
Course report: Trapexit 2.0

Yury Dorofeev, Jacob Ericsson, Hariprasad Hari, Jonas Rosling,
Niclas Stensbäck, Samuel Strand, Wilson Tuladhar, Yeli Zhu

February 28, 2011

1

Contents

1 Introduction 5

2 Methodology 6
2.1 Scrum . 6

2.1.1 Scrum Roles . 6
2.1.2 Sprints . 6

2.2 Scrum, our way . 8
2.3 Team building . 8

2.3.1 Team rules . 8
2.3.2 Kick-offs . 9
2.3.3 Schools . 9
2.3.4 Daily stand-up . 9
2.3.5 Spokesperson . 9
2.3.6 Fika . 9
2.3.7 Games . 9
2.3.8 Movies . 10

3 Timeline 11
3.1 Sprint 1 . 11
3.2 Sprint 2 . 11
3.3 Sprint 3 . 12
3.4 Sprint 4 . 12
3.5 Sprint 5 . 13
3.6 Sprint 6 . 13
3.7 Sprint 7 . 13

4 Resources 14
4.1 Team . 14
4.2 Hardware . 14
4.3 Software . 15

4.3.1 Redmine . 15
4.3.2 Git . 15
4.3.3 Hudson . 15
4.3.4 Rebar . 16
4.3.5 Testing . 16

4.4 Local Amenities . 16

5 Problems and Issues 17
5.1 Bottlenecks . 17
5.2 Scrum Master . 17
5.3 Product Owners . 17
5.4 Lacking documentation . 17
5.5 Workflow . 18

6 Conclusion 19
6.1 What we have learned . 19

2

A Individual Contributions 20
A.1 Hariprasad Hari . 20
A.2 Yury Dorofeev . 20
A.3 Jacob Ericsson . 21
A.4 Jonas Rosling . 21
A.5 Yeli Zhu . 21
A.6 Samuel Strand . 22
A.7 Niclas Stensbäck . 22
A.8 Wilson Tuladhar . 23

3

List of Figures

1 The Scrum process . 6
2 Our Scrumboard . 7
3 Our team . 14

4

Abstract

This document describes the methodology and development process of the project which
resulted in new version of the community web site trapexit.org. Project methodology, team
resources and a timeline is examined as we present one semester of full time work for eight
computer science students.

5

1 Introduction

Like most programming languages, Erlang [1] has many community websites, one of them being
Trapexit.org [2]. It is currently managed by Erlang Solutions [3], and this project deals with
laying the groundwork for an overhaul of that website.

Making a website entirely using Erlang [1] can be quite easy or annoying, depending on how
you approach doing it. Web frameworks such as Erlang Web [4], Nitrogen [5], Zotonic [6] and
others make it easy to host your own webpage based on Erlang [1] if you wish it. What we do,
though, is something quite different.

Our main goal, throughout the project, was to make a system backend that is robust,
modular and (where possible) fast. Our main result is having constructed a website that relies
on a message bus and through many layers of abstraction still manages to handle large amounts
of traffic efficiently.

6

2 Methodology

This section explains the Project Methodology Scrum and how Scrum worked for us.

2.1 Scrum

This project utilizes Scrum [18]. Scrum is a agile method for development, used primarily in
software development that drew on inspiration from the “New Product Development”[7] and is
the work of Jeff Sutherland and Ken Schwaber. They first presented Scrum at the OOPSLA [8]
of 1995. Since then, they have worked on gathering and writing down the best practices into
what is now known as Scrum.

Time in Scrum is divided up into so called sprints (see figure 1) and there are several roles
and rituals required of a team using Scrum. We will detail them below.

Figure 1: The Scrum process

2.1.1 Scrum Roles

• The Team is the one responsible for implementing the wishes of the product owner. The
recommended team size is 5-9. Should teams grow larger than that, it is recommended to
divide them into subteams.

• The Scrum master is an outsider to the team that enforces the law of Scrum onto the
team. He is the one that makes sure all the meetings adhere to their timeboxes, that
the routines of the daily stand-ups follow the format and so forth. Basically, the Scrum
masters role is to protect the team from distractions and make sure they use the correct
methodology.

• The Product owner is the customer purchasing the services of the team. He is the
one dictating the bounds of the project by writing user stories (short explanation of what
should be done during the project, some details toward particular components and system
requirements) and places them into what is known as the backlog.

2.1.2 Sprints

A sprint is a period of time typically ranging between 2-4 weeks. This is the main time unit in
Scrum, nearly everything you do revolves around your current sprint.

7

At the beginning of sprints there is sprint planning. This is arguably the most important
day of the sprint. During the sprint planning day, the team together with the product owner
agree on the amount of work that can be done during the coming sprint, define it properly as
to avoid misunderstandings between the product owner and the team. After the objective is
set up and the team agrees that they can deliver the product owners request at the end of the
sprint, the team starts dividing up the user stories into tasks.

A task in Scrum is a piece of work that should not take one person more than a day to
do. Typically the team grabs a couple of post-it pads and start penning down what seems like
reasonable tasks to everyone. In the next stage the team time estimates all the tasks, doing
their best to assign the expected number of man hours required to complete the task, for each
task. Usually, this is where a lot of disagreement and the following the discussion takes place
when members of the team do not agree on how hard a task is to do.

This is typically indicative that the task is not properly understood by all team members
and needs to be clarified. The product owners also sit in on the time estimation, but only speaks
up if he feels that the team has misunderstood a task, a user story or a something other about
the project as a whole.

Lastly comes prioritization, when the teams decides the relative importance of all the tasks
and sets up the tasks on the Scrum board (A whiteboard or a bulletin board where you keep
the tasks. See figure 2). When this is done, the sprint planning is complete.

Figure 2: Priority is descending from the left to the right and the height denote the state
of completion where above the red(top horisontal) line is pending/unstarted and below the
green(bottom horisontal) line is finished

Then the daily work proceeds during the rest of the days of the sprint and at the end of the

8

allotted time, the product owner will come visit and expects a demonstration of what the team
has achieved during the sprint. This is done on the last day of the sprint.

After that, the team wraps up doing a retrospective of the sprint, which is a meeting where
all the team members get to talk freely about what did and didn’t work well during the sprint
and how to fix that until the next sprint.

2.2 Scrum, our way

We did not change much from the Scrum template in our implementation of it.
Perhaps most notably, while we did time estimation with planning poker (A simple system

of time estimation. It is a deck of cards where instead of normal playing cards the abstract
numbers are used. The numbers are distributed from 0 to infinity. 0 means that the task is
trivial and might be done immediately) initially, we found the entire process to be tedious, time
consuming and ultimately irrelevant to our ability to perform during the sprint. As such, we
replaced it with the following system of “time estimation”.

After task generation, we looked at each of our tasks and asked ourselves a simple question,
“Will this take more than a day to do?”. If the answer was yes, then we broke it up into
subtasks, otherwise we left it alone. This also meant that we did not have a Burndown chart
(graphical representation of work left to do. The outstanding work is on the vertical axis and
time on the horizontal. The chart starts at the left up corner and ideally should end up in the
right down one), on the other hand we could never use one before either. The reason for that
was that the Burndown chart add-on to Redmine(see section 4.3.1) never worked for us and we
found it too time consuming to do it manually.

Sometimes, a discussion broke out whether or not a specific task could be done in a day or
not. In the end, almost all of our decisions were consensus decisions after a brief discussion.
This method achieved the goal of the entire team agreeing which tasks are “big tasks” and
which are not while you also get to split up the big tasks into smaller tasks, all the while saving
a lot of time. If we had had an outside Scrum master, this probably had not been allowed. We
were pretty happy with the arrangement, but maybe we were doing it wrong in the first place.
One of our project owners, Henrik Thalin, who took this course the previous year said that they
were doing sprint planning meetings in four hours tops. We could easily go on for eight hours
and still having to race at the end of the day to be finished before our timebox was up.

Also, since we did not have a Scrum master external to the project, we ended up doing all
the work that the Scrum master should have done (putting tasks into the Redmine(see section
4.3.1) and administrating the Scrum process).

2.3 Team building

One of the important lessons that we learnt through Scrum is working in a collaborative envi-
ronment.

2.3.1 Team rules

We followed some strict rules in our project.

• Work hours is 8.00 to 17.00

• Weekly flex, to be balanced on Friday when you leave.

• Daily stand-up at 9 am

• Late to stand up - bring Fika

• Communication - English ONLY

9

• Ill - Inform the Spokesperson

2.3.2 Kick-offs

At the start of our project, the University arranged a pool night for us. This was our first
informal interaction with our product owners. This event was common to both project teams.
Another kick-off was arranged by our company. We went bowling at Bowlaget. These made us
to get closer and friendlier with our project owners.

2.3.3 Schools

It would be difficult for everyone to make a research on these things and get acquainted with
these tools. So we had decided that a single member of our project would go for a single
tool. That person would make all the necessary research. We then prepared a time-slot in our
dashboard to have that school. During the school the rest of the team-members were familiarized
with that tool. It was also on occasion attended by our teaching-staff. Schools were considered
an efficient way to learn more and we held schools for many tools.

2.3.4 Daily stand-up

According to the Scrum methodology, we devoted at most 15 minutes every working day to
discuss about what we did the previous day and what we are going to do the current day. It is
strongly recommended to do these meetings standing up in order to speed up the discussions
and make them more effective. During the meeting each team member had an individual speech.
The technical details were not discussed during the meeting. If a team member had any kind of
problem or was stuck somewhere and needed help, it was to be emphasized during the meeting.

2.3.5 Spokesperson

At the beginning of the project we chose one team member who was responsible for communi-
cation with project owner and supervisor. When we had problems or questions we redirected
them to our spokesperson. This person had to be responsible, self motivated and representative.
Fortunately our spokesperson had all these properties.

2.3.6 Fika

According to the old Swedish traditions coffee brakes with something sweet and taste improve
the working process and social atmosphere dramatically. Fika has been our major highlight
for our team. Everyone also posted their recipes in a separate wiki that we called “Project
Recipous”. Normally we would have weekly Fika on Thursdays, usually at 15.00. We fixed on
Thursdays because we have our demo day on Fridays, so it would be nice if we all were energetic
on the afternoon before the demo day. Apart from the regular Fikas, we also had late Fikas.
These are given by those who were late for the daily standup. Late Fikas worked out very well
for us, as all our group mates were there during the first four sprints. After that, there were
some issues concerning the winter weather. We would normally have our Fika break for about
maximum of 30 minutes.

2.3.7 Games

It is difficult to just sit and work in front of computers for eight hours throughout the week. It
would really make us insane. Some physical activities are always necessary to keep our minds
refresh and energetic. Whenever we were at high pressure due to coding or due to some major
problems which could not be solved or due to time constraints, we would play table-tennis. It

10

just suited us and all enjoyed at the most. During the lunch hours we also played board games
like “Arkham-horror” which made to think and go made due to its complexity. We also had a
gaming night at one of our friends house and it was fun. The game called “Mafia” was truly
classic and excellent. These games made us to be more enthusiastic in our work.

2.3.8 Movies

Apart from playing games during lunch hours we were also watching movies. It was again a
different experience for us to know about the culture and the media background of different
countries. Since the movies are long, it took us two to three days to finish watching it fully.

11

3 Timeline

In this chapter we will show the general timeline of our project, with details on the acitivities
undertaken on all sprints. Each sprint lasted roughly two weeks.

3.1 Sprint 1

The first sprint was devoted to discussions and researching of relevant components, their pro’s
and con’s. We had close contact with our product owners. They gave us user stories about the
product they wanted to get and advices regarding Scrum methodology 2.1 based on last year’s
experience. Moreover, we managed to use a message bus which would be usable for sending
messages between nodes.

Scrum master: Hariprasad Hari

Sprint Goals:

• Find relevant components.

• Find out how they work.

• Design the architecture.

Demo goals:

• Oral presentation about the tools that we had chosen.

3.2 Sprint 2

During the second sprint we decided which database to choose, discussed our public API de-
sign and extended the message bus functionality. After that the general message structure
was defined and test methodologies were explored. We had a large discussion regarding our
architecture. We came up with an architecture having double abstraction as the key feature.

Scrum master: Jacob Ericsson

Sprint Goals:

• Web Framework - Decide upon API and structure (division of Labor) and start imple-
menting.

• Database - Finalize API & regards with Web Framework(implement).

• Message Queue - Finalize API & regards with Web Framework (implement).

• Authentication Module - Create module and API. Decide on Database for authentication
module.

• Discuss practicalities like coding standards.

Demo goals:

• Show off the good architecture.

• Show off sending and receiving of messages between various components using Message
Bus.

12

3.3 Sprint 3

Third sprint was devoted to show the working build server with 40% test coverage reports,
a working Planet Trapexit page. We finalized files placement structure and defined the web
framework protocol. Much more coding was done on that sprint as we developed each of our
API’s for our modules. Moreover, we had some practicalities such as Rebar(see section 4.3.4)
school.

Scrum master: Samuel Strand

Sprint Goals:

• Get a build server. Machines that run automated tests.

• Finalize Database API. Decide which available API to use to access the Database.

• Make a site Service ”Planet Erlang”.

• Research HTML Templating.

• Look into CMS(Content Management System) & Web Crawler

• Complete Authentication Module.

Demo goals:

• First working version of Planet Trapexit website. Login, register, edit info should work
and put placeholders in place of other functionalities.

• Show a working build server, with test coverage reports

3.4 Sprint 4

It was the main and most productive sprint in our project. We made a poster for the conference
and trained each other by asking questions regarding our system. Planet Trapexit website was
polished. We were well prepared and represented our project successfully. During that historical
day we had exciting conversations with developers, saw legends of Erlang community and had
an unforgettable dinner. After the conference, start-up scripts for our components were written.

Scrum master: Niclas Stensbäck and Wilson Tuladhar

Sprint Goals:

• Prepare for the Erlang User Conference. Make a poster, prepare to answer questions, set
up a laptop to show the demo.

• Finish up the planet, should be 95% finished featuring nice web design, RSS feed aggre-
gator [19] and possibly other services.

• Implement a templating standard.

• Make a Forum/Wiki service and integrate it into the system.

• Work with testing. The goal is 70% test coverage.

Demo goals:

• Show off our work at the conference!

• Show off test coverage reports from Hudson(see section 4.3.3) at the conference.

13

3.5 Sprint 5

Sprint number five was devoted to stress testing and improving the system stability. Stress
testing was done with a tool called Tsung(see section 4.3.5) while stability was reached by
implementing supervisor behavior. According to the product owner requirements, the code
should be properly commented. Thus, one part of that sprint was spent on writing Edoc [20].
Another sprint goal was to evaluate given Content Management System [21] and incorporated
it into our system.

Scrum master: Jonas Rosling and Yeli Zhu

Sprint Goals:

• Integrate a CMS(Content Management System) [21] into the system

• Stress test the system

• Improve system stability

Demo goals:

• Show off CMS(Content Management System)

• Show fancy graphs of stress tests results

• Show before/after results of system stability improvements / refactoring.

3.6 Sprint 6

During this sprint we finished with writing Eunit [14] tests and reached 85% test coverage for
all our modules. It helped us find and investigate some bugs. Then, parts of the source code
was re-factored. Moreover, a project review was held. Two members of each team presented
the teams work. The review was attended by experts from the academic and industrial fields.

Scrum master: Yury Dorofeev

Sprint Goals:

• Prepare course presentation

• Get everything ship-shape. Have a 70% test coverage, do some bug fixing, prepare the
documentation

• Start on the Report.

Demo goals:

• Show off test coverage report.

• Show off module documentation.

• Make readme.txt files for all the scripts.

• Show off report (if started).

3.7 Sprint 7

We spent the last sprint on writing product and course reports. The final presentation was also
held on January 13, 2011.

14

4 Resources

This section details the Resources that helped us in developing our system.

4.1 Team

Figure 3: Our team - From the left: Wilson Tuladhar, Yeli Zhu, Jonas Rosling, Jacob Ericsson,
Niclas Stensbäck, Samuel Strand, Hariprasad Hari, Yury Dorofeev

Our team consisted of eight computer science students. This year the number of native
Swedes students decreased dramatically compared to the previous year. There were four Swedes,
one Nepalese, one Chinese, one Indian and one Russian student. We had different backgrounds,
we were in different age but none of us were involved in such kind of project before. In our
group we used English for both important project meetings and non project communications.

4.2 Hardware

Each member of the team was supplied with a desktop PC of 2.66GHz Intel Q9400 computers
running with 3GB RAM built by HP loaned to us from Uppsala University. We also had four
extra machines for integration & testing with Dual core processors. We used one of those
severs for code integration and version control (GIT 4.3.2) and also for Redmine 4.3.1 access for
documentation, one for the Hudson 4.3.3 for automatic build and test of our system and rest
for the testing purpose. All the machines were running under Ubuntu 10.x with updates to the
OS which have been applied as they have become available.

15

4.3 Software

During the course of our project we have used a lot of different software that were not included
in the product directly. Some of the tools that we used for developing the product are as follows:

4.3.1 Redmine

Redmine [10] is a project administration tool, sporting a wiki, a digital Scrum board, the ability
to view the Git repository [9] and other plug-ins useful for managing projects. We installed
Redmine [10] to one of our server machines and got access to the team as well as the project
owners. Initially we were only using the Wiki in our Redmine [10]. It proved to be very useful
as we were able to update our stuff as soon as we did something. Our research on various
tools, major discussion, system architectures, conclusions on various problems, running and
configuring the system etc were all posted on the Redmine [10] wiki. This also helped us in
writing our reports. Some plug-ins like the forums were not used as we thought it will be
needless to use forums to communicate when all our members are sitting in close proximity.

We also added all of the user stories and the sprints’ tasks into the Redmine [10]. This was
very useful as we could manage the sprint in a simple manner. In this way we can keep track
of the states of the task and accordingly we can focus, keeping the demo in mind. You can also
see which task is done by whom, and to what percentage the task has been completed. You
can also log the spent time, i.e the time taken for the tasks. Another advantage is that we can
view the history of the project.

We made our Redmine [10] server accessible to our product owners so that they could
checkout the team progress without having to come to the university to check up on us.

4.3.2 Git

We used Git [9] for our version control of the system. We used one of our server machines for
Git [9] as mentioned in the Hardware section 4.2. Only the team was given direct access to the
Git repository [9], even though our project owners could view the code via our Redmine [10].

It has been very useful in our project, as each one can clone the repository locally to their
systems. The members can do changes locally which doesn’t affect the global stable repository
unless otherwise he/she uploads the changes to the Git [9] server. The good thing about Git
[9] is that we can create our own branches, work on it and then rebase to the stable branch. By
this we can avoid conflicts to our remote stable branch.

We had quite a few troublesome times when the Git repository [9] would be broken or
someone’s local branches would be corrupted. Though Samuel Strand was generally able to
resolve these issues, it would take time and energy from people since they couldn’t work as they
wanted. It certainly saved us time in the end though.

4.3.3 Hudson

Hudson [11] is a continuous integration tool which we used for our integration testing. Initially
it required some research, but it was easy to get up and running on our systems. After working
well in the local machine, we installed Hudson [11] in one of the server machines. We configured
it so that it takes the source files from our Git repository [9]. It compiles them using our
building tool Rebar(see section 4.3.4). We have configured Hudson [11] to build our repository
every 5 seconds. After every build, we can check for any compiler warnings if it was there or
otherwise it would be a successful build.

We never really used Hudson [11] as much as we would have liked since it had no way of
interacting with the team members. There were sound plug-ins and such but none that we
could find worked. This made the Hudson [11] in essence a waste of time since it could not
make the build status known to the world.

16

4.3.4 Rebar

Rebar [12] is an Erlang [1] build tool which we used for easy compilation, testing of our applica-
tions, generating the documentation through Edoc [13] and handling releases. Rebar [12] uses
standard Erlang/OTP conventions for project structure.

Rebar [12] provided support for most of our development such as:

• Compilation,

• Eunit [14] and providing it’s coverage analysis, and

• Document generation through Edoc [13].

4.3.5 Testing

We decided upon doing unit tests for the whole system and we chose EUnit [14] from the Erlang
[1] libraries for this purpose. EUnit testing [14] produces nice error reports specifying the place
and cause of the errors. But since our system is a concurrent system with a lot of side effects,
we needed to spoof functions and modules beside the one being tested in almost every unit test.
For this we used Meck [15], an Erlang [1] module which is used for spoofing the methods. And
this worked out quite nicely for us. For the next level of testing, we had to test how much load
our system could handle i.e. load testing. For this purpose, we chose another Erlang [1] built
tool called Tsung [16]. Tsung [16] is a tool built to test the scalability and performance of the
client/server applications. It is used for stress testing the servers. To test our website, we sent
some requests for the pages to the server at certain interval of time which were specified in the
Tsung [16] configuration file and when we ran Tsung [16] it ran all the cases in sequence and
gave us the result in nice graphical design and we could see how different components of our
system behaved.

4.4 Local Amenities

Apart from the hardware resources, we had been provided with the following:

• Separate Project room.

• White boards.

• Bulletin boards.

• Stationery items as Duster, Pen, etc

• Recreational items as Coffee, Tea-bag, Sugar, etc

• Acoustic walls

• Printer (shared between both project teams)

It was very useful for us to do our project in a calm environment. Only the members of the
project, the responsible staffs and teaching assistants had access to our project room. We used
our bulletin board to be our Scrum board and the white boards for a variety of other purposes.

17

5 Problems and Issues

5.1 Bottlenecks

During our project at the end of most of the sprints we had a problem with bottlenecking.
The problem was that we found that we only had two or three people actually working on
anything. This was because people were waiting for results from each other when the end sprint
was approaching. We eventually got better at not bottlenecking. One thing we did was to
be stricter when breaking down the user stories into tasks, making them smaller and thereby
making more tasks. Another thing was that we started to prioritize the tasks differently, making
it easier to choose tasks in a way to avoid bottlenecking. We felt that the bottlenecking was
also due to the fact that some goals were very vague. People tended to avoid these tasks since
it felt “scary” to pick them up and start working on them.

5.2 Scrum Master

The problem with the Scrum Master is that we had our own internal Scrum Master. According
to the Scrum methodology which was explained in chapter 2.1 we should have a member who
is outside of our project and not one of our project members. By having an internal Scrum
Master, he/she can be biased and would be unfair in some cases. There are chances that the
Scrum Master itself may not abide by the rules framed by a project. Fortunately this was not
in our case although we had an internal Scrum Master.

5.3 Product Owners

Speaking about Product Owners as a problem would be somewhat awkward or not so good.
But keeping in mind that this report would be for future students we are writing on what we
thought regarding our product owners.

We had a nice relationship with our product owners in the beginning of the project. As
we mentioned in Kick-off chapter 2.3.2, they were good for four sprints. After the Erlang User
Conference, things didn’t work out well. The communication between us was lagging as we
were shocked that they didn’t turn up for the next two sprint demos.

Sprint planning for sprint five did almost not happen due to the product owner being late
by several hours and neither telling us about it nor responding on the cell phone. For the sprint
planning meeting for sprint six we were without product owners entirely. This not only made
our work a lot harder but it was also a pretty bad blow to our working morale.

It’s a not a sign of respect that one of the product owners stopped responding to our emails
and none of the others were covering for him. But the worst part was when none of our product
owners were present for the technical review on December 17. Later we found out that one of
them was ill. Apparently he did not inform the company about this so they were also unable
to know that he needed cover.

5.4 Lacking documentation

Sometimes when you work with open source software, you will run into the problem that
everything is not quite as well documented as you would like. Many developers feel that there is
no need for an extensive documentation and would rather direct users to either mailing lists(the
slow but functional alternative) or the source code itself(the painfully slow alternative). While
you will eventually get your software to work this way, it will take up a lot of your time and
both these options are readily eclipsed by just having a documentation.

For example, CouchDB [17] has an extensive wiki as well as a free online book of over 200
pages that users can partake of should they require information on some specific details in the
workings of the database. Reading a book or a wiki is faster than reading source code, and in

18

a time-boxed project that will not have more than four months of development, time is of the
essence.

On the other hand, Rebar’s (see section 4.3.4) “documentation” is limited to a short Read
Me and an example config file, and figuring out how it worked required time consuming trial
and error. Had there been a more well documented option for rebar, we most likely would’ve
saved time using it.

5.5 Workflow

One of our major issues in the project was the workflow. In the beginning we were all working
on the same branch with different issues resulting in nobody knowing if it was their code that
was broken or if the system did not work. We were sort of late in dealing with the problem and
did not come up with a solution for it until around sprint 5 when we actually started making
separate branches for every issue that needed to be solved and when the issue was solved then
only merging it into the main branch.

19

6 Conclusion

6.1 What we have learned

For all of us Scrum [18] was a new and unfamiliar methodology. During the project we learnt
lots of interesting and useful things such as:

• how an IT project evolve in a small group of developers

• how to organize working environment in proper way - we placed our tables in such a way
not to disturb each other and had easy access to boards

• how to improve efficiency of working process - at the end of each sprint we made sprint
retrospective where we discussed what were done well, what were done bad and what
should be done to improve our weak points

• how to work without manager and every day inspection - group of students were placed
to an isolated room with coffee and sugar instead of teacher and demo days instead of
exams

• why Scrum actually works - at the first sprint we felt quite pessimistic regarding the
project success. The project scale and complexity seemed to be enormous. Then we split
the whole project to short periods and assigned a fixed number of goals for each period.
After that we divided each goal to the number of small tasks and started to solve the
problems. Optimistic moods grew up

• all the stages of development - we saw the development process from the beginning to the
final working version

• testing - we saw in practice the importance and complexity of testing

• research and analysis - plays extremely important role in the development. It is better to
spend long time on research than reinvent the wheel

• how to communicate within multi-national society - to create something awesome, stable
and effective in a group of people from different cultures and with different mentalities,
sounds unrealistic but it works

• cooking traditions and features - Friday’s fika is the best way to get to know national
kitchen

20

A Individual Contributions

A.1 Hariprasad Hari

It was a nice experience for me to start our project with me being the Scrum master for the
first sprint. Although we had a Scrum course from Klarna before the start of our project, it
took some time for me to adapt to the scrum methodological aspects such as the daily standup,
sprint planning etc. It was good for me, as it developed my skill to work in a collaborative
environment together with my project mates.

During the first sprint, as similar for every project team, we also started to do some research
work for our components, tools etc. My major part was mostly in databases (along with Yury),
supervisors and application models. For the research, I read about databases like CouchDb,
Riak and content management system like Drupal, Zotonic. Concerning the databases we
need to figure out the best fit for our architecture. I and Yury designed the database schema
architecture. It explained how the schema for the forums should be. In the future sprints,
we started implementing the API’s for the database(internal database api). I also wrote the
database connector which was latter polished by Jacob and Jonas to be a gen connector with the
db callback module. Initially I also worked along with Samuel, in deciding the web framework
protocol. I did the Redmine school along with Yury.

After that I switched to make the system to be fault-tolerant by implementing supervisors
and making our components to be individual applications. For the supervisor, I proposed the
supervision tree but unfortunately couldn’t implement that model as it was in lower priority
for that sprint. I also worked on the release structure for our project.

In the latter half, my role was a tester. I made research on Hudson which is a testing tool
for continuous integration. I did some initial configuration to get it run and made some test
projects to check out this tool. For stress testing, I did some research on Tsung, I and Jonas
discussed on various test environments but finally fixed with some five testing setups. We then
got some nice fancy graphs for our project. I also did unit testing for the some of the modules
using E-unit and documentation for the our project using Edoc.

A.2 Yury Dorofeev

In the beginning of the project, like everyone else, I was doing research. My area was database
and CMS. In database there were three candidates: CouchDB, Riak and Hibari. CouchDB
had more advantage over its competitors such as proper documentation, easy way of data
storing/retrieving. In CMS there was one candidate only - Zotonic. But it uses PostgresQL
which did not satisfy our precondition (we were allowed to use Erlang based tools only). That
is why we rejected it.
Then I took part in presentation for bachelor students. We gave them basic information about
our course.
After presentation I was doing db API planning. Then I validated forum tool ZincBB. It did not
fit our system. After that I switched to evaluate different test methodologies. During the couple
of days together with Wilson we learned Common test and Unit test. We wrote instructions on
Redmine server for both of them and made a school for other team members.
When the test methodology was done I prepared Redmine school.
In the beginning of October I started working on installation scripts for our system. Then our
team was working on APIs implementation. My part was db API.
After API I went back to Common test. Simple test cases were written and we tried to run
it on Hudson server. There were some technical problems but we managed to fix them and
Common test was successfully run. When Henrik Tallin brought the Crawler and CMS from
Erlang Solution I was involved in Crawler evaluation.
At the beginning of November we prepared to Erlang conference. I was responsible for posters.

21

After the posters were done I wrote start-up scripts for our system’s components. Edoc school
was my another activity in this project.
When the main parts of the system were done we fixed system’s behavior. I was one of those
who were working on implementing supervision tree.
I left the supervision implementation and switched to CMS because it had higher priority that
time. I was working on implementation of dynamic menu for our web site.
My final business in the project was writing Eunit test cases for different system’s components.
It took me one and half week. Test coverage was done by 90

A.3 Jacob Ericsson

I was appointed spokesperson for the group basically from the first real work day. This entails
keeping the contact with Erlang Solutions, Olle Gällmo and any other person we would need
formal contact with.

During the planning phase of the project I worked with checking out forums, wikis, services
and databases for our project. After we picked components I spent quite some time familiarizing
myself with CouchDB.

Later I worked on one the first connectors we built, the db connector. I was also a part of
constructing the database APIs, both the external as well as internal APIs. During the second
sprint I also worked with Wilson to prepare for the demo and make our presentation work.

I defined the coding standard together with Niclas, I extended Ecouch’s functionality to
allow for changing user and password on the fly and not just during startup, I Wrote test cases
for the internal database API, external database API and external Authentication API.

I Revamped and polished the poster that was used at the Erlang User Conference, I refac-
tored all our different connectors into a single gen connector with a callback module for each of
our services. Took nearly a week of work for both me and Jonas.

I also Worked on the slides for the review presentation we had Friday the 17th. Also did
half the public talking on said presentation together with Niclas.

A.4 Jonas Rosling

In the beginning of the project I did some research on authentication for users of the website
and found e auth which was integrated into Erlang web and also what message queue to use
for the product since we were required to have one of those. The only one that really seemed
to fit was RabbitMQ and I also was giving it a test run together with Wilson to get a better
understanding of how it really worked and later how to integrate it into our system. I had a
interviewing session with two groups of first year students. I was also very involved in discussing
how to design the product. During roughly first half of the project I worked mostly on APIs
for the RabbitMQ and the database, developing the connectors for each module that we were
to connect to our system and also the authentication module. After that I helped some at
writing html and Rss and also unit test and bug fixing of the system. Then after a while it got
obvious that we needed to make a generic connector instead of the multiple connectors we had
from the beginning and I have taken part in that migration of the module specific logic from
the connectors and created the gen connector, shortening the total amount of lines of code by
several hundred. When the project headed towards its end I struggled with stress testing the
system with the Tsung tool, and after some hard hours of work it finally was delivering results.
Finally I worked with finalizing the test cases and some final bug-fixing.

A.5 Yeli Zhu

I started the project by doing some research on the web-frameworks, mainly concentrating on
two candidates: Erlang-web and Nitrogen. Later on I did some research on Rebar, Hovercraft,

22

CouchDB, Ecouch, template language and template engine (e.g. Javascript, wparts, erlyDTL,
Django, Dojo Tookit). During the implementation stage, I have spent a lot of time playing with
Erlang Web, trying to construct web pages which can handle user inputs and communicate
with the database. I also spent some time to get the CouchDB installed successfully. Later I
contributed to the development of the authentication, Planet Erlang and RSS services. I was
also involved in the implementation of the dynamic menu in CMS. I also did some work in
designing database schema, writing and testing installation scripts, and Edoc. I had experience
being a Scrum Master. I participated in group discussions and schools. I also attended the
Erlang User Conference in Stockholm. I really enjoyed working in this group. I had a great
time with the group during fika and playing Table Tennis together.

A.6 Samuel Strand

I started with doing research mainly in the web framework and webserver areas. I also vol-
unteered to be the main system administrator which in the beginning of the project entailed
setting up the server used to host the central repository and the Redmine system. I also read up
on Git and held a school about it to the rest of the team; throughout the project it was on me
to make sure that the repository was sane and to help out when people had problems with Git.
As we transitioned into development, I kept working on the web framework system, connecting
Erlang Web to the bus and separating out the webserver. Leading up to the EUC I spent a
lot of time piecing things together and fixing bugs to have a functioning demo. After the EUC
I worked on documenting and testing the web framework and Webserver and tried, together
with Niclas, to integrate the CMS into the system. I restructured the system directory, making
in comply closer to the OTP standard. I also made releases for the different applications. In
the last sprint before Christmas I worked on refactoring parts of the system into sublimeness.
During the final sprint I worked on touching up the system and trying to make sure it was
possible to hand it over to the company as well as working on the reports.

A.7 Niclas Stensbäck

In the beginning of the project me and Samuel worked a lot on deciding what web framework
and web server we would use in our system, as well as leading a lot of discussions about the
different architectural options we could choose between. During sprint one and two I spent
some time getting familiarised with Erlang Web, Nitrogen, Yaws and the other candidates we
had for our components. I also spent a bit of time fixing up Redmine, installing plug-ins and
generally educating people on how they should use it. Throughout the project I contributed
much to the different design decisions we made, concerning the system architecture, message
structures, API designs etc.

I co-wrote the coding standard that we ended up using mainly along with Jacob.
During sprint three I spent quite some time getting the web framework to work as intended,

writing what ended up being the mq api module. We spent some time discussing this as well,
different ways and how the API should work. I also did some work on the gen connector module.
In general I spent quite a lot of time refactoring code and making this nicer and more logical
after they had been hacked together. Also, I wrote the first version of the yaws connector which
made the web server and web framework behave as separate components on the message bus.

I also held an Erlang Web and MVC-school for the group, to get them up to speed on how
they work since we had a rather large discussion about which one we would finally choose. I
also held a rebar school, which is the build tool we used for the project, showing off the different
features and functionalities it has.

During sprint 4 I rewrote the authentication module to be nicer, since its design at the
time was rather haphazard. I made it nicer and rewrote the different modules that used it to

23

reflect the changes. I also implemented an internal API for the authentication module to make
it conform with the double abstraction model we were using.

The Hudson machine we made to automate testing (but which in the end went mostly
unused) was my domain as well, I set it up and made it fetch the latest commits in the repository,
compile and test them. It worked rather well but due to a bug in the Hudson plug-ins to play
sounds we never really got it to alarm people when the build broke as we wanted.

During sprint five, when we had the EUC to plan for, I spent a bit of time working on the
poster that we were going to have there, writing and fixing the text on the poster along with
Yura and Jacob.

I wrote the RSS component, making use of the RSS “library” that Wilson had coded to
hand RSS feeds to the planet.

In order to integrate the CMS into the system, I hacked parts of Erlang Web to make it use
the MQ when routing requests to different controllers, and also (re-)wrote the e auth trapexit
and e db trapexit modules that were used by the CMS applications (these will be very central
to any future Erlang Web applications to be integrated). This entailed changing many things
in the database we used and the API’s we had written as well.

A.8 Wilson Tuladhar

At the beginning of the project, I did some research on the bus architecture as to which compo-
nent to use and how to use them since we were supposed to use a message bus architecture. I
also did quite a bit of reading on the web-frameworks such as Nitrogen and Erlang Web. I also
looked into authentication options such as open id, O auth and E auth which was implemented
inside Erlang Web. Then after the research phase, I was involved in constructing the initial API
for the message bus (RabbitMQ) such that the messages could be sent and received between two
clients via the server, first on one PC and then between two different PCs and finally between
various components such as initially between the database and the web-framework. I was then
involved in making the authentication module for our system and also integrating the database
and the authentication module to make them work as a whole. I was also involved in deciding
the testing methodology as to how to test our system (Eunit testing and Common testing).

Since the planet site required RSS feed, I worked on implementing the RSS reader for our
system.

I also implemented a module which would read through configuration file for the keys sup-
plied and give their respective value associated with them.

After all the components seems to be working well within the system then it was time to
beautify the final output. So I did the web design for the website.

I also had an interview with some of the Bachelor’s students regarding the Project CS course.
At the end of the project, I started working on the CMS (Content Management System) to

make in run individually regardless of our project and with our system as well. I also wrote
some test cases for the authentication module and some documentation of it as well.

And for the final sprint of the project, I was focused on writing the product and the project
report.

24

References

[1] Erlang (2011) [Online]. Available from: http://www.erlang.org/. [Accessed 25/02/2011].

[2] Erlang Community Site. (2011) Trapexit.org. [Online]. Available from: http://www.

trapexit.org/. [Accessed 25/02/2011].

[3] Erlang Solutions Ltd. (2011) [Online]. Available from: http://www.erlang-solutions.

com/. [Accessed 25/02/2011].

[4] Erlang Web (2011) [Online]. Available from: http://www.erlang-web.org/. [Accessed
25/02/2011].

[5] Nitrogen (2011) [Online]. Available from: http://nitrogenproject.com/. [Accessed
25/02/2011].

[6] Zotonic (2011) [Online]. Available from: http://zotonic.com/. [Accessed 25/02/2011].

[7] Takeuchi, H. and I. Nonaka. (1986) New Product Development Game HARVARD BUSI-
NESS REVIEW, (January), pp.1-10.

[8] OOPSLA (1995). Object-Oriented Programming Systems, Languages, and Applications.

[9] Git (2011) [Online]. Available from: http://git-scm.com/. [Accessed 25/02/2011].

[10] Redmind (2011) [Online]. Available from: http://www.redmine.org/. [Accessed
17/02/2011].

[11] Hudson (2011) [Online]. Available from: http://wiki.apache.org/general/Hudson. [Ac-
cessed 25/02/2011].

[12] Rebar (2010) Rebar: Erlang Build Tool. [Online]. Available from: https://bitbucket.

org/basho/rebar/wiki/Home. [Accessed 25/02/2011].

[13] Ericsson AB. (2006-2010) EDoc Reference Manual. [Online]. Available from: http://www.
erlang.org/doc/apps/edoc/index.html. [Accessed 25/02/2011].

[14] Mickand and Richard Carlsson (2004-2007) EUnit - a Lightweight Unit Testing Framework
for Erlang. [Online]. Available from: http://svn.process-one.net/contribs/trunk/

eunit/doc/overview-summary.html. [Accessed 25/02/2011].

[15] Meck (2011). [Online]. Available from: https://github.com/eproxus/meck. [Accessed
25/02/2011].

[16] Tsung (2011) Tsung is an open-source multi-protocol distributed load testing tool. [Online].
Available from: http://tsung.erlang-projects.org/. [Accessed 18/02/2011].

[17] The Apache Software Foundation (2008-2011) The Apache CouchDB Project. [Online].
Available from: http://couchdb.apache.org/. [Accessed 25/02/2011].

[18] Scrum Development Methodology (2011) [Online]. Available from: http://www.

scrumalliance.org/learn_about_scrum. [Accessed 25/02/2011].

[19] RSS (2011) [Online]. Available from: http://en.wikipedia.org/wiki/RSS. [Accessed
25/02/2011].

[20] EDoc (2011) [Online]. Available from: http://www.erlang.org/doc/apps/edoc/index.

html. [Accessed 25/02/2011].

25

http://www.erlang.org/
http://www.trapexit.org/
http://www.trapexit.org/
http://www.erlang-solutions.com/
http://www.erlang-solutions.com/
http://www.erlang-web.org/
http://nitrogenproject.com/
http://zotonic.com/
http://git-scm.com/
http://www.redmine.org/
http://wiki.apache.org/general/Hudson
https://bitbucket.org/basho/rebar/wiki/Home
https://bitbucket.org/basho/rebar/wiki/Home
http://www.erlang.org/doc/apps/edoc/index.html
http://www.erlang.org/doc/apps/edoc/index.html
http://svn.process-one.net/contribs/trunk/eunit/doc/overview-summary.html
http://svn.process-one.net/contribs/trunk/eunit/doc/overview-summary.html
https://github.com/eproxus/meck
http://tsung.erlang-projects.org/
http://couchdb.apache.org/
http://www.scrumalliance.org/learn_about_scrum
http://www.scrumalliance.org/learn_about_scrum
http://en.wikipedia.org/wiki/RSS
http://www.erlang.org/doc/apps/edoc/index.html
http://www.erlang.org/doc/apps/edoc/index.html

[21] Content Management System (2011) [Online]. Available from: http://en.wikipedia.

org/wiki/Web_content_management_system. [Accessed 25/02/2011].

26

http://en.wikipedia.org/wiki/Web_content_management_system
http://en.wikipedia.org/wiki/Web_content_management_system

	Introduction
	Methodology
	Scrum
	Scrum Roles
	Sprints

	Scrum, our way
	Team building
	Team rules
	Kick-offs
	Schools
	Daily stand-up
	Spokesperson
	Fika
	Games
	Movies

	Timeline
	Sprint 1
	Sprint 2
	Sprint 3
	Sprint 4
	Sprint 5
	Sprint 6
	Sprint 7

	Resources
	Team
	Hardware
	Software
	Redmine
	Git
	Hudson
	Rebar
	Testing

	Local Amenities

	Problems and Issues
	Bottlenecks
	Scrum Master
	Product Owners
	Lacking documentation
	Workflow

	Conclusion
	What we have learned

	Individual Contributions
	Hariprasad Hari
	Yury Dorofeev
	Jacob Ericsson
	Jonas Rosling
	Yeli Zhu
	Samuel Strand
	Niclas Stensbäck
	Wilson Tuladhar

