel, but at most run calculations for one row of an image in
parallel depending on the image size. The output format is PPM (Portable
Pixmap) and is printed to standard out as ASCII.

3.1.2 Image Filters

We have one C++ application that we have used as the test base for different
image filters. Among the filters we have implemented are sharpness, gaussian
blur, and an emboss filter. We also have an OpenCL version which at the
moment only handles the sharpness filter. The filters all work by applying
a weighted filter matrix on each pixel and those surrounding it. The image
format we use is PPM, the reason for this is it is a simple file format that is
easy to read and write, however it is not optimal, since PPM files tend to be
very large. For the implementation of filter applications we used a tutorial
at GameDev1 as our base.

If one would like to implement any of the other filters in OpenCL, it is
possible to use the sharpness filter application as a reference implementation.
It should be fairly straightforward to modify it to do any of the other filters.

1The GameDev Tutorial is available at http://www.gamedev.net/reference/articles/article1994.asp

18

http://www.gamedev.net/reference/articles/article1994.asp

3.1.3 Audio Filters

Our main audio filter is an echo filter, which adds a single echo to a .wav file.
It’s a very simple implementation in that the algorithm works by copying the
entire audio file, reducing its amplitude (volume) and then overlaying it with
an offset on top of the original file. At the moment it is only implemented
in C++ and does not use OpenCL, the plan was to port it to OpenCL as
well but due to time constraints we decided to leave it be as is.

3.1.4 Wordcount

The simplest of the example applications, the wordcount is implemented in
Ruby and counts the occurrences of all the words in a .txt file given as input
argument. The program outputs its results to a .txt file.

3.1.5 How To Run

For instructions how to run these sample programs, you can refer to the user
manual in Appendix B

3.2 Languages

The section covers the languages that were used to develop the example
programs for the system.

3.2.1 C++

The “Host” programs for our OpenCL code has been written in C++2.
C++ was used as the OpenCL SDK is written to interface with C++. The
purpose of these programs is to allocate memory for the data to compute
and assign where and how the data should be processed.

3.2.2 Ruby

All of our programs has a Ruby3 script which communicates with Erlang.
In a few cases it is the main program itself but mostly it just starts a C++
application. This was just something we chose because it seemed convenient
and fast so there is no kind of requirement that the external application has
to be a Ruby application.

2http://www.cplusplus.com
3http://www.ruby-lang.org/en

19

http://www.cplusplus.com
http://www.ruby-lang.org/en

Chapter 4

Results

4.1 Cluster Software

We have produced a heterogeneous cluster for general computation of em-
barrassingly parallel problems. The computation of a job is distributed, and
performed in parallel over a set of Erlang nodes residing on multiple physical
nodes. These nodes can be Mac Minis, in line with the original aim of the
project in terms of low price and low power consumption, or regular PCs or
other forms of hardware. The cluster is not limited to any specific hardware,
though, it can in theory run on everything Erlang runs on. The distributed
nature of the cluster pertains to nodes being mostly autonomous, requesting
computational tasks when they have resources available.

The cluster works in parallel as tasks are computed simultaneously. How-
ever, as jobs must be divided into tasks prior to calculation, and merged into
a result after, the cluster is also sequential in part, with one or more slave
nodes computing sequential tasks. Nevertheless, most of the nodes are per-
forming the actual calculations in parallel, and can run on any network,
local, external or across the Internet. Running the cluster on a closed, lo-
cal network is recommended, as the cluster doesn’t implement any form of
security or access-control.

The cluster is agnostic to the implementation language of the user pro-
gram, thus limits on hardware are in the strict sense only related to if the
program is compiled for the preferred OS. The program only has to conform
to our protocol. More practical limits on the choice of hardware to run the
cluster on arise if the user chooses to make use of OpenCL, as OpenCL is
limited in the number of devices (i.e. graphic cards) that support it.

Nodes can be added to the cluster as it is executing jobs, and they will
immediately pick up the next free task. When nodes for some reason leave
the cluster, any task they were working on will be marked as free again, and
picked up by some other node later. Programs can be patched as the cluster
is executing them, though we do not recommend doing so.

20

The cluster has support for different types of storage solutions, we have
written backends for as riak and file systems, but more can be added. It
comes with a few example applications, such as a ray tracer and an image
filter – both OpenCL programs – and a word count program written in
ruby. There is also a graphical user interface supporting addition of jobs,
management of users, viewing of statistics and presentation of logs.

4.2 Performance Testing

Due to unfortunate planning, we have not had much time to benchmark our
cluster. We did make time for some performance testing half-way through
the project, however. The system has since had some major changes done
to it, so the results presented here do not indicate the current status of the
cluster.

The tests were carried out by running a ray tracer application we have
written (See 3.1.1), and comparing the time taken to render an image. We
compared the time taken when using one, two, four, and eight nodes. We also
tried rendering images of different sizes for comparison. The images were
square, with a side of 1024, 2048, 4096, and 8192 pixels. We rendered each
image size ten times sequentially for each number of nodes, and compared
the mean time taken from when the split task was started to when the
finalize task was done.

From these numbers we derived the factor of the speedup when adding
nodes to the cluster as the ratio of the time taken on one node to the time
taken on two, four, and eight nodes.

We also measured the speedup factor when rendering eight images con-
currently on the cluster.

As can be seen, the speedup factor is higher in this case. The reason for
this is that putting the different splitted image pieces together after they
have been rendered is a sequential operation, so only one node can do it.
While one node is putting pieces together, the others can start rendering
the next image.

As was mentioned above, these results are for an older incarnation of
our cluster and does not reflect the current situation. Since the performance
tests, we have substituted the storage of the cluster for an abstract storage
system with interchangeable backends. The storage overhaul led to break-
ing compatibility with the raytracer and we have not yet had time to mend
it. We did do some informal performance measurements by running the
pathologically task-creating word count application. These informal mea-
surements suggested that, using the riak backend for the abstract storage,
the cluster worked faster.

21

Table 4.1: Seconds taken to render images
Image side One node Two nodes Four nodes Eight nodes

1024 8.74 7.88 6.3 6.21
2048 23.58 16.43 10.9 9.24
4096 81.59 50.11 28.93 19.89
8192 311.21 183.56 98.16 60.84

Table 4.2: Speedup factor when using more nodes
Image side One node Two nodes Four nodes Eight nodes

1024 1 1.11 1.39 1.41
2048 1 1.43 2.16 2.55
4096 1 1.63 2.82 4.1
8192 1 1.7 3.17 5.11

Table 4.3: Speedup factor when rendering eight concurrent images
Image side One node Eight nodes

4096 1 5.43
8192 1 5.71

22

Chapter 5

Problems

5.1 NVIDIA OpenCL Compiler

OpenCL code is most often compiled during runtime just as it is about to be
executed. This is due to the fact that the code is required to be compiled for
a specific GPU. This, however makes it harder to find warnings and errors.
This is especially the case for NVidias compiler which adds an extra step to
the compilation in that it first translates the OpenCL code to CUDA code.
This is where really tricky problems are introduced, if the CUDA code fails
to compile you will get error messages that are very hard to understand and
almost impossible to find the cause of. These errors might not even exist in
the original OpenCL code, having been introduced in the translation step.

5.2 PVFS

When we were trying to get PVFS up and running on our computers the
FUSE module refused to compile. This turned out to be the PVFS code
missing a semicolon. A minor fault in the code which somewhat delayed our
project.

5.3 Power Monitoring

We wanted to use built-in sensors to monitor power consumption in the Mac
Minis but they were too few and required third-party software to work so
instead we put a power meter on the wall socket to see how much a Mac
Mini spent during idle and high load. We have then used these values to
estimate the power consumption on a task basis.

23

5.4 OTP Documentation

When we had to familiarize ourselves with Erlang and OTP we obviously
had to read the existing documentation. However, as it turned out this
documentation was not entirely exhaustive or fully descriptive. In some
cases you would have to spend several hours trying to find the exact usage
description of some built-in-function.

24

Chapter 6

Known Issues

6.1 Storage

NFS has the problem of using just one harddrive for all I/O, making the
read/write speed of the drive a bottleneck. PVFS and Riak help alleviate
this problem to some degree, but PVFS is difficult to set up, and Riak
gets slowed down by the large amount of temporary files created during our
computations.

6.2 Logging

There is currently no way to find out which levels are active for chronicler,
other than deriving it from from what messages are being printed.

We never remove old messages from the table of messages in the Master
Chronicler and there is no functionality to do so.

6.3 Modules

Our statistician process receives its updates from each node once per second,
which has a side-effect; When a job is finished and its stats are dumped to
file, an update from a node may theoretically be delayed so long it’ll arrive
after the dump. This is unlikely to occur unless the cluster is distributed
over the internet.

The values given for network load may not be accurate as it measures
total traffic, not just the traffic generated by the cluster software.

The statistics for power usage is an interpolation based on values we
measured manually beforehand at both high and low processor load. This
is not an accurate method of measuring power consumption. To do this
accurate hardware sensors is needed.

25

6.4 Example Programs

6.4.1 The Raytracer

The raytracer produces some pixels that are off, due to some failed hit check.
This is more noticeable when producing smaller images.

6.4.2 Audio filters

The echo filter currently introduces some background noise to the output
file. We have not yet determined the cause of this.

26

Chapter 7

Future Work

7.1 Implement Problem-dependent Storage

As it is now, our cluster can not switch storage back-end on-the-fly. We
believe it could be interesting if a user could pick the back-end the cluster
would use for that job, in case one type is more efficient for a specific job.
For example, imagine there are two jobs running in the cluster, one of them
handling large files (like a video encoder program), and the other numerous
small files. Then it could be a good idea to let the video encoder use a disk-
based storage and let the other one use a RAM-based storage since that
would not flood the memory on the nodes.

7.2 Chronicler Maintenance

The hash table that keep tracks of the logs in the Master Chronicler is
never cleaned and will grow indefinitely. It needs to be cleaned up, either
at regular intervals or when it reaches some threshold.

7.3 Internode Communication

The cluster currently only supports embarrassingly parallel problems, as
there is no internode communication. Functionality to handle such problems
should be added to the cluster, though it will require a substantial rewrite.

7.4 Statistician

7.4.1 Additional Features

It might be interesting to measure uptime for a specific node, or the whole
cluster. This could be the total uptime of the computer or the uptime of
the LoPEC applications.

27

7.4.2 Code Split Up

Currently the same statistician is used in both master and slave, but parts
of the code are only used on one of the two. It would make our code more
clean if we separated the module into three different modules, one for the
master code, one for the slave code, and one with the shared code.

7.5 Remove Pulling

We currently use a pull-system, where the slaves ask the master for work
to do with regular intervals. Modifying this behaviour so the master node
remembers the nodes that have requested work would remove the need for
continuous pulling and thus reduce some network traffic.

7.6 Improving the GUI

The web interface currently does not allow control over the entire cluster,
just some basic administration abilities like controlling jobs and managing
users. We could add more controls to the web interface so that the user
does not need to use the Erlang shell or edit configuration files by hand to
get the desired results. OTP has support for such abilities, but we would
probably need to include user information with each task rather than just
each job.

7.7 Master Failover

Mnesia supports distribution across several nodes and is critical for imple-
menting failover on the master node. With this in mind the master node
info could go to a standby computer that can take over the responsibility
from the old master if it failed somehow.

28

Chapter 8

Conclusion

In the initial design stages of the project concepts related to the design
were poorly defined in terms of how things were to function. While we saw
the possiblity of going forth with more advanced design structures, we also
realized more advanced designs would lead to a more difficult development
phase of the product.

We thus set out for a pretty simple solution and have been improving
it ever since our first design discussions of the requirements set by the cus-
tomer. The design ended up being quite simple at the highest level, but with
some dependencies between different modules not expected in early design
phases.

The cluster is currently only able to solve embarrassingly parallel prob-
lems. If implemented, internode communication would allow new types of
programs to be run on the cluster, such as synchronous or loosely syn-
chronous algorithms. While this would definitely have been a great feature,
it would have added greatly to the complexity of the cluster, and it was
regarded early in the design discussions too great a feat to fit inside the
scope of the course.

Another conclusion reached is the interesting aspects of having a failover
for the master node. Currently not implemented, master failover would
prove vital in a running large-scale system employing the current cluster
setup with the addition of several master nodes.

We also lack a comparison between our cluster, taking the specific hard-
ware in terms of the mac minis into account, and other clusters. Compared
to other contemporary clusters, it is reasonable to expect our cluster not to
be exceptionally interesting if we confine ourselves to total computational
power and scalability. However, we hope that when looking at hardware
cost per theoretical giga-flop performance, our cluster should provide an in-
teresting way to go about when choosing hardware for distributed, parallel
computation.

29

Appendix A

Install Guide

A.1 Storage

Storage should be set up before starting the cluster. Currently we provide
support for distributed filesystem (like NFS and PVFS) and riak. There
should be a file “lopec.conf” in the trunk directory, describing among other
things where the cluster “root” should be, and what filesystem to use.
Change as necessary and move the file to “/etc/lopec.conf”, the config file
contains comments that describe the settings. Riak needs to be configured
to use the same cookie as your erlang nodes, as well as having the long name
that contains the IP address for the interface that communicates with the
cluster.

A.2 Dependencies

You will also need Nitrogen for the cluster web GUI. You can get it at
http://nitrogenproject.com/. The master node can not start without
it.

A.2.1 Other Dependencies

The programs have their own dependencies. Our wordcount script for exam-
ple requires Ruby, while OpenCL programs will require OpenCL-compatible
hardware and drivers.

A.3 LoPEC

Setting up the cluster software on the master and slave nodes is described
below.

30

http://nitrogenproject.com/

A.3.1 Master Node

Obtain our tarball and extract it somewhere, e.g. your home folder:

pushd ~
tar xvf lopec.tar.gz

Change directory to “lopec” and make the script for starting the master:

pushd lopec
make master_script

Copy the config file to “/etc/” and edit it to suit your system, it has
comments explaining the different settings.

cp lopec.conf /etc/lopec.conf
popd
popd
vi /etc/lopec.conf

A.3.2 Slave Node

Obtain our tarball and extract it somewhere, e.g. your home folder:

pushd ~
tar xvf lopec.tar.gz

Change directory to “lopec” and make the script for starting the slave:

pushd lopec
make slave_script

Copy the config file to “/etc/” and edit it to suit your system, it has
comments explaining the different settings.

cp lopec.conf /etc/lopec.conf
popd
popd
vi /etc/lopec.conf

31

Appendix B

User Manual

B.1 User Manual Appendix

B.1.1 Starting the Master

The master is started by running the start master boot script, which will
start all the applications in the right order. If you use the riak backend,
the riak node has to be started as well. The IP address of the interface
communicating with the cluster needs to be exported to the environment
variable “MYIP”, and the riak node must be called “riak@$MYIP” for the
master node to find it. Be sure to export the path to riak to the environment
variable “RIAK”.

To start the Riak node, run:

$RIAK/rel/riak/bin/riak start

To start erlang and boot the master, run:

erl -name master@MASTERS_IP_ADRESS -boot releases/master/start_master\
-pa $RIAK/apps/riak/ebin

B.1.2 Web Interface

When the master is started you can visit http://localhost:8000 to access the
web interface.

If mnesia fails because tables already exist, you need to remove the disc
copies of the tables first:

rm -fr Mnesia*

32

B.1.2.1 User Management

There are two different types of users within the web interface; admin and
user.

B.1.3 Access the Cluster Through Command Line

There is no user management when using the command line since it is im-
plemented in the web-layer, so use the command line with caution.

B.1.4 Tune the Config File

The configuration file for LoPEC is located in /etc/lopec.conf. This file
contains some tuples with one identifier and one value.

B.1.5 Starting a Slave Node

The slave is started by running the start slave boot script, which will start
all the applications in the correct order. If you use the riak backend, the
riak node has to be started as well. The IP address of the interface commu-
nicating with the cluster needs to be exported to the environment variable
“MYIP”, and the riak node must be called “riak@$MYIP” for the slave node
to find it. Be sure to export the path to riak as $RIAK.

To start the Riak node and connect it to the Riak cluster, run:

$RIAK/rel/riak/bin/riak start
$RIAK/rel/riak/bin/riak-admin join riak@$MASTER_IP

To start erlang and boot the slave, run:

erl -name slave@SLAVES_IP_ADRESS -boot releases/slave/start_slave\
-pa $RIAK/apps/riak/ebin

33

Important! The name of a node must be unique.
Connect the slave node to the master node:

(slave@$MYIP)1> net_adm:ping(’$MASTER_NAME@$MASTER_IP’).

If the connection was successful the net adm:ping-function should return
pong. If something went wrong a pang message will be returned.

34

B.1.6 Handling a Job in the Cluster

All job related informartion is located under Dashboard → Jobs.

In the picture above one could see that there is currently one job running.
Every job have some controls attached to it (on the left side of the jobid).
the user can use them to stop, pause, resume and cancel a job. There’s also
a button of which the user can press to add a new job.

B.1.6.1 Adding a Job

To reach the add job page the user must go through Dashboard → Jobs and
click on the Add job button.

35

There are three different variables the user has to input before adding a new
job:

• Program type - What kind of program this job should run

• Programfile - The input file to the program

When a job is added the user will be redirected to the jobs-screen.

B.1.6.2 Get Detailed Information About a Job

When looking at the job page, the user can select one of the jobs in the list
to get detailed information about that specific job.

36

On this page the user can see progress, power consumptions and other in-
formation abut the job.

37

B.1.7 Getting Information About the Cluster

If the user have admin privileges there are two more items in the menu, Node
information and Cluster information. In the Node information section one
can find information about how many and which nodes that are connected
to the cluster.

B.1.7.1 Node Information

Figure B.1: Cluster has one node ’slave1’ connected to the cluster

38

B.1.7.2 Cluster Information

Under the Cluster information, the user can find detailed information about
the whole cluster.

Figure B.2: This page shows all gathered data from the whole cluster

B.1.8 Adding a New Program to the Cluster

B.1.8.1 User protocol

The user program implements the different steps in map reduce algorithm.
For each task in the job, the user application is started and the function to
be executed is given in the argument vector. Input data is fed through the
standard input by the cluster when the user program asks for it. Results
from the different steps are written to the standard output and picked up
by the cluster.

39

For the cluster to be able to stop and preempt jobs, OS pids must be
reported for every process that is spawned during the task execution, even
the process that is started first and given the task type.

All messages sent to and from the cluster will be prefixed by four bytes
representing an integer with the most significant byte first (big endian) that
defines the size of the message in bytes.

Input Data Input data for tasks is requested by printing the following
to standard output:

GET_DATA

The cluster will print either:

SOME\n
<key>\n
<binary data>

if there is more data to send, or

NONE\n

if there is no more input data items.

Split
The split command will be invoked as follows:

<computing_program_name> split <pid_path> <number_of_nodes>

While the program is splitting, each new successful split should be reported
to the standard output stream following this format:

NEW_MAP <bucket> <key>\n
<binary_data>

For each unique bucket, a map task will be started and it will be given data
from every split that is in that bucket.

Map
Each map task will be started by starting:

<computing_program_name> map <pid_path>

Each map task produces data for reduce tasks. Data is stored in the cluster
by writing the following to standard output:

NEW_REDUCE <bucket> <key>\n
<binary_data>

40

For each unique bucket, a reduce task will be started and it will be given
data from every split that is in that bucket. So different map tasks can pass
input to the same reduce task.

Reduce
Each reduce task will be started by running:

<computing_program_name> reduce <pid_path>

Each reduce task produces results that can be finalized if the user so de-
sires (see below for finalizing). Data is stored in the cluster by writing the
following to standard output stream:

NEW_RESULT <key>\n
<binary_data>

The reduce results will all be stored in the bucket ”results” and will be
unique to the finalize task.

Finalize
When all reducing is done for a job, the finalize task can be used if the
results need to be collected somehow, it will be started by running:

<computing_program_name> finalize <pid_path>

If no finalizing is desired, the user program just writes the following to
standard output:

NO_FINALIZING_PLZ

If finalizing is desired, just get data as per above. Input data to be worked on
is given on standard input. Each input data entry is prefixed with a header
saying how many bytes to expect before the next header. Final results are
written to standard output according to the following format:

NEW_FINAL_RESULT <key>\n
<binary_data>

When the finalizing is done, the results will be available to the user.

41

User Program Logging
The computing program communicates with the cluster by printing messages
to standard output, see below. In all types of tasks, the program can log
whatever the user wants by printing:

LOG <some message>

and it will be shown to the user and not just internally in the cluster.

Error Handling
If something goes wrong, errors can be reported by writing the following to
standard output stream:

ERROR <reason>

A task that terminates abnormally will be restarted a few times to see if it
works. If too many restarts fail, the job will be cancelled.

PID Reporting
When a job is preempted or stopped, programs working on it must be
stopped. Since nodes start arbitrary processes, that in turn can start arbi-
trary processes, the cluster needs to know what processes to kill.
Pids are reported to the cluster by writing the following to standard output
stream:

NEW_PID <pid>

If writing to the standard output is not an option, Pids can be written to
files in the directory given to the user program as ¡pid path¿. All files in the
directory will be read and each line will be interpreted as a pid to be killed.

B.1.9 Add Program to the Cluster

In the /etc/clusterbusters.conf, there’s an entry cluster root which tells the
cluster where to look for program files.

B.1.10 Important Module APIs

B.1.10.1 Database API

The database API will mostly be used by other modules, thus providing the
user with cleaner access to it. However, some functionality may be vital
knowing about.

To start the database, the command db:start link() or db:start link(test)
can be used. The latter command starts the database in a test environment,
with the schema and tables stored only in memory, and thus all data will be
lost in between sessions. If the former command is used, the tables must be

42

manually created, using the command db:create tables(StorageType). Stor-
ageType denotes where the tables should be created, this is supplied directly
to the Mnesia API, and should thus be disc copies, for example. To stop
the database server, the command db:stop() is used.

B.1.10.2 Chronicler API - Logging Levels

We have five levels of printouts from the logging process.

lopec debug Debugging messages, not to be used in a live enviroment

lopec info what developers might want to see

lopec user info the user may want to see progress and such, but not the
inner workings. Also the level the jobs run in the cluster print to.

lopec error something went very wrong, entire node or cluster may fail

lopec warning something probably went wrong, but not catastrophically.

We thought warning, error and user info could be interesting to the end
user as they take a userid as an argument, allowing us to filter the messages
in the interface depending on which user is logged in.

To change, use chronicler:set logging level(List of desired levels) once the
cluster is running. The list may also just contain the atom ”all” which will
turn on all logging levels, this will produce alot of messages, use with caution.

The default is lopec error, lopec warning, lopec user info and lopec info.
Note of caution setting the logging level to [all, lopec user info]

will only activate user info level

B.1.11 Running the Example Programs

They each contain a README file, which contain how to compile and try
them out.

The example program are not final in any way. They can contian flaws
and/or be poorly documented. They are to be considered as samples to
get you started in writing your own programs using OpenCL and creating
programs for our cluster.

43

B.1.11.1 Current Example Programs

Raytracer in OpenCL
A simple raytracer using OpenCL.

Image Filter
An image filter application that can do sharpness, gaussian blur, grayscale
and emboss.

Image Filter in OpenCL
An image filter using OpenCL can only do sharpness at the moment.

Audio Filter
An application that adds echo to a wave file.

44

Appendix C

Edoc

45

Module chronicler
Description
Function Index
Function Details

logger holds an API for logging messages on the server.

Copyright © (C) 2009, Fredrik Andersson

Behaviours: gen_server.

Authors: Fredrik Andersson (sedrik@consbox.se).

Description

logger holds an API for logging messages on the server. It uses error_logger
for info, warning and error messages. Don't use it for debugging messages, if
needed a debugging function can be added to the API later on. Currently no
nice formatting of the message is done it's simply treated as single whole
message and will be printed that way. See also http://www.erlang.org/doc/man
/error_logger.html

Function Index

Function Details

debug/1

debug(Msg) -> ok

Logs a debug message

debug/2

debug(Format, Args) -> ok

Equivalent to debug(io_lib:format(Format, Args)).

error/2

error(UserId, Msg) -> ok

Logs a error message

error/3

error(UserId, Format, Args) -> ok

Equivalent to error(UserId, io_lib:format(Format, Args)).

info/1

info(Msg) -> ok

Logs a info message

info/2

info(Format, Args) -> ok

Equivalent to info(io_lib:format(Format, Args)).

set_logging_level/1

set_logging_level(NewLevel) -> ok

NewLevel = list()

Changes the logging level of the logger, available levels are info, user_info,
error, warning and debug

set_tty/1

set_tty(X1::on) -> ok

Turns on tty logging

start_link/0

start_link() -> {ok, Pid} | ignore | {error, Error}

Starts the server

user_info/2

user_info(UserId, Msg) -> ok

Logs a user info message

user_info/3

user_info(UserId, Format, Args) -> ok

Equivalent to user_info(UserId, io_lib:format(Format, Args)).

warning/2

warning(UserId, Msg) -> ok

Logs a warning message

warning/3

warning(UserId, Format, Args) -> ok

Equivalent to warning(UserId, io_lib:format(Format, Args)).

Generated by EDoc, Dec 17 2009, 09:55:02.

Module chronicler_sup
Description
Function Index
Function Details

The logger supervisor Supervises the logging supervision tree.

Copyright © (C) 2009, Clusterbusters

Behaviours: supervisor.

Authors: Fredrik Andersson (sedrik@consbox.se).

Description

The logger supervisor Supervises the logging supervision tree

Function Index

start_link/0 Starts the supervisor.

Function Details

start_link/0

start_link() -> {ok, Pid} | ignore | {error, Error}

Starts the supervisor

Generated by EDoc, Dec 17 2009, 09:55:02.

Module computingProcess
Description
Function Index
Function Details

The erlang process that communicates with the external process on the node.

Copyright © (C) 2009, Clusterbusters

Version: 0.0.2

Behaviours: gen_server.

Authors: Bjorn Dahlman (bjorn.dahlman@gmail.com).

Description

The erlang process that communicates with the external process on the node.

Function Index

code_change/3

start_link/5 Starts the server.

stop/0 Stops the server.

stop_job/0 Stops the currently running task on the node.

Function Details

code_change/3

code_change(OldVsn, State, Extra) -> any()

start_link/5

start_link(ProgName, TaskType, JobId, StorageKeys, TaskId) -> {ok, Pid} | ignore | {error, Error}

Starts the server. Path is the path to the external program, Op is the first
argument, Arg1 is the second and Arg2 is the third argument. So the os call
will look like "Path Op Arg1 Arg2". The TaskId is there for the statistician.

stop/0

stop() -> void()

Stops the server.

stop_job/0

stop_job() -> ok

Stops the currently running task on the node.

Generated by EDoc, Dec 17 2009, 09:55:00.

Module configparser
Function Index
Function Details

Function Index

parse/2 Go throu the List and looks if there exist a Key.

read_config/2

Function Details

parse/2

parse(Key, Config::List) -> {ok, Value} | {error, not_found}

Go throu the List and looks if there exist a Key. If so it returns the value of that
key.

read_config/2

read_config(File, Key) -> any()

Generated by EDoc, Dec 17 2009, 09:55:05.

Module db
Description
Function Index
Function Details

.

Behaviours: gen_server.

Authors: Henkan (henkethalin@hotmail.com), Nordh.

Description

db.erl contains the database API for the cluster. The API handles everything
the user needs to work the Job and Task tables.

The database can also be started in test mode by using db:start(test). This will
only create RAM copies of the db tabels for easy testing.

Function Index

Function Details

add_bg_job/1

add_bg_job(X1::{ProgramName::atom(), ProblemType::atom(), Owner::atom(), Priority::integer()}) ->
JobId | {error, Error}

Adds a background job to the database. ProgramName is the name of the
program to be run, ProblemType is how the problem is run (by default
map/reduce for now), Owner is the user who submitted the job and Priority is
the priority of the job.

add_job/1

add_job(X1::{ProgramName::atom(), ProblemType::atom(), Owner::atom(), Priority::integer()}) ->
JobId | {error, Error}

Adds a job to the database. ProgramName is the name of the program to be
run, ProblemType is how the problem is run (by default map/reduce for now),
Owner is the user who submitted the job and Priority is the priority of the job.

add_task/1

add_task(X1::{JobId::integer(), ProgramName::atom(), Type::atom(), {Bucket::binary(),
Key::binary()}}) -> {ok, TaskId::integer()} | {error, Reason} | {ok, task_exists}

Type = split | map | reduce | finalize

Adds a task to the database. The JobId is the id of the job the task belongs to,
ProgramName denotes what kind of program the task runs, Type is the task
type and Path is the path to the input relative to the NFS root.

add_user/3

add_user(Username::atom(), Email::string(), Password::string()) -> {ok, user_added} | {error,
Error}

Adds a user to the database.

cancel_job/1

cancel_job(JobId::integer()) -> TaskList | {error, Error}

Sets the state of the specified job to stopped. then removes the job from the job
tale

code_change/3

code_change(OldVsn, State, Extra) -> any()

create_tables/1

create_tables(StorageType::atom()) -> ok | ignore | {error, Error}

StorageType = ram_copies | disc_copies | disc_only_copies

Creates the tables and the schema used for keeping track of the jobs, tasks and
the assigned tasks. When creating the tables in a stable environment, use
disc_copies as argument. In test environments ram_copies is preferrably
supplied as the argument.

delete_user/1

delete_user(UserName::string()) -> {ok} | {error, Error}

Removes a user.

exist_user/1

exist_user(Username::atom()) -> {ok, yes} | {ok, no}

Checks whether a user exists in the database.

fetch_task/1

fetch_task(NodeId::atom()) -> Task::record()

Finds the task which is the next to be worked on and sets it as assigned to the
specified node.

free_tasks/1

free_tasks(NodeId::atom()) -> List | {error, Error}

List = [{JobId::integer(), TaskType::atom()}]

Marks all assigned tasks of the specified node as free.

get_job/1

get_job(JobId::integer()) -> Job::record() | {error, Error}

Returns the whole job record from the database given a valid id.

get_task/1

get_task(TaskId::integer()) -> Task::record() | {error, Error}

Returns the whole task from the database given a valid id.

get_user/1

get_user(Username::atom()) -> User | {error, Error}

Gets a user from the database.

get_user_from_job/1

get_user_from_job(JobId::integer()) -> User::atom() | {error, Error}

Returns the user of the given JobId.

get_user_jobs/1

get_user_jobs(User::atom()) -> List | {error, Error}

List = [JobId::integer()]

Returns a list of JobIds belonging to the specified user.

job_status/1

job_status(JobId::integer()) -> {ok, active} | {ok, paused} | {ok, stopped} | {error, Error}

Returns the status of a given job.

list/1

list(TableName::atom()) -> List | {error, Error}

Lists all items in the specified table.

list_active_jobs/0

list_active_jobs() -> List

List = [JobId::integer()]

Returns a list of all jobs that currently have their states set as 'free'.

list_keys/1

list_keys(Bucket::binary()) -> Keys::[binary()]

Lists all keys pertaining to Bucket in the db.

list_users/0

list_users() -> {ok, List} | {error, Error}

List = [{Username::string(), Email::string(), Role::atom()}]

Returns a list of all users with some of their info.

mark_done/1

mark_done(TaskId::integer()) -> ok | {error, Error}

Sets the state of the specified task to done.

pause_job/1

pause_job(JobId::integer()) -> ok | {error, Error}

Sets the state of the specified job to paused.

remove_job/1

remove_job(JobId) -> ok | {error, Error}

Removes a job and all its associated tasks.

resume_job/1

resume_job(JobId::integer()) -> ok | {error, Error}

Set the state of the job to free so it can resume execution.

set_email/2

set_email(Username::atom(), NewEmail::atom()) -> {ok, email_set} | {error, Error}

Changes the email address of a specific user.

set_email_notification/2

set_email_notification(Username::atom(), EmailNotify::boolean()) -> {ok, email_notice_set} |
{error, Error}

Changes the email notification field of a specific user.

set_job_path/2

set_job_path(JobId::integer(), NewPath::string()) -> ok | {error, Error}

Sets the path of the specified job.

set_job_state/2

set_job_state(JobId::integer(), NewState::atom()) -> ok | {error, Error}

NewState = free | paused | stopped | done

Sets the state of the specified job.

set_password/3

set_password(Username::atom(), OldPassword::atom(), NewPassword::atom()) -> {ok, password_set} |
{error, Error}

Changes the password of a specific user.

set_role/2

set_role(Username::atom(), NewRole::atom()) -> {ok, role_set} | {error, Error}

Changes the role (and thus the rights) of a specific user.

start_link/1

start_link(X1::test:atom()) -> ok | {error, Error}

Starts the database gen_server in a test environment, with all tables as ram
copies only.

stop/0

stop() -> ok | {error, Error}

Stops the database gen_server.

stop_job/1

stop_job(JobId::integer()) -> TaskList | {error, Error}

Sets the state of the specified job to stopped.

task_info_from_job/2

task_info_from_job(Type::atom(), JobId::integer()) -> {ok, Info} | {error, Error}

Returns a tuple containing information of all tasks of a specific type belonging
to the given JobId.

validate_user/2

validate_user(Username::atom(), Password::string()) -> {ok, user_validated} | {error, Error}

Validates a user's name and password to the database.

Generated by EDoc, Dec 17 2009, 09:54:59.

Module diskMemHandler
Description
Function Index
Function Details

Custom event handler, adds itself to SASL event manager 'alarm_handler' and
sends any alarm event receieved to global statistician, as a cast in log_alarm.

Authors: Henkan (henkethalin@hotmail.com), Gustav Simonsson (gusi7871@student.uu.se).

Description

Custom event handler, adds itself to SASL event manager 'alarm_handler' and
sends any alarm event receieved to global statistician, as a cast in log_alarm.

Function Index

handle_call/2

handle_event/2

handle_info/2

init/1

start/0

stop/0

terminate/2

Function Details

handle_call/2

handle_call(Query, Alarms) -> any()

handle_event/2

handle_event(X1, Alarms) -> any()

handle_info/2

handle_info(X1, Alarms) -> any()

init/1

init(X1) -> any()

start/0

start() -> any()

stop/0

stop() -> any()

terminate/2

terminate(Reason, Alarms) -> any()

Generated by EDoc, Dec 17 2009, 09:55:05.

Module dispatcher
Description
Function Index
Function Details

Interfaces with the database.

Copyright © (C) 2009, Axel Andren

Behaviours: gen_server.

Authors: Axel Andren (axelandren@gmail.com), Vasilij Savin (vasilij.savin@gmail.com).

Description

Interfaces with the database. Can take requests for tasks, marking a task as
done, adding tasks or jobs, and free tasks assigned to nodes (by un-assigning
them).

Function Index

Function Details

add_job/2

add_job(JobSpec, X2::IsBGJob) -> JobID

Adds specified job to the database job list, add it to the bg job list instead iff
IsBGJob.

 JobSpec is a tuple:
 {
 ProgramName,
 ProblemType (map reduce only accepted now)
 Owner
 Priority - not implemented at the moment
 }

add_task/1

add_task(TaskSpec) -> TaskID

Adds specified task to the database task list.

 TaskSpec is a tuple:
 {
 JobId,
 ProgramName,
 Type - atoms 'map', 'reduce', 'finalize' or 'split' are
 accepted at the moment (without quote marks '')
 Path - input file name
 }

cancel_job/1

cancel_job(JobId) -> ok

Cancels a job. Its the same as for stop_job/1 but the job will also be removed
from the database.

fetch_task/2

fetch_task(NodeId::NodeID, PID) -> ok

Sends a message to the caller with the first available task. If no task is
available a {task_response, no_task} message is returned

free_tasks/1

free_tasks(NodeId::NodeID) -> ok

Frees all tasks assigned to Node in master task list

get_split_amount/0

get_split_amount() -> Amount::integer()

Returns the amount of splits to be done.

get_user_from_job/1

get_user_from_job(JobId) -> User

Returns the user associated with the job

handle_call/3

handle_call(Msg::{task_done, TaskId, no_task}, From, State) -> {reply, ok, State}

Marks a specified task as done in the database.

handle_cast/2

handle_cast(Msg::{task_request, NodeId, From}, State) -> {noreply, State}

Expects task requests from nodes, and passes such requests to the find_task
function.

report_task_done/1

report_task_done(TaskId::TaskID) -> ok

Marks the task as being completely done. The results should be posted on
storage before calling this method.

report_task_done/2

report_task_done(TaskId::TaskID, TaskSpec) -> ok

Like report_task_done/1 except the node can ask to generate another task by
providing a TaskSpec

start_link/0

start_link() -> {ok, Pid} | ignore | {error, Error}

Starts the server.

stop_job/1

stop_job(JobId) -> ok

Stops a job. A stopping job is halted before completion and stays in that state
until its resumed

task_failed/2

task_failed(JobId, TaskType) -> ok | {ok, stopped}

Increases the task restart counter for the job and makes the task free. If the
threshold for the max task restarts is reached for the job the job will be
stopped.

Generated by EDoc, Dec 17 2009, 09:55:05.

Module dynamicSupervisor
Description
Function Index
Function Details

A supervisor for dynamic processes spawning, called with externally defined
child specifications.

Copyright © (C) 2009, Bjorn Dahlman

Behaviours: supervisor.

Authors: Bjorn Dahlman (bjorn.dahlman@gmail.com).

Description

A supervisor for dynamic processes spawning, called with externally defined
child specifications. Currently only called by taskFetcher to spawn
computingProcess.

Function Index

start_link/0 Starts the supervisor.

Function Details

start_link/0

start_link() -> {ok, Pid} | ignore | {error, Error}

Starts the supervisor

Generated by EDoc, Dec 17 2009, 09:55:00.

Module ecg
Description
Function Index
Function Details

This module handles start of electrocardiogram application.

Copyright © (C) 2009, Vasilij Savin

Behaviours: application.

Authors: Vasilij Savin (vasilij.savin@gmail.com).

Description

This module handles start of electrocardiogram application. Currently it is not
using any parameters.

Function Index

start/2

stop/1

Function Details

start/2

start(Type, StartArgs) -> any()

stop/1

stop(State) -> any()

Generated by EDoc, Dec 17 2009, 09:55:03.

Module ecg_server
Description
Function Index
Function Details

ElectroCardioGram - process that keeps track of all alive computational nodes.

Behaviours: gen_server.

Authors: Gustav Simonsson (gusi7871@student.uu.se), Vasilij Savin
(vasilij.savin@gmail.com).

Description

ElectroCardioGram - process that keeps track of all alive computational nodes

Function Index

accept_message/1 Main interface with ECG.

handle_call/3

handle_cast/2

handle_info/2

init/1 Boots up ECG - cluster heartbeat listener.

start_link/0 gen_server callback function.

Function Details

accept_message/1

accept_message(Msg) -> any()

Main interface with ECG. ECG waits for 3 types of messages: {nodeup} and
{nodedown} are generated by net_kernel. {new_node} notifies that potential
new node arrived. ECG then checks if this process is already known and
establish connection in case there is no prior connection. Everything else is
passed to logger and ignored.

handle_call/3

handle_call(Request, From, State) -> any()

handle_cast/2

handle_cast(Msg, State) -> any()

handle_info/2

handle_info(Info, State) -> any()

init/1

init(X1) -> any()

Boots up ECG - cluster heartbeat listener.

start_link/0

start_link() -> any()

gen_server callback function. Starting ECG server and initialise it to listen to
network messages

Generated by EDoc, Dec 17 2009, 09:55:03.

Module ecg_sup
Description
Function Index
Function Details

ECG supervisor - watches a single worker, ECG server.

Copyright © (C) 2009, Vasilij Savin

Behaviours: supervisor.

Authors: Vasilij Savin (vasilij.savin@gmail.com).

Description

ECG supervisor - watches a single worker, ECG server.

Function Index

init/1

start_link/0

Function Details

init/1

init(X1) -> any()

start_link/0

start_link() -> any()

Generated by EDoc, Dec 17 2009, 09:55:03.

Module examiner
Function Index
Function Details

Behaviours: gen_server.

Function Index

get_progress/1 Returns the current information about all tasks created
by given JobId.

get_promising_job/0 Returns the jobid of the job that is closest to be
completed.

insert/1 Insert a new job to be tracked by examiner.

remove/1 Removes the job with JobId from the examiner.

report_assigned/2 Report that a task of type TaskType in the job with the id
JobId was assigned.

report_created/2 Report that a task of type TaskType in the job with the id
JobId was created.

report_done/2 Report that a task of type TaskType in the job with the id
JobId was done.

report_free/1 Report that all tasks ({JobId, TaskType}) in Tasks were
freed.

start_link/0 Starts the server.

stop/0 Stops the server and cleans up.

Function Details

get_progress/1

get_progress(JobId) -> {job_stats, JobId, {FreeSplits, AssignedSplits, DoneSplits}, {FreeMaps,
AssignedMaps, DoneMaps}, {FreeReduces, AssignedReduces, DoneReduces}, {FreeFinalizes,
AssignedFinalizes, DoneFinalizes}}

Returns the current information about all tasks created by given JobId.

get_promising_job/0

get_promising_job() -> {ok, JobId} | {error, Reason}

Returns the jobid of the job that is closest to be completed.

insert/1

insert(JobId) -> ok

Insert a new job to be tracked by examiner. IMPORTANT: if job is not inserted
before usage, it will crash examiner.

remove/1

remove(JobId) -> ok

Removes the job with JobId from the examiner.

report_assigned/2

report_assigned(JobId, TaskType) -> ok

Report that a task of type TaskType in the job with the id JobId was assigned.

report_created/2

report_created(JobId, TaskType) -> ok

Report that a task of type TaskType in the job with the id JobId was created.

report_done/2

report_done(JobId, TaskType) -> ok

Report that a task of type TaskType in the job with the id JobId was done.

report_free/1

report_free(Tasks) -> ok

Report that all tasks ({JobId, TaskType}) in Tasks were freed.

start_link/0

start_link() -> {ok, Pid} | ignore | {error, Error}

Starts the server.

stop/0

stop() -> ok

Stops the server and cleans up.

Generated by EDoc, Dec 17 2009, 09:54:59.

Module fs_io_module
Description
Function Index
Function Details

Deals with the temporary storage in the cluster.

Copyright © (C) 2009, Vasilij Savin

Authors: Vasilij Savin.

Description

Deals with the temporary storage in the cluster. Gets a binary stream of data
to write or returns the binary stream of data.

Function Index

get/3 Gets the value associated with the bucket and the key.

put/4 Puts a value to the storage, either the file system or riak depending on
how the server was started.

Function Details

get/3

get(Bucket, Key, State) -> {ok, binary()} | {error, Reason}

Gets the value associated with the bucket and the key.

put/4

put(Bucket, Key, Value::Val, State) -> ok | {error, Reason}

Puts a value to the storage, either the file system or riak depending on how the
server was started.

Generated by EDoc, Dec 17 2009, 09:55:05.

Module io_module
Description
Function Index
Function Details

Deals with the temporary storage in the cluster.

Copyright © (C) 2009, Bjorn Dahlman, Vasilij Savin

Behaviours: gen_server.

Authors: Bjorn Dahlman (bjorn.dahlman@gmail.com), Vasilij Savin.

Description

Deals with the temporary storage in the cluster. Gets a binary stream of data
to write or returns the binary stream of data.

Function Index

get/2 Gets the value associated with the bucket and the key.

put/3 Puts a value to the storage, either the file system or riak
depending on how the server was started.

start_link/2 Starts the server Currently supported storage types =
fs_io_module | riak_io_module.

stop/0 Stops the server.

Function Details

get/2

get(Bucket, Key) -> binary() | {error, Reason}

Gets the value associated with the bucket and the key.

put/3

put(Bucket, Key, Val) -> ok | {error, Reason}

Puts a value to the storage, either the file system or riak depending on how the

server was started.

start_link/2

start_link(ModuleName::atom(), Args::list()) -> {ok, Pid} | ignore | {error, Error}

Starts the server Currently supported storage types = fs_io_module |
riak_io_module

stop/0

stop() -> ok

Stops the server

Generated by EDoc, Dec 17 2009, 09:55:05.

Module janitor
Description
Function Index
Function Details

Our garbagecollector.

Behaviours: gen_server.

Authors: Burbas (niclas@burbas.se).

Description

Our garbagecollector

Function Index

cleanup_finalize/1 Clean up storage from finalize-files beloning to a specific
job.

cleanup_job/1 Clean up storage after a job have finished.

cleanup_map/1 Clean up storage from map-files beloning to a specific job.

cleanup_reduce/1 Clean up storage from reduce-files beloning to a specific
job.

cleanup_split/1 Clean up storage from split-files belonging to a specific job.

start_link/0 Starts the server.

Function Details

cleanup_finalize/1

cleanup_finalize(JobId) -> ok | {error, Reason}

Clean up storage from finalize-files beloning to a specific job.

cleanup_job/1

cleanup_job(JobId) -> ok | {error, Reason}

Clean up storage after a job have finished

cleanup_map/1

cleanup_map(JobId) -> ok | {error, Reason}

Clean up storage from map-files beloning to a specific job.

cleanup_reduce/1

cleanup_reduce(JobId) -> ok | {error, Reason}

Clean up storage from reduce-files beloning to a specific job.

cleanup_split/1

cleanup_split(JobId) -> ok | {error, Reason}

Clean up storage from split-files belonging to a specific job.

start_link/0

start_link() -> {ok, Pid}

Starts the server

Generated by EDoc, Dec 17 2009, 09:54:59.

Module listener
Description
Function Index
Function Details

Listener - The link between our cluster and the user.

Behaviours: gen_server.

Authors: Burbas (niclas@burbas.se).

Description

Listener - The link between our cluster and the user. Process that listens for
new jobs from user.

Function Index

Function Details

add_bg_job/5

add_bg_job(ProgramType, ProblemType, Owner, Priority, InputData) -> JobID

This is the same as add_job/6 but without the 'Name'-variable.

add_bg_job/6

add_bg_job(ProgramType, ProblemType, Owner, Priority, InputData, Name) -> JobID

When a new job is reported a series of new directories will be created and the
input file will be moved to this new structure. When this is done a new
split-task is created. Name is the atom the user wants to associate with the job
id, or no_name if no association is wanted.

add_job/5

add_job(ProgramType, ProblemType, Owner, Priority, InputData) -> JobID

This is the same as add_job/6 but without the 'Name'-variable.

add_job/6

add_job(ProgramType, ProblemType, Owner, Priority, InputData, Name) -> JobID

When a new job is reported a series of new directories will be created and the
input file will be moved to this new structure. When this is done a new
split-task is created. Name is the atom the user wants to associate with the job
id, or no_name if no association is wanted.

cancel_job/1

cancel_job(JobId) -> ok

cancel a job Does the same as stop/1 but it also removes the job from the
database.

get_job_id/1

get_job_id(JobName) -> {ok, JobId} | {error, Reason}

Returns the JobId of the job with name JobName, or {error, Reason} if there
was no job with JobName.

get_job_name/1

get_job_name(JobId) -> {name, Name} | anonymous

Returns the name the user gave JobId when starting it. If no name was given,
anonymous is returned

pause_job/1

pause_job(JobId) -> ok

Pauses a job.

remove_job_name/1

remove_job_name(JobId) -> ok

Disassociates JobId with any saved name.

resume_job/1

resume_job(JobId) -> ok

Resumes a paused or stopped job.

start_link/0

start_link() -> {ok, Pid}

Starts the server

stop_job/1

stop_job(JobId) -> ok

Stops a job Hard-stops a job. The job will be stopped without finishing current
tasks.

Generated by EDoc, Dec 17 2009, 09:54:59.

Module main_chronicler
Description
Function Index
Function Details

main_chronicler is responsible for keeping a database over the logging
messages passed to the system.

Copyright © (C) 2009, Fredrik Andersson

Behaviours: gen_server.

Authors: Fredrik Andersson (sedrik@consbox.se).

Description

main_chronicler is responsible for keeping a database over the logging
messages passed to the system. It runs on the node logger only and should
only be runned once since it is globaly registered.

Function Index

get_all_logs/0 Returns all the log messages in the database.

get_custom_logs/1 Returns all the log messages that matches the record
Record, It takes a match record that corresponds to the
log_message record.

get_node_logs/1 Returns all the log messages in the database from node
Node.

get_type_logs/1 Returns all the log messages in the database with type
Type.

get_user_logs/1 Returns all the log messages in the database from user
User.

print_it/1

start_link/0 Starts the master chronicler that holds a database over the
log messages in the system.

Function Details

get_all_logs/0

get_all_logs() -> {ok, Match}

Returns all the log messages in the database

get_custom_logs/1

get_custom_logs(Record::Type) -> {ok, Match}

Returns all the log messages that matches the record Record, It takes a match
record that corresponds to the log_message record

get_node_logs/1

get_node_logs(Node::User) -> {ok, Match}

Returns all the log messages in the database from node Node

get_type_logs/1

get_type_logs(Type) -> {ok, Match}

Returns all the log messages in the database with type Type

get_user_logs/1

get_user_logs(User) -> {ok, Match}

Returns all the log messages in the database from user User

print_it/1

print_it(X) -> any()

start_link/0

start_link() -> {ok, Pid} | ignore | {error, Error}

Starts the master chronicler that holds a database over the log messages in the
system.

Generated by EDoc, Dec 17 2009, 09:55:02.

Module master_node
Description
Function Index
Function Details

This module handles start of master node application.

Copyright © (C) 2009, Vasilij Savin

Behaviours: application.

Authors: Vasilij Savin (vasilij.savin@gmail.com).

Description

This module handles start of master node application. Currently it is not using
any parameters.

Function Index

start/2

stop/1 All arguments are ignored by now.

Function Details

start/2

start(Type, StartArgs) -> any()

stop/1

stop(X1) -> any()

All arguments are ignored by now. Stops application and logs shutdown.

Generated by EDoc, Dec 17 2009, 09:54:59.

Module master_sup
Description
Function Index
Function Details

Master supervisor supervises WPM processes.

Behaviours: supervisor.

Authors: Vasilij Savin (vasilij.savin@gmail.com), Gustav Simonsson
(gusi7871@student.uu.se).

Description

Master supervisor supervises WPM processes. Currently there are 3 processes
to monitor: Listener - listen to job submissions from users DbDaemon -
interaction with DB Dispatcher - listens to task requests from nodes

Function Index

init/1

start_link/0

Function Details

init/1

init(X1) -> any()

start_link/0

start_link() -> any()

Generated by EDoc, Dec 17 2009, 09:54:59.

Module netMonitor
Description
Function Index
Function Details

Fetches information about the network statistics on the system.

Copyright © (C) 2009, Bjoern Dahlman

Authors: Bjoern Dahlman.

Description

Fetches information about the network statistics on the system.

Function Index

get_net_stats/0 Asks the system how much data has been sent/received on a
network interface card (hardcoded as en0/eth0).

Function Details

get_net_stats/0

get_net_stats() -> {Up, Down}

Asks the system how much data has been sent/received on a network interface
card (hardcoded as en0/eth0).

Generated by EDoc, Dec 17 2009, 09:55:00.

Module riak_io_module
Description
Function Index
Function Details

Deals with the temporary storage in the cluster.

Copyright © (C) 2009, Vasilij Savin

Authors: Vasilij Savin.

Description

Deals with the temporary storage in the cluster. Gets a binary stream of data
to write or returns the binary stream of data.

Function Index

get/3 Gets the value associated with the bucket and the key.

put/4 Puts a value to the storage, either the file system or riak depending on
how the server was started.

Function Details

get/3

get(Bucket, Key, X3::State) -> binary() | {error, Reason}

Gets the value associated with the bucket and the key.

put/4

put(Bucket, Key, Value::Val, X4::State) -> ok | {error, Reason}

Puts a value to the storage, either the file system or riak depending on how the
server was started.

Generated by EDoc, Dec 17 2009, 09:55:05.

Module statistician
Description
Function Index
Function Details

Collects various statistics about the cluster nodes and jobs put in the cluster.

Copyright © (C) 2009, Axel Andren <axelandren@gmail.com>

Behaviours: gen_server.

Authors: Axel "Align" Andren (axelandren@gmail.com), Bjorn "norno" Dahlman
(bjorn.dahlman@gmail.com), Gustav "azariah" Simonsson (gusi7871@student.uu.se), Vasilij
"Chabbrik" Savin (vasilij.savin@gmail.com).

Description

Collects various statistics about the cluster nodes and jobs put in the cluster.

 Cluster global statistics include:
 * Jobs executed (also those that are done or cancelled)
 * Power consumed (estimation)
 * Time spent executing tasks (sum total for all nodes)
 * Upload network traffic (total unfortunately, not just ours)
 * Download network traffic (ditto)
 * Number of tasks processed
 * Number of task restarts
 * Total amount of diskspace in cluster
 * Total amount of diskspace used in cluster
 * % of diskspace in cluster that is used
 * Total amount of primary memory in cluster
 * Total amount of primary memory used in cluster
 * % of primary memory used in cluster

Function Index

Function Details

get_cluster_disk_usage/1

get_cluster_disk_usage(Flag) -> String | {Total::Integer, Percentage::Integer}

Returns average disk usage over all nodes.

 Flag:
 raw - gives internal representation (Tuples, lists, whatnot)
 string - gives nicely formatted string

get_cluster_mem_usage/1

get_cluster_mem_usage(Flag) -> String | {Total::Integer, Percentage::Integer}

Returns average primary memory usage over all nodes.

 Flag:
 raw - gives internal representation (Tuples, lists, whatnot)
 string - gives nicely formatted string

get_cluster_stats/1

get_cluster_stats(Flag) -> String

Returns stats for the entire cluster.

 Flag:
 raw - gives internal representation (Tuples, lists, whatnot)
 string - gives nicely formatted string

get_job_stats/2

get_job_stats(JobId, X2::Flag) -> String

Returns stats for JobId.

 Flag:
 raw - gives internal representation (a list of the total stats)
 string - gives nicely formatted string with stats for each tasktype

get_node_disk_usage/1

get_node_disk_usage(Flag) -> String | {Total::Integer, Percentage::Integer}

Returns disk usage on a node.

 Flag:
 raw - gives internal representation (Tuples, lists, whatnot)
 string - gives nicely formatted string

get_node_job_stats/3

get_node_job_stats(NodeId, JobId, X3::Flag) -> String

Returns stats the node NodeId has for the job JobId, like how many JobId tasks
NodeId has worked on, or how long.

 Flag:
 raw - gives internal representation (Tuples, lists, whatnot)
 string - gives nicely formatted string

get_node_mem_usage/1

get_node_mem_usage(Flag) -> String | {Total::Integer, Percentage::Integer}

Returns memory usage on a node.

 Flag:
 raw - gives internal representation (Tuples, lists, whatnot)
 string - gives nicely formatted string

get_node_stats/2

get_node_stats(NodeId, X2::Flag) -> String

Returns stats for NodeId.

 Flag:
 raw - gives internal representation (Tuples, lists, whatnot)
 string - gives nicely formatted string

get_user_stats/2

get_user_stats(User, X2::Flag) -> String

Returns stats for the given user.

 Flag:
 raw - gives internal representation (Tuples, lists, whatnot)
 string - gives nicely formatted string

job_finished/1

job_finished(JobId) -> please_wait_a_few_seconds

Jobs, once finished in our cluster, have their stats dumped to file and their
entry cleared out of the ets table. However, we have to wait to make sure that
all slaves have sent their stats updates - we hope that waiting two update
intervals will be sufficient, but if a node is stalled for more than that long,
we're out of luck.

This wait is done using timer:send_after/3, which sends a regular Erlang
message, meaning we have to use handle_info/2 to catch it. After the message
is catched we pass the command onto handle_cast/2 though.

remove_node/1

remove_node(NodeId) -> ok

Remove a node from the global stats. Probably called when a node drops from

the cluster for some reason.

start_link/1

start_link(Type) -> {ok, Pid} | ignore | {error, Error}

Starts the server.

 Type:
 slave - start a slave node statistician. It intermittently flushes
 collected stats to the master.
 master - start a master node statistician. It keeps track of node
 (global) stats as well as job stats.

stop/0

stop() -> ok

Stops the statistician and all related applications and modules.

update/1

update(Data) -> ok

Updates local (node) ets table with statistics, adding the job and its stats to the
table if it doesn't already exist, otherwise updating the existing entry.

 The Data variable should look like this tuple:
 {{NodeId, JobId, TaskType},
 Power, Time, Upload, Download, NumTasks, Restarts, Disk, Mem}
 where Disk and Mem are formatted like calls to
 get_node_disk/mem_stats(raw)

Generated by EDoc, Dec 17 2009, 09:55:05.

Module taskFetcher
Description
Function Index
Function Details

The taskFetcher is responsible for fetching and adding tasks.

Copyright © (C) 2009, Bjorn Dahlman & Fredrik Andersson

Behaviours: gen_server.

Authors: Bjorn Dahlman (bjorn.dahlman@gmail.com), Fredrik Andersson
(sedrik@consbox.se).

Description

The taskFetcher is responsible for fetching and adding tasks.

Function Index

error/1

new_task/5 Queries the dispatcher to create a new task.

start_link/0 Starts the server.

task_done/1

Function Details

error/1

error(Data) -> any()

new_task/5

new_task(JobId, ProgName, Type, Bucket, Key) -> Task | {error, Error}

Queries the dispatcher to create a new task.

start_link/0

start_link() -> {ok, Pid} | ignore | {error, Error}

Starts the server

task_done/1

task_done(Data) -> any()

Generated by EDoc, Dec 17 2009, 09:55:00.

Module utils
Description
Function Index
Function Details

Library containing convenient things for the admin to use.

Copyright © (C) 2009, Bjorn Dahlman

Authors: Bjorn Dahlman (bjorn.dahlman@gmail.com).

Description

Library containing convenient things for the admin to use.

Function Index

get_cluster_path/0 Gets the path to the cluster from the config file
defined in env.hrl.

get_program_executables/1 Checks what executables are available for a
specific program.

get_programs/0 Fetches a list of programs in the cluster.

Function Details

get_cluster_path/0

get_cluster_path() -> Path::string()

Gets the path to the cluster from the config file defined in env.hrl

get_program_executables/1

get_program_executables(Program::term()) -> Executables::list()

Checks what executables are available for a specific program.

get_programs/0

get_programs() -> Programs::list()

Fetches a list of programs in the cluster.

Generated by EDoc, Dec 17 2009, 09:55:05.

	Introduction
	Languages and frameworks
	Erlang
	OTP
	OpenCL
	Nitrogen
	Distributed filesystems
	Riak

	Architecture
	Overview
	Map-reduce
	Master node
	The Database
	ECG - The cluster heartbeat monitor
	Listener
	Examiner
	Dispatcher

	Slave Node
	Task Fetcher
	Computing Process

	Common Modules
	IO Module
	Chronicler - The System logger
	Statistician

	Workflow
	The Workflow in the Cluster
	The Workflow in the Master Node
	The Workflow in the Slave Nodes

	Example Programs
	Example Programs
	RayTracer
	Image Filters
	Audio Filters
	Wordcount
	How To Run

	Languages
	C++
	Ruby

	Results
	Cluster Software
	Performance Testing

	Problems
	NVIDIA OpenCL Compiler
	PVFS
	Power Monitoring
	OTP Documentation

	Known Issues
	Storage
	Logging
	Modules
	Example Programs
	The Raytracer
	Audio filters

	Future Work
	Implement Problem-dependent Storage
	Chronicler Maintenance
	Internode Communication
	Statistician
	Additional Features
	Code Split Up

	Remove Pulling
	Improving the GUI
	Master Failover

	Conclusion
	Install Guide
	Storage
	Dependencies
	Other Dependencies

	LoPEC
	Master Node
	Slave Node

	User Manual
	User Manual Appendix
	Starting the Master
	Web Interface
	Access the Cluster Through Command Line
	Tune the Config File
	Starting a Slave Node
	Handling a Job in the Cluster
	Getting Information About the Cluster
	Adding a New Program to the Cluster
	Add Program to the Cluster
	Important Module APIs
	Running the Example Programs

	Edoc

