
PROJECT CS - 1DT054
Uppsala University

“Treacherous Talks”

PRODUCT REPORT

Sunday 19th February, 2012

Dilshod Aliev
Jan Daniel Bothma
Stephan Brandauer
Andre Hilsendeger

Rahim Kadkhodamohammadi
Xinze Lin

Tiina Loukusa
Erik Timan

Sukumar Yethadka



Contents

1 Introduction 2

2 System Description 3
2.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Diplomacy server . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Three Interfaces . . . . . . . . . . . . . . . . . . . . . 3
2.1.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.4 Fail-Safety . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.5 WebSocket . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.6 AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Frontends . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Controller . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Riak . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.5 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.6 Concurrency . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Code organization . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Treacherous Talks 24
3.1 The Three Interfaces . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 HTTP . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 XMPP . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.3 SMTP . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Playing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Evaluation and Testing 28
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Integration Tests . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Load Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2



4.4 Failure Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Related Work 36

6 Conclusions and Future Work 37

A Installation Instructions 38
A.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.2 Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A.3.1 Unit and Integration Tests . . . . . . . . . . . . . . . 39
A.3.2 Node Failure Tolerance Tests . . . . . . . . . . . . . . 39

A.4 Installing from a release tarball . . . . . . . . . . . . . . . . . 40
A.5 Setting up and starting the System Manager . . . . . . . . . 40
A.6 Creating a system-wide configuration file . . . . . . . . . . . . 40
A.7 Using the Cluster Manager . . . . . . . . . . . . . . . . . . . 41
A.8 Running on a non-bundled Riak installation . . . . . . . . . . 42

B Maintenance Instructions 44
B.1 Adding a host to a running cluster . . . . . . . . . . . . . . . 44
B.2 Removing a host from a running cluster . . . . . . . . . . . . 44
B.3 System Operator Interface . . . . . . . . . . . . . . . . . . . . 45

B.3.1 Moderators . . . . . . . . . . . . . . . . . . . . . . . . 46

C Text based commands 47
C.1 Playing the game . . . . . . . . . . . . . . . . . . . . . . . . . 47
C.2 Commands for IM and Mail . . . . . . . . . . . . . . . . . . . 49

3



Abstract

Treacherous Talks is an implementation of a board game (“Diplomacy”) as
a web service. Technical and functional requirements of the project were
defined by our customer — Erlang Solutions [1].

The report explains the project and takes a look at the requirements.
The technical details of the solutions chosen, are presented and their choices
motivated. The features that make the project interesting, failure tolerance,
scalability and multiple interfaces are highlighted. To conclude, some of our
relative weaknesses are mentioned.



Chapter 1

Introduction

Diplomacy [2] is a board game, invented in the 1950s where the goal is to try
to conquer Europe just before WW I. You come close to this goal by talking
to the other players — by diplomacy — and making them your allies. And
you achieve it by attacking them when they do not expect it.

The game is and was commonly played over distance — starting with
playing by mail, then email and nowadays over pretty web pages with
full-blown map visualization.

The requirements we were faced with asked for an implementation of
Diplomacy as a web service while providing several interfaces to this service.
Scalability and Failure Tolerance were of high priority.

Even though a board game is a fun thing to implement, we do think that
the most interesting part of our project is the scalability- and fault tolerance-
engineering.

For more details about the project methodology and how we tackled
problems during the project, please refer to our course report.

2



Chapter 2

System Description

2.1 Requirements

We received a number of requirements from our customer Erlang Solutions
that we were to include in the project.

2.1.1 Diplomacy server

The requirements on the backend were initially grouped as follows:

• Authentication — Only registered users should have access.

• Game master — To moderate games.

• Rule engine — The rule engine should evaluate orders and determine
the results.

• Database — For storing game and user data.

• AI — Artificial intelligence based player for testing and playing games
when real players are unavailable.

The authentication, rule engine and database features were directly
implemented. The game master role morphed into two roles — the operator
and the moderator. The AI feature is detailed further below in this section.

2.1.2 Three Interfaces

The requirement stated that we have to provide three interfaces that expose
the same functionality to the user (the operator is forced to use the web in-
terface). Those interfaces are:

1. Web interface — The game should be accessible via a modern web
browser and it should use WebSocket to communicate with the browser.

3



2. XMPP interface — The game should be accessible via a chat client
using text based orders.

3. SMTP interface — The game should be accessible via sending of
emails using text based orders.

2.1.3 Scalability

The system should be scalable. Scalability in this context refers to horizontal
scaling where the system should be able to handle more load by simply
adding more nodes. No further explanations were provided regarding this
feature, but since we saw it as a challenge we invested a lot of work into it.

2.1.4 Fail-Safety

The system should be highly available. We interpreted this by assuming that
we should handle hardware failure of physical machines. As with scalability,
we might have been able to get away with less work but this feature as well
was too interesting to resist focusing on it.

2.1.5 WebSocket

WebSocket [3] is a web technology that enables two-way communication
between a web browser and a web server over a TCP socket.

Its novelty is that it is not implemented by polling which makes it quite
fast for updates pushed from the server to the client. WebSocket can be used
by JavaScript to update only parts of the client page instead of reloading a
page and is a great tool to shift computing to the client side.

The lack of tool support for WebSocket was an issue during the project,
as detailed in Sec. 2.2.2.

2.1.6 AI

Writing a simple AI was a requirement which interested us as well. However,
we were stuck in a tradeoff because time was limited: fail-safety+scalability
vs. AI players. In combination with our customer, we agreed on focusing on
the performance characteristics and leaving the AI players for future work.

2.2 Architecture

2.2.1 Overview

Our Architecture is divided in three main blocks, the frontends, the controller,
and the backends. In Fig. 2.1 a running cluster as it could be configured is
shown. Server 1 shows a full configuration as it includes all three frontends,

4



a backend and Riak. Riak, our database is explained in Sec. 2.2.4. The
operator, however, is free to choose to only run a specific selection of these
and can combine them freely, for example as the Server 2 in Fig. 2.1.

Figure 2.1: A possible cluster.

The responsibilities are not surprising: the frontends receive user input
and transform the input into messages which are sent to the controller. The
controller filters out illegal messages according to the session database and
the user privileges before handing them off to the backends — which will
respond with an answer.

2.2.1.1 Communication between applications

We follow the MVC [4] (Model View Controller) Pattern. The View contains
all the supported User Interfaces (Web, SMTP, XMPP). The Controller is
an application that talks to the Model. In the Model there are backend
services (Game, Messaging and User Management) and the database. Some
of the backend services talk to each other, while others work completely
independent. Each box in Fig. 2.2 is an OTP [5] application, and each
of them can be distributed onto multiple nodes and work simultaneously.
The system is database-driven, that is, the backend services are stateless
(see 2.2.1.4), and any request can be handled by any node where that service
application is running. The communication between the applications is
shown in Fig. 2.2.

5



Figure 2.2: Communication between applications.

Arrows in Fig. 2.2 represent messages, where one application sends a mes-
sage to another one. Instead of direct message-passing between applications,
an application calls a function in the API module of the target application,
which sends a message to a worker process in the target application. The
worker process is chosen from the process group for workers (see Fig. 2.9) in
that service application. In Fig. 2.2 you can see two databases. The one in
the bottom, Riak (see 2.2.4), is the main database. The other one, Session
(see Mnesia 2.2.4.2), is part of the controller and stores sessions.

2.2.1.2 Modularity — and its Relation to Scalability

One thing that is not immediately visible in our architecture (see Fig. 2.1) is
the fact that the individual applications are very independent of each other.
Even though the architecture graphic shows a complete example of a running
cluster, we can choose to run some applications alone.

If we would, for example, find out that our system is slow because the
web frontend is the bottleneck, we could add more servers to the cluster that
run only a web frontend (see Fig. 2.1, “Server n-1”). We can do the same
with each of the frontend types, with backends and with Riak nodes. Our
architecture, therefore, inherently supports scaling out very well.

6



The controller application can be on any physical machine and any node.
At least one instance of the controller application must be running. Extra
instances will set up local copies of the session database, and session processes
are distributed among the instances. We decided to run it on each backend
node, since sessions would be created on the node where the controller worker
process handling the login attempt is running. That distributes work evenly
between backend nodes, except if some local application cannot deal with
the request, and this was found to work as expected during load tests of
various cluster sizes (see Sec. 4.3.1.1).

Since the frontends are independent from each other, we did not expect
issues scaling with additional frontends. We therefore focused on testing the
performance of our backends and Riak nodes, as shown in Sec. 4.3.

2.2.1.3 Process groups

The system uses process groups [6] to provide load balancing by distributing
work across nodes. This is done by each process in the backend joining
the process group for its application. A calling process can then use the
process groups to find a process to call. The selection is done semi-randomly.
Since process groups are visible globally, if there is no local process to call,
a random process on another node is used out of that group. Work is then
distributed across other running nodes, providing redundancy. Since selection
is done randomly, it does not guarantee equal distribution between local or
remote processes, but load testing showed this to work sufficiently (see 4.3).

2.2.1.4 Stateless design

One of the ways to scale a system is to use a shared nothing (SN) archi-
tecture [7] where every node is self-sufficient and the system has no single
bottleneck. This allows for a distributed system that is both scalable and
fault tolerant. The implementation of a SN architecture adds a constraint
that individual nodes can only have state that could be lost or must be
stateless.

With this in mind, our architecture was designed to allow applications
to be distributed across the physical machines in various configurations (see
Fig. 2.1). All the system state is moved to the database and nodes that have
state can be restored from the database, in the event of failure.

We did have to use state in certain parts of the system due to the
distributed nature of the application. Briefly, the parts of the system with
state and the reasoning behind them are:

• Game timer — A game has various events associated with it and
tracking these events with time needs a process with a certain amount
of state.

7



• Game join process — Requests from multiple users joining the same
game needs to be serialized to avoid concurrency issues.

• User session — Multiple requests from the same user needs to be ordered
since without the ordering the requests can arrive at the backend at
different times creating inconsistent data.

2.2.2 Frontends

While the three interfaces provide very different forms of interaction, namely
via instant messaging, email and a web browser, we tried to make them as
homogenous as possible in terms of the data transferred between the client
and the server. This allowed us to make the implementation of front-end
logic very generic. The frontends use the same API to the backend via the
Controller, and responses and messasges pushed to the View do not vary
between frontends (See Sec.2.2.1.1). Each frontend transforms data between
their respective format and that used to interact with the backend.

2.2.2.1 Web

The web frontend is running Yaws [8] as a web server. We initially decided
to use Nitrogen [9] as a web framework, but had to drop Nitrogen because
of the requirement of using WebSocket for interaction with the server. Yaws
is configured as a “/” application module (appmod) so that we can have a
single entry point for handling all the requests. Server side includes (ssi) are
also used to load static content via AJAX [10].

The web frontend relies heavily on JavaScript [11] since it contains a
large amount of the logic handling user interactions, requests and responses
to the server and gameplay support for the user. We use the JavaScript
library jQuery [12] to update the DOM elements and make AJAX requests.

We use the toolkit Bootstrap [13] for the user interface which allows us
to quickly develop web pages. Bootstrap includes basic CSS and HTML
for typography, forms, buttons, tables, grids, navigation, and more. Using
Bootstrap reduced the time needed for web development, allowing us to focus
on the backend.

We had the option of extending Nitrogen to support WebSocket, but
after investigating how much work would be involved, we came to the
conclusion that it would not be feasible given our time constraints. Nitrogen
uses SimpleBridge [14] which provides a standardized interface to all its
supported web servers. We found that adding WebSocket support would
mean adding and changing a lot of code in a lot of places, because of the
way Nitrogen/SimpleBridge is structured. Instead we implemented the web
frontend ourselves with HTML and JavaScript directly served by Yaws.

Throughout the course of the project the WebSocket protocol has been
under development. Only towards the end of the project has a protocol (RFC

8



6455) been released that has been proposed to be the official standard. Since
the protocol might have changed significantly during the project, we decided
to commit to a particular WebSocket draft version, and a web browser and
server version that support it. This gave us a stable base to develop on.

We chose the “hybi-10” draft of the protocol [15] which was supported
by Chromium 14 and a fork of Yaws 1.91 [16]. This draft version was chosen
because it appeared likely to become the basis of the final standard [17] while
the earlier drafts were incompatible.

When RFC 6455 was released, only minor changes were needed to make
the branch of Yaws we were using compatible. We now support any browser
that implements the “hybi-10” and newer drafts, or RFC 6455.

Yaws has since merged a fork with support for RFC 6455 but we have
not updated our code to use this version of Yaws due to time constraints
and instead still use our fork of Yaws 1.91 [18].

2.2.2.2 XMPP

Using ejabberd [19] as XMPP server was an obvious choice since ejabberd
is the standard solution for XMPP servers and ejabberd is implemented in
Erlang which led us to hope that it would play well with our code.

There are three ways to implement integration with ejabberd:

• Client — A bot that uses an Erlang client such as exmpp [20] can be
used to connect to the server. All users send messages to the bot via
the ejabberd server. e.g. bot@example.com. An issue the jabber client
has, is that it doesn’t scale. Using a single bot will mean all the users
will have to be in the bot’s roster (user list). Ejabberd doesn’t handle
the scaling of rosters very well (known to fail for > 40k clients [21]).

• Component — A component is a trusted piece of an XMPP server that
can send and receive arbitrary stanzas. In other words, we can add a
module to ejabberd and define a virtual domain to get all messages
that are sent to this domain. Because the name of a component is a
domain (example: tt.localhost), a component can pretend to be many
users. Any stanza addressed to service@tt.localhost will be delivered
to tt.localhost no matter what the value is of ’service’.

• S2S (server to server) — This is the next step for those who need very
large scale. This was not suitable for us since it requires us to learn a
new protocol and is most possibly not necessary for our needs.

We decided to use component to communicate with users. We added a
module to ejabberd that registers a hook to get all the messages that are
sent to tt.localhost and forwards it to our backend. Ejabberd automatically

9



spawns a new process for a new user who sends messages to this component.
If we need to communicate with a user, we use the corresponding process.

In this way, not only users that have an account on our ejabberd server, but
also users that have account on any XMPP server can send their commands
to the specified address and use our system.

2.2.2.3 SMTP

SMTP, together with POP and IMAP are the three most prevalent protocols
for today’s email servers. SMTP is used for sending emails from clients to
servers while POP or IMAP are used for retrieving email from servers to
clients. For our email server, we found three qualified candidates: Erlmail [22],
gen smtp [23] and erlang-smtp [24]. At first sight, Erlmail seemed to be the
most competitive one since it supports all these three protocols when others
support only one or two of them. However, since our SMTP frontend doesn’t
directly talk to email clients, we figured out that there’s no need for an email
retrieving mechanism for our servers. Therefore, we picked gen smtp server
as our SMTP frontend since all of its modules are only focused on SMTP. In
our system architecture, the SMTP frontend is the bridge between the client
side and the backend (see Fig. 2.3). Once the SMTP frontend receives an
email from the client side, it will extract the email content and pass it to the
backend controller. The controller will interpret and execute the valid orders
carried by the email content, then respond to client side through the SMTP
frontend again.

2.2.3 Controller

The main characteristic distinguishing requests is whether they belong to a
session or not. So the controller has two kinds of workers. Those responsible
for requests with a session and those for requests without.

The simple ones without sessions are completely stateless and can handle
requests from any user. A fixed number of them is spawned on startup and
will handle requests on arrival. Their main responsibilities are registration,
login and the like. Fig. 2.4 illustrates this.

2.2.3.1 Session Management

The session management consists of a group of processes and a Mnesia table.
Each session spawns its own session process and writes an entry into the
Mnesia table, so that one such process exists for each logged in user. The
Mnesia table is necessary to have a mapping between users and sessions. The
processes handle all requests for their session and have the session data (user
data, knowledge of how to push events to the frontend, etc). The reasons for
that are concurrency issues (more on that in 2.2.6).

10



Figure 2.3: SMTP communication between client side and backend.

2.2.3.2 Access Control

Which users can perform which actions on the system is defined by a set of
identities known as roles. The system has four roles:

• User — A registered member of the system who can create and play
games.

• Blacklisted user — A user whose access to the system is blocked and
his/her login credentials disabled. The Operator has the option to
restore such a user’s privileges.

• Moderator — A user with enhanced privileges to moderate games and
help other users.

• Operator — An administrator who has complete control over the
system.

11



Frontend

Controller

Controller API

Controller Worker Session Process

Request with
Session?

YesNo
* User state.
* Blocking.

Backend

Figure 2.4: Controller flow of a request with/without session.

2.2.4 Riak

The choice of Riak [25] as database was a careful one: we evaluated Riak,
couchDB [26] and Mnesia [27] but Riak was our favourite in the end — its
scalability features are very simple to use and its potential for scalability is
what we needed. Due to consistency issues, we had to resort to using Mnesia
for sessions (see 2.2.1.4, 2.2.3.1) and the game joining processes (see 2.2.1.4),
as it provides transactions.

Riak proved to be a good choice for us since its performance parameters
(called “CAP controls” [28]) are very easy to tune and it is quite well
documented how Riak behaves under load [29, 30]. The scalability problems
we had came from using the search module too much (see 4.3.1.5).

Riak is a distributed key/value store that connects an arbitrary number
of nodes to form a cluster. All of these nodes can — but don’t have to —
run on different machines (and do so in our standard setup). As soon as one
node receives a write for one key/value pair, the node will make sure that the

12



data is written on a certain number of nodes. That number can be chosen
from [1 . . . N ] where N is the number of nodes. No node in a Riak cluster is
privileged, they all have exactly the same responsibilities which makes the
architecture simpler. The ease of adding nodes to a running Riak cluster is
one of its main advantages, data are redistributed in order to achieve fair
distribution after one node is added. This can, of course, have performance
implications but they were not measured by us.

Load testing was done in terms of how well the entire system behaves
with different Riak configurations (see 4.3).

2.2.4.1 eLevelDB

Riak’s storage backend was a problem. Riak has the feature to switch the
storage backend — the way, key/value pairs are stored on a node. We
initially used eLevelDB [31] because it supported secondary indices [32, 33,
34], a feature we intended to use. However, eLevelDB showed degrading
performance in our context: the throughput of database operations was
decreasing linearly over time, down to zero. We could not pinpoint the
problem, so we had to switch the storage backend to bitcask [35], Riak’s
standard storage backend. Bitcask does not support secondary indices, and
because of that it was necessary to use riak search more — which led to
scalability issues (see 4.3.1.5).

2.2.4.2 Mnesia

A user can access our system from multiple frontends resulting in concurrency
issues. We dealt with them by making sure that the user can use only one
frontend at a time.

Another issue was that multiple orders sent by the same user can arrive
at the backend in a different sequence, thereby creating inconsistent data.
This was fixed by serializing the user’s commands.

The implementation of the above two solutions is not possible using Riak
since it is an eventually consistent [36] database. Mnesia, which is distributed
and has transactions, is the right fit.

We use Mnesia to keep track of user sessions. Combining this with the
use of one Erlang process per session makes the implementation complete.

2.2.5 Backend

2.2.5.1 Game Managing

Managing games is split up in two main tasks: game timing and order-
processing.

Game timing is implemented as a gen fsm that changes states when a
game phase needs to stop, eg. when the deadline for handing in orders is

13



over.
Before a phase is started, the rules processing is done by a module we

call the “rule engine”: the orders which were sent by the users before the
deadline are read from the database and passed, along with the current game
map, to the rule engine.

2.2.5.2 Messaging

Since communication is very important in the game — some even say, that
the game is mostly about communication — the messaging module is a very
central feature for us. We support two types of messages: in-game and
off-game-messages.

In-game messages never involve the user nickname for tactical reasons: if
someone remembers my nickname, he/she has an easier time to anticipate
my moves since he/she will likely remember my actions in previous games.
Or, worse: he/she might still hold a grudge against me. This is why you
never communicate with players in-game by using their nickname, but by
using their country.

Off-game messages on the other hand are sent to a nickname and the
recipient will see the sender’s nickname. The basic use case for the off-game
messaging is giving users the chance to set up games for their friends and
tell them about it.

2.2.5.3 Search

While search is an integrated part of our game application, it is important
enough to mention here. Providing a search feature for users is important
since it allows a user to find completed games or join an interesting game. To
do this, users need to be able to search for games based on their properties
(like all game parameters). For the implementation of search, we relied on
the Riak extension riak search.

Riak search is a search engine that is tightly coupled with the Riak
datastore. We added a precommit hook so that whenever a new object
is added or an old one updated, the object is indexed (tokenization with
standard Lucene analyzers) and saved.

Riak provides a rich query language consisting of term searches, field
searches, boolean operators and wildcards to fetch matching objects ordered
by relevance.

This feature comes with a price though and should be used with caution.
During load testing we discovered that it should be avoided for often updated
data (See Sec.4.3.1.5). As it has to re-index all fields of an object on every
write it can kill the performance. Therefore we tried minimizing writes on
search indexed data and if possible not to use the Riak search feature at all.

14



2.2.5.4 User Management

The user management module’s purpose is to create, update, read, delete
users in or from the database. The implementation is quite short and should
contain few surprises.

2.2.6 Concurrency

2.2.6.1 Problem

Handling concurrency can be quite tricky. Especially with an eventually
consistent database like Riak. The system is designed so that any node can
handle incoming requests, since it is database driven, and on one node there
are multiple workers, that can perform the same tasks. Thus two requests
involving an update on the same key-value pair can, and will, end up on
different workers or even nodes. This can lead to inconsistency, because they
might have different work load and execute the tasks out of order. Fig. 2.5
illustrates this.

DB worker 2BackendUser

a

b

Riak

a

b

DB worker 1

Figure 2.5: First request written after second one, leading to inconsistency.

Another problem is shown in Fig. 2.6. Two different nodes might end
up writing to the same key without even knowing there was a concurrent
write. Riak’s CAP control specifies how many Riak nodes should respond a
positive write before returning. In case 2/4 have to respond, two different
writes can get the “ok”. Our backends would not even know there was a

15



Riak node 2Backend 1User 1

a

Riak node 1 User 2

bwrite a ok?

ok!ok!ok!

Backend 2Riak node 4Riak node 3

ok?

ok! ok!

write b

ok!ok?

conflict!

Figure 2.6: Sibling creation.

simultaneous write. Riak tries to automatically resolve this with vclocks [37].
If Riak cannot resolve this it will leave both values as so called siblings in
the database. It is then up to the backend to resolve the conflict on the
next read and write back the value which was decided to be the value that
resulted after the conflict resolution.

2.2.6.2 Solution

A common solution for this problem is to serialize requests/writes to the
same key. A sequential execution of tasks will always ensure the correct order
and not create inconsistent data. In Erlang this is best done with processes.
Each process has a message queue and can only handle one message after
another. Thus requests are serialized if they have to go to the same process
and if they are all matched against the same pattern in the receive statement.

In our system there are two kinds of interactions that need to be consid-
ered: single user concurrency and multi user concurrency.

Single user concurrency
Single user concurrency involves all the data that is written by only one user,
like user profile updates and game orders. In order to serialize these there is
one process for each session, and each user is only allowed to be logged in
once at a time. To ensure only one active session the login has to consider
concurrency as well. Fig. 2.7 shows how the login works. Any old session

16



Controller 1User

login

Mnesia Session 0

kill

old session?

Session 1

spawn

update

current session?

Session 1

successful

Figure 2.7: User login.

17



needs be terminated before we can start a new one. Also, we use Mnesia
instead of Riak to store session information, as it supports transactions.

Unfortunately this still leaves one case. For example a user might re-login
while his/her requests to update the profile is being handled and then tries to
update the profile again before the previous update has been written. This
is very unlikely to happen, as the user needs to do the update very quickly.
However it still needs to be handled. We use a session history to resolve

Riak Node 2Riak Node 1BackendSession Proc

a

a

b
b

a,b a,bread

a,b

get sess hist

b

b

Figure 2.8: Siblings resolutions using session history.

18



siblings, which is updated during login. Additionally we store which session
was responsible for the update. When the backend encounters siblings it then
checks the session history which is the newer one and picks the corresponding
value to be the correct one. Fig. 2.8 illustrates this.

Multi user concurrency
Multi user concurrency involves the data that can be written by multiple
users, like joining or updating a game. In general we tried to design our
database schema to avoid shared writable data as much as possible. For
example the game orders for a certain phase could be stored as one value in
Riak, instead we keep one value for each player. This leads to seven reads
on phase change, but order writing does not have conflicts.

Nevertheless, we could not avoid it in all parts of the system. Multiple
users might try to join the same game. There might be a conflict if they
want to play the same country or only one spot is left. Furthermore, the
creator of the game is not allowed to update the game once a player has
joined it. Therefore we have a game joining process for every game that
has not started yet. All join and update requests go through that process,
thus ensuring consistency. To ensure only one such process per game we use
Mnesia due to its transactions.

2.3 Code organization

The project consists of a set of Erlang applications logically grouped based
on their functionalities. We have two more directories at the project level,
one for external tests and the other for the release. Below is the high level
directory structure of the project.

|-apps

|---cluster_manager

|---controller_app

|---datatypes

|---db

|---game

|---gen_moves

|---load_test

|---message

|---necromancer

|---service

|---smtp_frontend

|---system_manager

|---user_management

|---utils

19



|---web_frontend

|---xmpp_lib

|-ext_test

|---bench

|---fault_tolerance

|---smtp_integration_test

|---websocket_client

|---xmpp_integration_test

|-rel

A short description of each application can be found in Table 2.1.

Application Description

cluster manager escript for management of the distributed cluster

controller app The controller application

datatypes A central place for common configuration. It contains bucket
names and records

db The database wrapper that handles all the db requests

game Contains game logic, game timer, rule engine and other game
related code

gen moves Generates moves that can be used for load testing

load test Code used for load testing

message Code used for handling messages

necromancer Code used for resurrecting certain processes from dead VMs

service OTP application library that provides functionality used by
all service applications

smtp frontend Handles all the mail communication

system manager Single point of entry for configuring and controlling the whole
system on a server.

user management Handles all user related functions

utils Commonly used tools and utilities

web frontend Code for handling the web frontend, including client side
code

xmpp lib Library for handling XMPP communication

Table 2.1: Applications with their short descriptions.

Additional notes on the code:

• General Erlang coding style and conventions were followed.

• The public API of all the modules has specs and edocs.

20



2.4 Supervision

A supervisor in Erlang is a process that supervises processes it has spawned.
The supervisor can spawn new child processes and if one of them would die,
it can act according to its configured restart-policy, for example, it could be
configured to never restart children or alway restart them, independent of
the “cause of death”.

Each application (that is not only a library) in our backend and also the
controller have a supervision tree structure that enables an operator to fine
tune the number of workers of each application, it also makes it possible to
inspect the status of applications on each server.

As seen in Fig. 2.9, there is one process group (see 2.2.1.3) for the
application workers, and a “management” group. The processes in the
worker group are the ones doing the heavy work in an application. The
“manager” of each application in each node makes it possible to change the
number of workers, it also makes it possible to traverse the group of managers
to be able to get the status of each application on every node it is running
on. The supervisors will always restart its workers if they die unexpectedly.

The game application’s supervision tree is slightly different, as it also
has a number of game timers, which don’t belong to a process group as seen
in Fig. 2.10. The game timer processes have their own supervisor. It will
restart the processes in case if the process dies in an unnatural way, that is,
a case in which neither the game has yet finished nor it has been stopped by
an operator.

21



Figure 2.9: General supervision structure for applications, double-rings are super-
visors.

22



Figure 2.10: Supervision tree for the game application.

23



Chapter 3

Treacherous Talks

3.1 The Three Interfaces

3.1.1 HTTP

The user goes to the landing page, there he/she finds a link to register which
will display a simple form for him/her to fill out. After the user is registered,
he/she is able to log in using the login textfields on the landing page.

After logging in, the user is shown a dashboard page (see Fig. 3.1) where
he/she is able to search for games, look at the games he/she is playing in (if
any) and chat with other users in-game or off-game.

Figure 3.1: The dashboard page.

The web frontend has several key advantages over the two purely text
based frontends:

24



• The user does not need to remember his/her session id.

• The user sees a graphical map (generated using a HTML5 canvas), see
Fig. 3.2.

• It allows users to have a better gaming experience since the graphical
map is interactive. By simply clicking and dragging the pieces on the
map, corresponding orders will be automatically generated, see Fig. 3.3.

Figure 3.2: The graphical map.

3.1.2 XMPP

Users who log into our XMPP server, will get the address of the component
that commands should be sent to in an instant message. If a user has an

25



Figure 3.3: The generated orders.

account on any other XMPP server, they can play the game by sending
commands as instant messages to the server’s user. For development, we
used the user “service@tt.localhost”, but this is only accessible from the host
where ejabberd is running. To enable access from other ejabberd servers and
connecting from other hosts, tt.localhost in the tt bot module should be
changed to a domain where ejabberd is configured to listen for connections.

If a user sends “HELP” or any unknown command to our component, it
will return the list of all valid commands. All commands can be found in
appendix C.2. Each command starts with the command keyword and must
end with the “END” tag. If the user enters some text before the command
keyword or after the end keyword, they are simply ignored. Users can get
the list of all mandatory fields for each command by sending the command
name and “END”.

The user will get a unique session ID after logging in. The session ID
should be stored, because it is necessary for all the future commands.

3.1.3 SMTP

Like most play-by-email games, we enable users to play the game using their
own account from any email service provider. To connect to our game server,
users need to write an email in a required format (see appendix C.2), then
send it as an operation request to the email-address of our SMTP frontend
server. After the email is sent, the users will soon receive an email in reply to
their previous request from our game server. To users, the required format
of the email text content is exactly the same as what they use in the XMPP

26



interface (see appendix C.2), but the difference is that users are likely to
receive replies more instantly in XMPP than in SMTP.

3.2 Messages

In the web frontend, the user is shown two chat boxes: one for off-game chat
and one for in-game-chat (they can be seen — minimized — in Fig. 3.1).
The user manually has to enter the recipient (in in-game chat the recipient-
country and the game ID). If the recipient is not online when a message is
sent, it will be stored and delivered by the message application after the
recipient logs in the next time.

Appendix C.2 contains more detailed information on interaction through
the text based interfaces.

3.3 Playing

For game play, as is mentioned in previous sections, the web frontend provides
an interactive interface which is much more convenient than typing text
orders for beginners (Fig. 3.3).

On the contrary, the other two frontends (XMPP and SMTP) have to
take text based orders. Instead of clicking, the user has to type them and
additionally is required to supply his/her session ID which he/she receives
after logging in. A full list of how to make text based plays can be found in
appendix C.

27



Chapter 4

Evaluation and Testing

4.1 Overview

We approached testing very seriously from the start and are confident that
this was one of the best decisions we made throughout the project. Unit
tests are too low level to be covered here but they are of course there. We
used EUnit for most of our testing and were generally happy with that choice
except for one thing: EUnit declares a test as failed as soon as it runs for 5
seconds and there is no central way to change that behaviour. It’s possible
to change the default timeout for individual tests or test sets, but the code
duplication in that case is, of course, sub-optimal. That 5 seconds “feature”
was especially annoying in combination with continuous integration: our
build server was very busy and therefore was interacting with our database a
lot. When several builds were running at the same time, the database would
get slower, therefore pushing tests over the time-limit, even though they ran
perfectly fine on our local machines. Had we known this issue beforehand,
we would have looked more into alternatives of EUnit.

4.2 Integration Tests

Our integration tests tried to cover everything from the frontends down
to the database. It showed, that the XMPP frontend was the easiest to
be tested, so our tests for SMTP- and web-frontend are only testing the
basics — “it’s there and it reacts” — while the XMPP tests send orders,
register to the system, log in, log off, and so on. Because of the small size of
our interfaces’ IO parts (the parsing was handled by a dedicated module),
we reach reasonable quality of tests (in terms of test coverage) using this
approach while greatly reducing the amount of tests to be written.

The exmpp library [20] was used to do integration testing via the XMPP
interface. Exmpp helped us to provide fully automatic and repeatable
test scenarios. Adding new functionality to our system was not considered

28



complete until its corresponding integration test was added.

4.3 Load Tests

When starting to load test the system, we found it very hard to get meaningful
data from our testruns. But even the first, quite informal, load tests resulted
in very valuable information.

Load testing was never fully automated. Although that would be very
useful, this would have been impossible for us since we would have needed a
separate cluster to do that and just could not get that amount of hardware.
A smaller automated test on one dedicated machine would have probably
helped already but was not implemented due to time-constraints.

From the start of the load testing, practically no night was unused: tests
were running through the night and were evaluated in the next morning.

It was necessary to write a considerable amount of load-testing-scripts
that distributed our releases across a varying number of nodes, started and
connected them and did the actual load generation. But: the time spent
on this was time spent very well, since it ensured that performance drops
because of single commits were noticed in several instances — and their
cause analyzed.

4.3.0.1 Gathering data

We used Basho Bench [38, 39] to drive several custom test drivers. During a
test run, test drivers are repeatedly invoked by Basho Bench, which records
statistics about the invocations, such as the number completed in a period
of time, the average time an invocation takes to complete, etc.

Each invocation of our test drivers performed a number of operations
on our system, for example creating a game, writing several game orders
and sending several messages. We called such a compound invocation a flow.
While a driver which performs a single specific operation can be used to
test one part of the system, we estimated a common usage pattern based on
experience playing the game, and used flows to simulate use of the system as
a whole.

Following a test run, we recorded system information provided by the
operator overview features, including the number of reductions performed on
that Erlang Runtime System, as reported by erlang:statistics/1. This
records the number of functions, including Erlang built-in functions, called
since the runtime system was started. Since we started new Erlang instances
for each test run, we could compare the values between machines in a cluster
to evaluate whether load is being balanced properly between machines in the
cluster. This might appear to be a crude measure, and one function might
be a lot more computationally intensive than another. However, as long as
each machine is running the same set of applications (as was the case when

29



we compared reductions), each machine should perform the same number
operations for long enough that random variation becomes negligible.

4.3.1 Results

The load tests had a big influence on the overall system. The main changes
were made to how Riak was being accessed. We discovered which Riak
features are expensive and even discarded some completely. This section
describes those discoveries and justifies our decisions.

4.3.1.1 Load balancing

One of the first issues that appeared with load testing was that the system
hardly scaled at all. Once we compared the number of reductions between
machines in the test cluster, we realised one machine was getting much more
load than others, explaining the bad scaling result. Test sessions were being
allocated to random machines but we were using too few sessions, resulting
in an uneven distribution between backends. By changing our load test setup
to create more sessions, we ensured that the test load was evenly distributed
among backends.

Once this was fixed, the number of reductions on different machines
indicated even balance of work between machines.

4.3.1.2 Riak & backend relation

First of all we were interested in how to setup our cluster - how many
Riak nodes does a backend require to perform its best and should Riak and
backend nodes be on the same machine?

Fig. 4.1 shows the different setups we tested. The x-axis is the time
the tests were running and the y-axis the throughput. The flow included
all game play operations like game creation, joining, order submission and
messaging. Registration and login are not part of it. The graphs are the
different setups, they are labeled with XR or XB. Meaning on machine X
there is a Riak node or a Backend node 1.

As you can see most of them performed quite bad. Fig. 4.2 shows only
the best setups. These three setups performed more or less the same. One of
these setups is a cluster consisting of three machines each with a Riak and a
backend node. Since this is also the simplest setup we decided to use setups
with X machines each having a a Riak and a backend node in the future.

4.3.1.3 Degradation

The major issue with the previous results was the obvious performance
degradation over time. Fig. 4.3 shows that this occured for any cluster size

11B 2R means there is a backend node on machine 1 and a Riak node on machine 2.

30



Figure 4.1: Load tests of different cluster setups.

Figure 4.2: The best graphs from Fig. 4.1.

31



Figure 4.3: Load tests for 1-6 machines.

Preliminary prototype benchmarks did not show this pattern, which made us
compare our system and the prototype we benchmarked. The main difference
was the usage of eLevelDB as Riaks backend storage in the system, whereas
the prototype used bitcask, the default storage backend.

The only reason we used eLevelDB was it being the only backend support-
ing secondary indices. We decided to do a comparison of those two backends,
which required to remove the usage of secondary indices. Therefore we
replaced it with Riak search. As you can see in Fig. 4.4 our assumption
proved to be correct. Both start of the same but the throughput of eLevelDB
version drops quickly, whereas the bitcask version remains almost stable.

4.3.1.4 CAP controls

Another small but effective change was the adaptation of the Riak CAP
controls. Many writes to Riak have a quite low priority. The message logging
for example is such a case. The system does not need to await confirmation
of the write. Fig. 4.5 displays the increase in throughput this gave to our
system.

4.3.1.5 Key filtering

Despite those improvements the system did still not scale as well as hoped.
The Riak community2 recommended us to take a closer look into our Riak
search usage, since it has not been as well tested as other parts of Riak.

2IRC channel #riak on freenode.net

32



Figure 4.4: Comparison of the storage backends bitcaks and eLevelDB.

Figure 4.5: Improvement by changed CAP controls.

33



The system used Riak search quite extensively, especially after the change
from eLevelDB. In many parts of the system it just replaced secondary indices.
The full text search was not really necessary, as we just needed to find values
without knowing the unique id. Therefore we tried to replace Riak search in
parts with Riaks key filtering. For messages for example we introduced keys
of the form < unique − id > − < from > − < to >. With key filtering it
is then possible to query the messages for a certain user without the use of
Riak search.

The advice from the Riak community turned out to be very valuable.
Riak search should be avoided for values that are being written often, as the
indexing is too expensive to scale well. Unfortunately though we no longer
have the data to show a comparison graph.

4.3.1.6 Final results

Fig. 4.6 shows the performance of the final system. The y-axis is the amount

� � � �

�

������

������

������

������

�������

�������

�������

�������

�������

������ ����� �������

������ ����� �����������

������ ����� ��������

Figure 4.6: Scaling.

of model users the system can handle. Where a model user is assumed
to perform about 20 requests a day and all users are distributed evenly
throughout the day. The blue one is just for comparison and displays
how perfect linear scaling would look like. The yellow graph shows the
performance of the system right after we switched from riak search to key
filtering. With one machine it can handle around 400k model users, and
with 4 machines a bit more than double the amount. The green one is the
system at the end of this project.

34



Unfortunately the performance dropped a lot. The cause for this is
a single commit that introduced an increased usage of riak search again.
Unfortunately there was no time left to get the system back to its previous
performance. Still the system performs quite well and 400k model users is
most likely more than the global count of diplomacy players.

4.4 Failure Tests

Our failure tolerance test starts up a cluster of two backends A and B and
starts a game. The basic backend test interacts only via the Web Frontend
for realism but simulates unexpected node or hardware failure by calling
erlang:halt() on the relevant backend node.

Since we do not know on which backend the game has been started, we
halt backend A. If fault tolerance works, we can now be sure that the game is
on backend B (either it was there in the first place or it got restarted there).

We start the backend A again and then halt backend B. Now the game
gets moved to backend A. This way, we can be sure that the game was moved
at least once. If the game continues to run, the test was successful.

Instructions for running this test are in Sec. A.3.2.

35



Chapter 5

Related Work

Diplomacy has been around since the 1950s and has been played by email,
snail mail and through web browsers. Obviously, we are not going to compare
ourselves to the snail mail solution where a game host receives letters with
move orders from the players and the players send each other letters.

Noteworthy browser based solutions are:

page registered users
http://webdiplomacy.net 40613
http://playdiplomacy.com/ 6849

The alternative email solutions seem to have even lower user numbers but
precise details are hard to be found. Please note that the numbers in the
table are about registered users, while our benchmarks are in terms of active
users.

The advantages the existing solutions have, are generally better interfaces:
the existing email systems are a bit easier to use since you reference games
by name and not by a number and there is no session ID handling involved.
These issues would be fixable with reasonable resources though.

They also provide several game modes (from minor changes to starting
units to playing on a world map). We have the code to handle new maps,
but we don’t have the map data. Creating those would be an easy but
work-intensive task since you have to specify all provinces, all connections,
starting units, and so on.

Our rules are not perfect yet, they are still a bit rough around the edges
but in probably one or two person weeks would work satisfyingly well. When
it comes to load, we see no problem in handling all web diplomacy players
worldwide (email- and browser-based) with one backend-machine and maybe
more extra frontend machines.

So, in short: to fully catch up with the alternatives, we would need to
invest in bug fixing and user interaction.

36

http://webdiplomacy.net
http://playdiplomacy.com/


Chapter 6

Conclusions and Future
Work

We are very happy with the work we have done and that the product is, even
though the seemingly endless scope, quite close to being “ready”. We found
that Riak’s performance depends heavily on the usage pattern. Particularly,
we found that Riak Search is best for storing data that is not written very
frequently, as discussed in Sections 2.2.5.3 and 4.3.1.5.

Despite all this, the work left to be done is considerable: An AI was
in the original requirements but was not delivered due to time constraints.
Bug fixing in the rule engine is necessary. Scalability could be improved by
applying tracing to the cluster which would be lots of interesting work. A
more polished interface, that is more appealing to the eye, is something that
could be worked on.

In order to make the game playable by the public, a better system to
find and join games would probably be necessary in the web frontend — and
we would need to do lots of hallway testing and/or maybe publish an alpha
version in order to collect feedback.

One more thing would be to think a lot about security — not much
thought has been spent on it yet.

The rule engine does not support multi-fleet convoys yet but they are
important for the game tactics (the classic Italian opening called “lep-
anto opening” [40] uses it, for instance). This could be done quite easily in
the rule engine.

37



Appendix A

Installation Instructions

A.1 Requirements

Treacherous Talks was developed using Erlang/OTP version R14B03 on
Ubuntu 11.04 (AMD64). It has not been tested with other versions of
Erlang/OTP or other Linux distributions. Since some of our dependencies,
notably Riak, currently doesn’t support Erlang/OTP R15, we have not been
able to test the system under that version of Erlang/OTP.

Since all Erlang-releated packages in Ubuntu 11.04 are out-of-date, we
opted for compiling and installing Erlang/OTP by hand on our development
machines. In general, we recommend that users do this as well since it is the
easiest way to get all of the required parts of Erlang/OTP installed on your
system.

We will not provide you with build instructions for the Erlang/OTP distri-
bution, but under Ubuntu 11.04 you will most likely need the make, gcc, perl,
m4, ncurses-dev and libssl-dev packages available before attempting to
build it.

Before you can build Treacherous Talks itself, a few extra libraries and
tools need to be present on your machine:

Name Version Ubuntu package name

libexpat > 1.95 libexpat-dev
libxml - libxml2-dev
libpam - libpam0g-dev
git - git
wget - wget

There are two deployment options regarding the database Riak: running
a standalone Riak installation or distributing it alongside the Treacherous
Talks release package. Here we assume that you want to distribute Riak
along with the release package. This involves building Riak as a part of the
system build process.

38



In order to build Riak you will need the GNU C++ compiler (g++)
installed and the package libstdc++6-VERSION-dev where VERSION is the
current version in the package repository (in Ubuntu 11.04 VERSION is 4.5).
For some reason there are no generic packages any more in Ubuntu, so you
need to specify the version.

A.2 Building

With all dependencies and required tools in place, building Treacherous
Talks should be straightforward. First you need to get hold of the source
code. The simplest way is probably to download a tarball from Github.
Download it from https://github.com/treacheroustalks/Treacherous-

Talks/tarball/master. Untar the file and enter the source code directory.
First we build Riak since we want to distribute it together with the

Treacherous Talks release package. There is support in the Treacherous
Talks Makefile for building Riak, just run make riak release. This will
download, compile and release Riak. It then moves the release package into
the directory system-release in the top-level source code directory.

Next it’s time to build Treacherous Talks. This is done by executing
make. This will invoke the build tool Rebar [41] that is present in the source
code directory. Rebar will download all dependencies and compile everything
in the right order. This step can take a while to complete.

The final two steps after compiling is to make an Erlang release and
create a tarball that contains everything needed to run the system. By
executing make release a release package will be created and placed into
the system-release directory alongside Riak. After this step, we create
a tarball of everything inside that directory with make tar release. The
resulting tarball is outputted to the system-release directory.

A.3 Testing

A.3.1 Unit and Integration Tests

After building, unit and integration tests can be run together using

make test

This is equivalent to running make unittest inttest.

A.3.2 Node Failure Tolerance Tests

An escript [42] fault tolerance is generated when building a full release.
This allows the tests in ext test/fault folerance to be run from the
command line e.g.

39



./system-release/tt/bin/fault_tolerance tt.config

where tt.config is a cluster configuration file. This requires the same
setup as the Cluster Manager (see A.5) needs for starting a cluster. The
fault tolerance escript will exit with a non-zero exit status if any tests
failed and outputs debugging information to the console.

A.4 Installing from a release tarball

The resulting tarball from the build step is self-contained and can be freely
moved to other computers running the same version of the operating system.
To install the system, simply extract the tarball to a location of your choice.
As usual in Unix-like systems, take care to have the ownership of the files
setup correctly so that the user running Riak and Treacherous Talks has the
correct permissions on all directories and files. The simplest is to have the
user executing the program owning the files.

If you intend to allow any part of the system to communicate over
privileged ports, ensure that the user has privileges to do so.

A.5 Setting up and starting the System Manager

There is an application called the System Manager in Treacherous Talks.
The purpose of this application is to configure, start and stop Riak and
the rest of the Treacherous Talks system on a single machine. The System
Operator uses the escript called Cluster Manager to interact with a cluster
of System Managers via RPC calls.

Before we can start and configure the system we must set up
and start the System Manager itself. There is only one major set-
ting one can change, and that is the Erlang node name. Enter
the directory where the release tarball was extracted. Edit the file
system-release/tt/etc/nodename.system manager and change the do-
main name or ip address as needed (the part after the @-sign). Note that
you must set domain to something externally available if you intend to run
the Cluster Manager on another machine.

When the node name is set, the System Manager is ready to
be started. This is done by proceeding to the directory where
the release tarball was extracted and then executing the command
system-release/tt/bin/system manager start in a shell.

A.6 Creating a system-wide configuration file

The main purpose of having both a System Manager and a Cluster Manager
is to simplify the task of configuring and controlling a cluster of nodes running

40



on different machines. Even if you only run the releases on a single machine,
it simplifies the task of handling the Treacherous Talks system and Riak.

To do this, a single configuration file is used. The file specifies for the
Cluster Manager where the different System Managers are, what releases
a single machine should run and the configuration of such releases. The
configuration is given as a list of host tuples.

Each host tuple describes a host (machine) and contains the domain or
ip address it has, the name of the System Manager and another list of release
tuples.

Each release tuple contains a release name (riak, backend, smtp frontend,
xmpp frontend, web frontend), the actual node name for that release and a
list of configuration options. These configuration options correspond exactly
to the ones available in the release configuration file in the etc directory of
a release package. Here is a minimal example for running all releases on a
single machine:

[{host, "127.0.0.1", "system_manager",

[{release, riak, riak,

[

{riak_core, [{http, [{"127.0.0.1", 8091}]}]},

{riak_kv, [{pb_ip, "127.0.0.1"}, {pb_port, 8081}]},

{riak_search, [{enabled, true}]}

]},

{release, backend, backend,

[

{db, [{riak_ip, "127.0.0.1"}, {riak_database_port, 8091},

{riak_protobuf_port, 8081}]}

]},

{release, smtp_frontend, smtp_frontend, []},

{release, xmpp_frontend, xmpp_frontend, []},

{release, web_frontend, web_frontend, []}

]}

].

For more information on the available configuration options, please see
the example configuration file in systemrelease/tt/etc/example.config.

A.7 Using the Cluster Manager

When the system-wide configuration file is finished, it is time to put it to use.
The Cluster Manager is a small command-line tool (an escript) that reads
the configuration file and connects to running System Managers to enforce
the state given in the configuration file and/or performs a specific action.

41



The actions performed is controlled by adding switches when invoking
the command. One can use multiple switches to perform more than one
action. A short description of the more common ones follow.

By using the --setconfig switch, the Cluster Manager will try to connect
to all specified System Managers and give them the configuration they should
apply. Note that this does not automatically apply the configuration to a
running system. To be able to use the new configuration, the system must
be restarted.

The --join switch is intended to be used whenever a Riak node is added
to the cluster. It will make any new Riak nodes join the already present
nodes. This is only necessary when you add a new node, not after stopping
or starting a Riak node.

Finally, the --start and --stop switches starts and stops the needed
releases, including Riak if that is needed. To see what releases are running
and responding across a cluster, the --ping switch comes handy.

To run the Cluster Manager, first go to the directory
where the release tarball was extracted and then execute
system-release/tt/bin/cluster manager. You also need to supply
the name of the configuration file to use and the action to perform.

Here is an example run of the Cluster Manager:

$ ./bin/cluster_manager --setconfig --start etc/example.config

update_config on "127.0.0.1" was ok

start_release riak on "127.0.0.1" was ok

start_release backend on "127.0.0.1" was ok

start_release web_frontend on "127.0.0.1" was ok

start_release xmpp_frontend on "127.0.0.1" was ok

start_release smtp_frontend on "127.0.0.1" was ok

informing ’backend@127.0.0.1’, result was: ok

$

A.8 Running on a non-bundled Riak installation

There are a few additional things to consider if you want to run Treacherous
Talks on top of an already running Riak installation instead of using the
bundled one.

Some parts of Treacherous Talks are dependent on Riak Search and
special search schemas. These schemas need to be installed on each Riak
node in a cluster before starting the Treacherous Talks system. This is done
automatically when using the bundled Riak instance and configuring it via
the Cluster Manager.

When using a non-bundled Riak installation you need to do this yourself.
Each schema in the system-release/tt/riak directory must be installed

42



in each Riak node. Please consult the Riak manual1 for the exact steps you
need to perform to accomplish this.

You can still use the Cluster Manager for configuring backends and fron-
tends in this scenario. Remove the riak tuple from the example configuration
and ensure that the db application in the backend knows how to connect to
an already installed Riak node. Ensure that Riak is started before the rest
of the system is started.

1http://wiki.basho.com/Riak-Search—Schema.html

43



Appendix B

Maintenance Instructions

B.1 Adding a host to a running cluster

Sometimes the need arise to add another server to an already running cluster.
This is a rather simple operation when using the Cluster Manager.

First, ensure that the system has been properly installed (see A.4) on
the new node. Start the System Manager if not already started on that node.
Then add the configuration of the new node to the system-wide configuration
file.

Finally, run the Cluster Manager with the --setconfig and --start

switches. The result will be that all releases defined in the configuration file
will be started, included any new ones. If a release is already running nothing
will be done to it and it will be reported by the Cluster Manager as {error,
release is already started}. This is a harmless message indicating that
nothing was done for that release.

B.2 Removing a host from a running cluster

Removing a server from a running cluster is normally a straightforward
procedure, but a bit more complicated than adding a server. You cannot
simply remove its entries from the system-wide configuration file and then
expect the Cluster Manager to stop it for you since the configuration declares
what should be running on the cluster, not the current state of the cluster.

You have three choices for removing a host:

1. Restarting the whole cluster.

2. Stopping the system manually on the specific host.

3. Creating a special configuration file for stopping a specific host.

44



The first solution is simple: just remove the host from the configuration
file, stop and start the cluster using the Cluster Manager. Of course, this
has the disadvantage of making the system unavailable for some time.

The second solution, stopping the system manually, is a more attractive
solution. To do this, go to the installation directory on the host you want to re-
move. For each release running on the host, run the corresponding executable
with the argument stop. Example: system-release/tt/bin/backend

stop.
The third solution is probably the best one, but requires some effort.

Copy your old configuration file before removing the entry describing the
host you want to remove. Remove everything else in the copied configuration
file except for the host you want to remove from the cluster. Now use this
configuration when running Cluster Manager with the --stop switch. Only
the host you want to remove has now been stopped.

Nothing else needs to be done for the Treacherous Talks system when
removing a host. Any games running on the now stopped backend will be
automatically moved to other backends.

If you want to remove a Riak node permanently, you should tell the Riak
cluster about it so that it can redistribute the data on that node onto other
nodes in the cluster. Please see the Riak manual1 for more information.

B.3 System Operator Interface

Being a system operator opens up a few special features, some are available
as text based commands but all are available in the web interface of the
operator:

• Adding or removing moderators (web only).

• Stop games (web only).

• Overview games including moves and messaging (web only).

• Blacklist or whitelist players.

• Receive reports about issues from players (web only).

• Send messages to players in any game.

• View the status of the system (web only).

• View the status of Riak.

The status of the system gives information about which applications are
running on which nodes, the number of workers they have and information

1http://wiki.basho.com/Adding-and-Removing-Nodes.html

45



about their message queue lengths. This can be used to determine the health
of the system and see if an application needs to be started on another node or
perhaps if it could be fixed by increasing/decreasing the number of workers.

B.3.1 Moderators

A moderator is a priviledged user which can access a moderator page in the
web interface.

The following features are available for moderators:

• Blacklist or whitelist players.

• Send messages to players in any game.

• Receive reports from players reporting other players (web only).

46



Appendix C

Text based commands

C.1 Playing the game

The web interface is the only one to provide means to interactively select or-
ders, but it is also possible to give text based orders as through IM and email.

Writing orders

Alternative ways to write a move order (also used for retreat orders):

army warsaw move prussia

a war m pru

a war - pru

a war -> pru

Alternative ways to write a convoy order:

fleet north_atlantic_ocean convoy army london move norwegian_sea

f nth c a lon m nrg

f nth c a lon - nrg

f nth c a lon -> nrg

Alternative ways to write a hold order:

army london hold

a lon h

Alternative ways to write a support order:

army galicia support budapest

a dal s a bud

Alternative ways to write a build order:

build army munich

b a mun

47



List of provinces and water bodies and their abbreviations

adriatic sea - adr aegean sea - aeg albania - alb
ankara - ank apulia - apu armenia arm
baltic sea - bal barents sea - bar belgium - bel
berlin - ber black sea - bla bohemia - boh
brest - bre budapest - bud bulgaria - bul
burgundy - bur clyde - bly constantinople - con
denmark - den eastern mediterranean - eas edinburgh - edi
english channel - eng finland - fin galicia - gal
gascony - gas greece - gre gulf of bothnia - bot
gulf of lyon - gol helgoland bight - hel holland - hol
ionian sea - ion irish sea - iri kiel - kie
liverpool - lvp livonia - lvn london - lon
marseilles - mar mid atlantic ocean - mid moscow - mos
munich - mun naples - nap north africa - naf
north atlantic ocean - nat north sea - nth norway - why
norwegian sea - nrg paris - par picardy - pic
piedmont - pie portugal - por prussia - pru
rome - rom ruhr - ruh rumania - rum
serbia - ser sevastopol - sev silesia - sil
skagerrak - ska smyrna - smy spain - spa
st petersburg - stp sweden - swe syria - syr
trieste - tri tunis - tun tuscany - tus
tyrolia - tyr tyrrhenian sea - tyn ukraine ukr
venice - ven vienna - vie wales - wal
warsaw - war western mediterranean yorkshire - yor

48



C.2 Commands for IM and Mail

The following commands are available for IM and mail users:

REGISTER

required: NICKNAME, PASSWORD, EMAIL, FULLNAME

optional: CHANNEL

UPDATE

required: SESSION

optional: PASSWORD, EMAIL, FULLNAME

LOGIN

required: NICKNAME, PASSWORD

LOGOUT

required: SESSION

ORDER

required: SESSION, GAMEID

CREATE

required: SESSION, GAMENAME, PRESSTYPE, ORDERCIRCLE,

RETREATCIRCLE, GAINLOSTCIRCLE, WAITTIME

optional: PASSWORD, DESCRIPTION, NUMBEROFPLAYERS

RECONFIG

required: SESSION, GAMEID

optional: GAMENAME, PRESSTYPE, ORDERCIRCLE, RETREATCIRCLE,

GAINLOSTCIRCLE, WAITTIME, PASSWORD, DESCRIPTION,

NUMBEROFPLAYERS

OVERVIEW

required: SESSION, GAMEID

VIEWCURRENTGAMES

required: SESSION

JOIN

required: SESSION, GAMEID, COUNTRY

SEARCH

required: SESSION

optional: GAMEID, GAMENAME, DESCRIPTION, PRESSTYPE, STATUS,

49



ORDERCIRCLE, RETREATCIRCLE, GAINLOSTCIRCLE,

WAITTIME, NUMBEROFPLAYERS

MESSAGE (in game messages)

required: SESSION, GAMEID, CONTENT

optional: TO

MESSAGE (out of game messages)

required: SESSION, TO, CONTENT

GETPROFILE

required: SESSION

GETPRESENCE

required: SESSION, NICKNAME

REPORTPLAYER

required: SESSION, CONTENT

REPORTISSUE

required: SESSION, CONTENT

MODERATOR and OPERATOR only commands:

POWERMESSAGE

required: SESSION, GAMEID, CONTENT

optional: TO

BLACKLIST

required: SESSION, NICKNAME

WHITELIST

required: SESSION, NICKNAME

The general format to send any command is

COMMAND

FIELD: <data>

END

where FIELD is the name of the field and <data> is the input from the
user, all commands and fieldnames must be in capital letters.

50



Example commands

REGISTER

NICKNAME: bob

PASSWORD: secret

EMAIL: bob@email.com

FULLNAME: Bob Cat

END

MESSAGE

SESSION: g2dkABFiYWNrZW5kQDEyNy4wLjAuMQAAA+QAAAAAAQ==

GAMEID: 12345

TO: england, france

CONTENT:

Hi! Would you like to help me take down russia?

END

Order writing is done as in the previous section, as content for the ORDER

command:

ORDER

SESSION: g2dkABFiYWNrZW5kQDEyNy4wLjAuMQAAA+QAAAAAAQ==

GAMEID: 12345

army ven -> tri

army tyr support a ven -> tri

END

51



References

[1] Erlang solutions, . URL http://www.erlang-solutions.com/. Accessed
9 Jan 2012.

[2] Allan B. Calhamer. Diplomacy. URL http://www.wizards.com/default.

asp?x=ah/prod/diplomacy.

[3] Internet Engineering Task Force (IETF). The WebSocket Protocol, 2011.
URL http://tools.ietf.org/html/rfc6455. Accessed 5 Jan 2012.

[4] E. Gamma. Design patterns: elements of reusable object-oriented soft-
ware. Addison-Wesley professional computing series. Addison-Wesley,
1995. ISBN 9780201633610.

[5] Seved Torstendahl. Open telecom platform. URL www.erlang.se/

publications/ericsson_review_otp_1997012.pdf. Accessed 8 Feb 2012.

[6] Process groups. URL http://www.erlang.org/doc/man/pg2.html. Ac-
cessed 5 Jan 2012.

[7] Michael Stonebraker. The case for Shared Nothing. Database Engineer-
ing, 9:4–9, 1986.

[8] Yaws web server, . URL http://yaws.hyber.org/. Accessed 8 Feb 2012.

[9] Nitrogen - nitrogen web framework for erlang. URL http://

nitrogenproject.com/. Accessed 8 Feb 2012.

[10] Ajax technology. URL http://www.webhostdesignpost.com/website/

webtechnology-ajax.html. Accessed 8 Feb 2012.

[11] D. Flanagan. JavaScript: The Definitive Guide. O’Reilly Media, Inc,
Sebastopol, CA, sixth edition, 2011.

[12] The jQuery Project. jquery. URL http://jquery.com/. Accessed 5 Jan
2012.

[13] Twitter Inc. Bootstrap toolkit. URL http://twitter.github.com/

bootstrap/. Accessed 5 Jan 2012.

52

http://www.erlang-solutions.com/
http://www.wizards.com/default.asp?x=ah/prod/diplomacy
http://www.wizards.com/default.asp?x=ah/prod/diplomacy
http://tools.ietf.org/html/rfc6455
www.erlang.se/publications/ericsson_review_otp_1997012.pdf
www.erlang.se/publications/ericsson_review_otp_1997012.pdf
http://www.erlang.org/doc/man/pg2.html
http://yaws.hyber.org/
http://nitrogenproject.com/
http://nitrogenproject.com/
http://www.webhostdesignpost.com/website/webtechnology-ajax.html
http://www.webhostdesignpost.com/website/webtechnology-ajax.html
http://jquery.com/
http://twitter.github.com/bootstrap/
http://twitter.github.com/bootstrap/


[14] Simple bridge. URL https://github.com/nitrogen/simple_bridge. Ac-
cessed 8 Feb 2012.

[15] The websocket protocol draft-ietf-hybi-thewebsocketprotocol-
10, 2011. URL http://tools.ietf.org/html/

draft-ietf-hybi-thewebsocketprotocol-10. Work in progress.

[16] Yaws fork websocket hy10 branch, . URL https://github.com/jbothma/

yaws/tree/websocket_hy10. Accessed 9 Jan 2012.

[17] Takeshi Yoshino. New websocket protocol: Secure and
extensible, 2011. URL http://blog.chromium.org/2011/08/

new-websocket-protocol-secure-and.html. Accessed 9 Jan 2012.

[18] Treacherous talks yaws fork. URL https://github.com/

treacheroustalks/yaws. Accessed 9 Jan 2012.

[19] ejabberd a jabber/xmpp instant messaging server. URL http://www.

ejabberd.im/. Accessed 10 Jan 2012.

[20] The erlang library for xmpp. URL https://support.process-one.net/

doc/display/EXMPP/exmpp+home. Accessed 10 Jan 2012.

[21] Jack Moffitt. Thoughts on scalable xmpp bots,
2008. URL http://metajack.wordpress.com/2008/08/04/

thoughts-on-scalable-xmpp-bots/.

[22] Erlmail, . URL http://code.google.com/p/erlmail/. Accessed 8 Feb
2012.

[23] A generic erlang smtp server and client. URL https://github.com/

Vagabond/gen_smtp. Accessed 8 Feb 2012.

[24] Erlang smtp and pop3 server, . URL https://github.com/tonyg/

erlang-smtp. Accessed 8 Feb 2012.

[25] Riak, . URL http://wiki.basho.com/Riak.html. Accessed 8 Feb 2012.

[26] couchdb. URL http://couchdb.apache.org/. Accessed 8 Feb 2012.

[27] Mnesia. URL http://www.erlang.org/doc/man/mnesia.html. Accessed
8 Feb 2012.

[28] Cap controls. URL http://wiki.basho.com/

Tunable-CAP-Controls-in-Riak.html. Accessed 5 Jan 2012.

[29] Mozilla Inc Daniel Einspanjer. Benchmarking riak for the mozilla
test pilot project. URL http://blog.mozilla.com/data/2010/08/16/

benchmarking-riak-for-the-mozilla-test-pilot-project/. Accessed
10 Feb 2012.

53

https://github.com/nitrogen/simple_bridge
http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol-10
http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol-10
https://github.com/jbothma/yaws/tree/websocket_hy10
https://github.com/jbothma/yaws/tree/websocket_hy10
http://blog.chromium.org/2011/08/new-websocket-protocol-secure-and.html
http://blog.chromium.org/2011/08/new-websocket-protocol-secure-and.html
https://github.com/treacheroustalks/yaws
https://github.com/treacheroustalks/yaws
http://www.ejabberd.im/
http://www.ejabberd.im/
https://support.process-one.net/doc/display/EXMPP/exmpp+home
https://support.process-one.net/doc/display/EXMPP/exmpp+home
http://metajack.wordpress.com/2008/08/04/thoughts-on-scalable-xmpp-bots/
http://metajack.wordpress.com/2008/08/04/thoughts-on-scalable-xmpp-bots/
http://code.google.com/p/erlmail/
https://github.com/Vagabond/gen_smtp
https://github.com/Vagabond/gen_smtp
https://github.com/tonyg/erlang-smtp
https://github.com/tonyg/erlang-smtp
http://wiki.basho.com/Riak.html
http://couchdb.apache.org/
http://www.erlang.org/doc/man/mnesia.html
http://wiki.basho.com/Tunable-CAP-Controls-in-Riak.html
http://wiki.basho.com/Tunable-CAP-Controls-in-Riak.html
http://blog.mozilla.com/data/2010/08/16/benchmarking-riak-for-the-mozilla-test-pilot-project/
http://blog.mozilla.com/data/2010/08/16/benchmarking-riak-for-the-mozilla-test-pilot-project/


[30] Joyent. Riak smartmachine benchmark: The tech-
nical details. URL http://joyeur.com/2010/10/31/

riak-smartmachine-benchmark-the-technical-details/. Accessed
10 Feb 2012.

[31] eleveldb. URL http://wiki.basho.com/LevelDB.html. Accessed 8 Feb
2012.

[32] R. Elmasri and S. Navathe. Fundamentals of database systems. Pearson
Custom Computer Science Series. Pearson/Addison Wesley, 2007. ISBN
9780321369574.

[33] Querying riak just got easier: Secondary indices in
riak, . URL http://www.slideshare.net/rklophaus/

querying-riak-just-got-easier-introducing-secondary-indices.
Accessed 10 Feb 2012.

[34] Secondary indices. URL http://doc.gnu-darwin.org/am/second.html.
Accessed 8 Feb 2012.

[35] Bitcask. URL http://wiki.basho.com/Bitcask.html. Accessed 8 Feb
2012.

[36] Eventual consistency. URL http://wiki.basho.com/

Eventual-Consistency.html. Accessed 8 Feb 2012.

[37] E. Florenzano. Nonrelational databases. In J. Allspaw and J. Robbins,
editors, Web Operations: Keeping the Data on Time, pages 247–262.
O’Reilly Media, Inc, Sebastopol, CA, 2010.

[38] Basho: Benchmarking, . URL http://wiki.basho.com/Benchmarking.

html. Accessed 9 Feb 2012.

[39] basho bench, . URL https://github.com/basho/basho_bench. Accessed
9 Feb 2012.

[40] The lepanto opening. URL http://www.diplom.org/~diparch/

resources/strategy/articles/lepanto.htm. Accessed 8 Feb 2012.

[41] Build-tool for erlang projects. URL https://github.com/basho/rebar.
Accessed 8 Feb 2012.

[42] escript. URL http://www.erlang.org/doc/man/escript.html. Accessed
9 Jan 2012.

54

http://joyeur.com/2010/10/31/riak-smartmachine-benchmark-the-technical-details/
http://joyeur.com/2010/10/31/riak-smartmachine-benchmark-the-technical-details/
http://wiki.basho.com/LevelDB.html
http://www.slideshare.net/rklophaus/querying-riak-just-got-easier-introducing-secondary-indices
http://www.slideshare.net/rklophaus/querying-riak-just-got-easier-introducing-secondary-indices
http://doc.gnu-darwin.org/am/second.html
http://wiki.basho.com/Bitcask.html
http://wiki.basho.com/Eventual-Consistency.html
http://wiki.basho.com/Eventual-Consistency.html
http://wiki.basho.com/Benchmarking.html
http://wiki.basho.com/Benchmarking.html
https://github.com/basho/basho_bench
http://www.diplom.org/~diparch/resources/strategy/articles/lepanto.htm
http://www.diplom.org/~diparch/resources/strategy/articles/lepanto.htm
https://github.com/basho/rebar
http://www.erlang.org/doc/man/escript.html

	Introduction
	System Description
	Requirements
	Diplomacy server
	Three Interfaces
	Scalability
	Fail-Safety
	WebSocket
	AI

	Architecture
	Overview
	Frontends
	Controller
	Riak
	Backend
	Concurrency

	Code organization
	Supervision

	Treacherous Talks
	The Three Interfaces
	HTTP
	XMPP
	SMTP

	Messages
	Playing

	Evaluation and Testing
	Overview
	Integration Tests
	Load Tests
	Results

	Failure Tests

	Related Work
	Conclusions and Future Work
	Installation Instructions
	Requirements
	Building
	Testing
	Unit and Integration Tests
	Node Failure Tolerance Tests

	Installing from a release tarball
	Setting up and starting the System Manager
	Creating a system-wide configuration file
	Using the Cluster Manager
	Running on a non-bundled Riak installation

	Maintenance Instructions
	Adding a host to a running cluster
	Removing a host from a running cluster
	System Operator Interface
	Moderators


	Text based commands
	Playing the game
	Commands for IM and Mail


