Course report

GSM Call Service

1DT054 Project CS

Ebby Wiselyn Jeyapaul
Egemen Taskin
Erik Grafstrom
Fartash M. Nejad
Fredrik Pasanen
Max Morén
Mohammadreza Taghilu
Moritz Rogalli
Praveenkumar Bhadrapur

February 16, 2012

Abstract

The course report describes how the team worked during Project CS to develop
a GSM call service. In this report we describe how we organized our work, we
document our progress, we describe and explain the decisions we took and the
problems we overcame. We concentrate on how we cooperated, the tools that
helped us the most and the lessons we learned during the course to help both
future students and teaching staff to improve on future iterations and enhance
the experience and result of the course.

Glossary

API Application Programming Interface

BC Bearer Capability

BNT B-Number Type

BSC Base Station Controller

BSS Base Station Subsystem

BSSMAP BSS Management Application sub-Part
BTS Base Transceiver Station

CC Connection Confirm

C™m Connection Management

CR Connection Request

CiC Circuit Identification Code

Cl Cell Identifier

CS Connection Service

DNS Domain Name Server

DTAP Direct Transfer Application Part

DT1 Data form 1

DT2 Data form 2

G-MSC Gateway MSC

GUI Graphical User Interface

GSM Global System for Mobile Communication
HLR Home Location Register

IMSI International Mobile Subscriber Identity
ISDN Integrated Services Digital Network
ISUP ISDN User Part

IT Inactivity Test/Timer

KVM Kernel-based Virtual Machine

LAI Location Area Identifier

MAP Mobile Application Part

MA Mobile Arts

ME Mobile Equipment

MGC Media Gateway controller

MGCP Media Gateway Control Protocol

MG Media Gateway

MO Mobile Originating

MM Mobility Management

MSC Mobile-service Switching Centre
MSISDN Mobile Subscriber Integrated Services Digital Network Number
MS Mobile Station

MT Mobile Terminating

MUS Mobile User Service

NP Numbering Plan

OBA Origin for B-Number Analysis
OTP Open Telecom Platform

PC Point Codes

PLMN Public Land Mobile Network

PS Packet Switching

PSTN Public Switch Telephone Network
RLC Release Complete

RLSD Released

RR Radio Resource

RTP Real Time Protocol

RTP-TA RTP Termination Agent

SCCP Signalling Connection Control Part
SS7 Signalling System

SIM Subscriber Identity Module

TCP Transmission Control Protocol
T-MSC Terminating MSC

TMSI Temporary Mobile Subscriber Identity
™ Transit Module

V-MSC Visiting MSC

VLR Visitor Location Register

Contents

2_Resources|
EI Hardward« oo oo
RILIServersl o
PT2 Backup|
2.2 Softwarel
PR3 Titeraturd
D4 Manpower]o e
2.0 Environment|
[3 Project methodology and organization|
B.1 Scruml
B.1.1 Scrumroleso o
BI2 Scrumeventd oL
B.1.3 Scrum artifactsl oL
8.1.4 Definition of domel oL,
3.2 Customizing Scrumf.o
3.3 Sprint reflections|o oL
3.3.1 Sprint 1: Praveenkumar Bhadrapur|
3.3.2 Sprint 2: Max Morén|
3.3.3 Sprint 3: Moritz Rogalli
3.3.4 Sprint 4: Erik Grafstrom|
3.3.5 Sprint b: Fredrik Pasanen| 0.
3.4 orking agreement|o
BA41 Times
BZ2 TFoodl.
8.4.3 Communicationl.
3.44 Misd
[4_Discussion
4.1 Scrum process|.o e e
4.2 Resource management|
4.3 Pair programming|
4.4 Weekly fikal o
4.5 Erlang workshop|o oo
4.6 Erlang User Conference]
47 Hardwarel
4.8 'lesting constraints and integration|
4.9 Working environment|
4.10 Working agreement| Lo
4.11 Previous Year|o
[65_Conclusionl
[6 Appendix A: Individual contributions|
6.1 Praveenkumar Bhadrapur|o 0.
6.2 Frik Grafstroml

6.5 kEbby Wiselyn Jeyapaull 27

6.4 Fartash Mehdinejad| L. 28
6.0 Max Morénl 28
[6.6 Fredrik Pasanenl 29
6.7 Moritz Rogalli| o oo 29
6.8 Mohammadreza Taghilu| 00 0L 30
6.9 Egemen Taskin| o oL 31

Chapter 1

Introduction

The main purpose of this project was to develop a basic GSM Call Service
[19]. This document describes the course, for a detailed system description see
the product report [28].

The purpose of the GSM call service is to serve as a testing framework for
mobile phone network services. The project took place as part of a 30 credit
full-time course titled Project Computer Science, covering one full semester.
The project was proposed by the company Mobile Arts which provided the
project specifications.

The team consisted of nine Computer Science students from Uppsala University,
who developed the product using Erlang/OTP |17] and a Scrum |[21]23]
process.

The two main goals of the course, according to the course description, are to
“give insights into how a big project is run (from planning to realization), how
to construct a complex distributed system” [27]. The document describes in
detail the process and the methodology used and which the goals were realized.

Chapter 2

Resources

2.1 Hardware

Every member was provided with a desktop PC. We also got two workstations
for server systems and a projector for common use from the university. Mobile
Arts provided a ip.access nanoBTS [26] picocell for testing.

2.1.1 Servers

One was used to run services and the other for testing. Both servers ran Ubuntu
server edition and we used [KVM] for virtualization [4]. Virtualization was used
to make systems and services hardware-independent, improve flexibility and to
reduce the number of physical servers.

Service Server

The Server services.gsm was used for supporting services for collaboration and
connectivity. The following servers were used:

dev.gsm Development-related functionality. The server ran Redmine [7] for
project management and a git repository for version control.

remote.gsm Connectivity services. The purpose of this server was to enable
Mobile Arts employees to connect via ssh for debugging and support. We
applied for an exception in the IT department’s firewall rules to make the
server accessible from Mobile Arts. The server also ran a proxy to
provide internal DNS names for our servers.

Testing Server

The Server testing.gsm ran all virtual machines related to testing. It consisted of
several machines, with a template for new testing systems that could be cloned,

started and used for testing in a matter of minutes.

bsc.gsm Originally for running operlBSCl [20] only, this system became our
main testing system. It mostly ran all of the components of our final
system.

hlr.gsm/smsc.gsm Two Red Hat Linux systems we set up in cooperation with
Mobile Arts for a Tieto stack. However, since the [ILR] functionality
was stubbed and the SMS functionality not integrated, the SS7 stack was
never used.

playground.gsm A place to try out things like new versions of Erlang, etc.
An Ubuntu-system that could be reset quickly as needed.

msc.gsm, others Servers that were originally created for the different compo-
nents of the GSM Call Service. They were never used since working on
only bsc.gsm was sufficient.

2.1.2 Backup

The contents of important directories on every machine were copied to the other
physical server by a cronjob three times a day. The current backup was copied
as a daily backup once a day, and the daily backup was copied to a weekly
backup every weekend. This produced a considerable amount of overhead and
used several times the space that the original data used. However, since the
project was limited to 4 1/2 months and the amount of data we produced was
not that big it was sufficient and simpler than incremental backups.

2.2 Software

Erlang was used as the programming language and its OTP behaviours as design
principles [17].

Dia [24] is a diagram drawing tool that was a bit hard to use at first, but after
learning some tricks it proved to be an efficient and helpful tool.

Redmine (7] which is a project management and issue tracker tool worked
well for us. The wiki was a great way to share information though. The
repository view was good for browsing the code. We did not use the rest
of the functionality much.

git [25] is a powerful version control system which we used to organize ourcode
and our documentation. Git involved a steep learning curve, but after
sufficient practice proved very useful for version control.

eDoc [2] makes documenting the code really easy since comments in edoc-
format can be automatically extracted into structured html-files. Specifi-
cations written for eDoc are used by dialyzer as well.

Dialyzer [1] is a nice tool for static analysis of Erlang code that is easy to
get started with. It helped in fixing warnings inferring type checks, and
testing code quality. However Dialyzer is verbose and raises non-relevant
warnings.

Rebar |[6] is a nice build tool and framework for creating Erlang/OTP appli-
cations. It was flexible and surprisingly easy to use. Compared to some-
thing like make/auto tools, getting a working structure for applications is
a breeze.

SASL [8] is a proper tool to show various types of reports, but is a bit cum-
bersome to make proper configuration file in order to run report browser.

EUnit [3] is a unit testing framework for Erlang. EUnit can do too much
which makes it very complex and cumbersome to use. Creating tests with
it takes quite a while to learn, but we ended up using it in the end because
it seems to be the de facto standard and even ships with Rebar has
EUnit support and can test all the applications with a single command.

Common Test [6] is another testing tool that can do unit testing and more.
Rebar has a testing keyword which compiles and runs common tests. Like
EUnit, Common test also ships with [OTPl

PropEr [5] is a tool for doing model based testing where you emulate your
states and components using models. It is consequently more complex
and harder to use than the other testing tools we tried. We did not end
up using it, simply because it was too time consuming, and this level of
verification was not a requirement.

Wireshark [9] is an essential tool for network related development. We used
Wireshark to understand the packet format, protocols and the order of
messages during call setup. Wireshark also proved useful during demos to
visualize what is happening in a GSM network.

2.3 Literature

The following literature resources were useful during the project. The complete
literature used can be found in the bibliography.

e GSM Specifications for understanding GSM protocols and interfaces. The
bibliography lists all specifications we used.

e Books

— [18] for Erlang programming techniques
— |19] to understand basics of GSM

— |15] to understand how mobile systems have evolved over the time
o Reference Manuals

— Megaco Reference Manual [16]
— |22] as a reference to Layer 3 GSM Signaling protocols

2.4 Manpower

In software development projects, the most important resource is manpower. In
our case this was nine final year master students working full time a full semester.
Students in the course had different work and cultural backgrounds and thus
could contribute to the project’s goals in different roles. The team members’
different skills helped us with system administration, domain knowledge, and
programming.

2.5 Environment

We had a large room with four white boards and a coffee machine at Polacks-
backen. We used the whiteboards to organize processes such as sprint planning
and similar activities. The environment was calm and usually undisturbed,
which provided an excellent work atmosphere. We wanted to organize the ta-
bles in such a way that it would be easy to speak to each other and thus we
decided to go with a U-style (as done the previous year). This allowed us to see
and easily talk to each other.

Chapter 3

Project methodology and
organization

3.1 Scrum

Scrum [21] [23] is a subset of agile methods, based on iterative and incremental
development where requirements and solutions evolve through collaboration in
a self-organizing, cross-functional team. It promotes adaptive planning, evolu-
tionary development and delivery, a time-boxed iterative approach, and encour-
ages rapid and flexible response to change. It is a conceptual framework that
promotes foreseen interactions throughout the development cycle.

3.1.1 Scrum roles

Product owner The product owner’s responsibility is to manage and prioritize
the product backlog.

Scrum development team Self-managed team which is responsible for deliv-
ering the product and Scrum goals to the product owner.

Scrum master The Scrum team’s servant/leader who ensures that the team
achieves the sprint goals. The Scrum master is supposed to enforce the
rules and handle possible obstacles and distractions.

3.1.2 Scrum events
Sprint A sprint is a time-boxed period in which a product increment, based on
the definition of “Done” is produced. It contains sprint planning, daily

Scrum meetings called Standup, development work, a sprint review and a
sprint retrospective. A sprint is usually between two and four weeks long.

10

Sprint planning A meeting in which all team members cooperate to make a
plan for the next sprint by defining what tasks will be done during the
upcoming sprint.

Daily standup A time-boxed event of roughly 15 minutes, done in the begin-
ning of each working day. Its purpose is to keep track of what each team
member has done and what their plan for the day is.

Sprint review An event at the end of sprint at which the team together with
the product owner reviews the result of the sprint.

Sprint retrospective A meeting after the end of each sprint. During a retro-
spective the team discusses how the sprint went, points out what worked
well and identifies ways to improve the team’s work.

3.1.3 Scrum artifacts

Product backlog A list of requirements ordered by priority. It contains at-
tributes and functionality of the product defined by the product owner.

Sprint backlog A list with tasks and requirements for the next sprint. The
sprint backlog is defined by the team during the sprint planning and is a
subset of the product backlog’s contents.

Increment A working version of the product’s state at the end of a sprint.

Sprint goal Defines what the team is planning to achieve by the end of the
sprint.

3.1.4 Definition of done

A shared, transparent, and clear understanding of when a task is completed.The
definition of done is the measurement for product increment, confirmed and
agreed on by the product owner and the Scrum team members.

3.2 Customizing Scrum

We customized and used it as our software development methodology. Most of
the sprints in this project took two weeks long, except for the implementation
phase which was a three week long sprint. We elected a new Scrum master for
every sprint. We opted for a lightweight Scrum process where we reorganised
regularly during daily standups to react to changes. To document the tasks for
the next sprint we used a single white board without post-its since the number
of tasks was usually small. As a punishment for being late to the daily standup
we agreed on home-made fika for the group.

11

3.3 Sprint reflections

3.3.1 Sprint 1: Praveenkumar Bhadrapur
Sprint description

The Scrum goal and definition of done was mutually agreed upon on in Scrum
planning. The Scrum goal was component design, interface design and overall
system design. The tasks were taken-up by specialised sub-groups we defined
rather than individual persons (deviation from Scrum).

Standup meetings were mandatory and were enforced strictly at 9:00 AM every
morning.

Dividing further into smaller sub-groups was helpful to organize our design work.
This helped us concentrate on component design, which often is an interactive
process. Meetings among the sub-groups occured regularly to discuss interface
design. An architecture group consisting of one member from each sub-group
helped us get the overall design in place.

Fikas were a good get-together and helped us to get to know each other and to
work more efficiently.

Sprint review was conducted to revisit the design goal accomplished and docu-
mentation was suggested as improvement.

Obstacles and impediments

Impediments were initial lack of understanding already existing components
which did not have documentation (OpenBSC) and a lack of knowledge about
Media Gateways. Team members gained the required knowledge in time and
our contact person helped us to get the required previous Master thesis work
on Media Gateways, which could be re-used. As Scrum master daily standups
helped me keep track of the progress we were accomplishing with respect to
impediments particularly.

Our product owner could not attend the sprint review but he sent a substitute
representative from Mobile Arts. Along with him and our contact person we
were able to solve the lack of guidance.

The decision to form specific sub-group teams was helpful. Interface discussion
meetings were facilitated to help resolve ambiguities.

Communications with product owner

Standups took care of individual work status. Sub-group discussions helped
clear ambiguities and also get overall picture sooner. The product owner was
present to discuss initial backlog and a substitute product owner to review the
completed sprint goal.

12

Sprint results

Retrospectives helped us stay on track to accomplish project goal and helped us
improve, identify our short-comings. Sprint results were achieved with desirable
quality.

3.3.2 Sprint 2: Max Morén

Sprint description

For the first time we decided on an exact defintion of done for the sprint.This
gave a more concrete feeling on what was to be done as a whole than in the
previous sprint, where we only had goals and tasks.

We kept having daily standup meetings in the morning which continued to be
a very good way for to find out when people had problems or nothing to do.

Obstacles and impediments

The second sprint was our first implementation sprint. We were just coming to
terms with the ways things were supposed to work, so there was some confusion,
especially about media handling.

During planning we first thought of implementing the full system leaving out
minor features, but opted to instead implement the signalling first, pushing the
media handling into a future sprint.

Implementation went well. So well in fact, that in the end myself and a few
other team members ran out of work. We pulled in more items from the product
backlog and I tried my best to direct idlers to new tasks. We managed to
implement a lot of the media functionality in the which was not originally
in the sprint plan without sacrificing anything else so I consider it a successful
move.

Some of us also came in late sometimes but we did not think of this as a big deal
yet. We were working in teams of two, so even if someone missed the standup
he could hear from his team mate what was discussed at the standup. Usually
people were only a few minutes late, so I chose to ignore the problem for the
time being and just enjoy the punishment fikas.

Communications with product owner

Our product owner was unable to attend our previous sprint demo and planning
meeting which is perhaps the thing I'm least happy about. This meant that
both planning and implementation happened without any feedback from the
the product owner. We did have a representative present but he could not
answer some of the questions we had about our design.

We solved this by communicating with the owner during the sprint, but it took
more time than it would have had to.

13

Sprint results

The biggest issue that was brought up during the retrospective was code quality.
We did not have a coding standard and review system in place, which meant that
the code now had a large variety of indentation and naming styles. We should
definitely have started earlier with the review process that we later started using
in sprint 3.

We had also tested very little during programming, so we made plans to look
into Dialyzer and EUnit early in the next sprint.

3.3.3 Sprint 3: Moritz Rogalli
Sprint description

As it was the third sprint already, people were already used to the Scrum pro-
cess so following our lightweight Scrum process was working well. However,
latecomers were an increasing problem. After addressing the problem at a daily
standup and the announcement that the latecomer punishment was going to be
enforced more rigorously people were less late. The goal of the sprint was to
improve code quality and to implement specification compliant signalling with
media.

Obstacles and impediments

As mentioned above we had a problem with latecomers. The division into sub-
teams did not work out as planned since some tasks proved to be less or more
work than expected respectively. However, we solved it by shifting responsibil-
ities dynamically and with a minimal overhead during daily standup meetings.
Testing and integration took longer than expected which impacted the integra-
tion of the call handlers. Their functionality was implemented by the end of
the sprint, however integration was pushed into the next sprint to not risk the
deliverable being unstable at the end of the sprint. The [HLRI did not arrive
as promised so after checking with the product owner we worked around the
problem and created a simple and stubbed version that fulfilled the most basic
functionality we needed.

A major misunderstanding on media handling was cleared up by a phone call
to Lars by the media team.

The coding standard that was developed in response to issues that arose in
the first two sprints were followed by all team members and resulted in more
readable code and improved code quality. However, deficits in testing and review
became apparent during the end of the sprint and therefore review and testing
were made top priority for improvement in sprint 4.

14

Communications with product owner

Communication in the team was working really well after we rearranged the
seating order to reflect the sub-teams. I made sure to repeat important infor-
mation during the daily standups to enhance the common understanding of our
group. Erik did a great job of communicating with stakeholders outside our
group. Communication with Mobile Arts proved to be difficult. We had to wait
for answers quite a bit, this did however not impact our productivity since we
planned ahead far enough.

Sprint results

The retrospective did go well. We discussed many vital issues and came up with
improvements. We wanted to focus more on testing and reviewing and that
proved important in making the next sprints go smoothly. The code reviewing
and testing and also improved the stability of the system drastically during
sprint four. The sprint result was satisfying. Unfortunately we did not get
a working real [HLR] and integrating the call workers had to be pushed back.
We presented the deliverable at the Mobile Arts office in Stockholm for all
interested MA employees and concluded the sprint with pizza, beer, snacks and
pool biljard at the MA office. I could not attend the mingling for personal
reasons unfortunately but according to the other team members this was a big
success.

3.3.4 Sprint 4: Erik Grafstrom

The goal of sprint 4 was to complete the product and enhance the "ilities"
(availability, maintainability and usability). That meant we had to tie up loose
ends like [HLR] functionality and system wide error handling. The sprint was
short because of the project review 2 presentation. We picked some product
features like subscriber white-listing and made the session store and the [TM]
into standalone application platform services. How to do system wide testing
and the exact list of supported procedures were the major discussions.

The major problem of the sprint was to test the system and figure out if fixes
improved the product and if new features could be added without major im-
pediments. To be able to add features easily was something the product was
designed to handle.

Testing was hard and we made it even harder by not branching properly in
our git repository All team members worked on different parts in the same
branch. This created unnecessary regression bugs. The bugs were easy to fix
but it interrupted the whole team since responsibilities in the code base were
not completely clear. I tried to coach the team and branching improved to the
end of the sprint.

We ended the sprint with a product presentation and a more stable product
which we could run for demonstration without impediments. A big let down
was that the [HLR] was not delivered.

15

In retrospective the team did not blame the Scrum master for the impediments
since he made sure someone was tasked to fix impediments without major impact
on the sprint goals.

3.3.5 Sprint 5: Fredrik Pasanen

Sprint 5 was a short sprint — less than two weeks — with a lot to do. The goal
of the sprint was to complete the course report, product report, hold the final
presentation and create the deliverable CD/DVD.

The problems during the sprint were for people to know what to do each day.
The problem of people not knowing what to do was solved by discussing what
had to be done with the person responsible for their respective report during
standup. This way what needed to be done could be made clear and it was
easy to assign work to people. Muneeb was unfortunately busy with other tasks
during the sprint.

In the end the goal of the sprint was completed successfully and we created a
complete product and course report. There was no sprint demo this sprint, but
we had the final presentation in the course which went fine.

There was no retrospective after this sprint.

3.4 Working agreement

As proposed during our team dynamics coaching in the beginning of the course
we agreed on a working agreement to define the rules for our project:

3.4.1 Times

e Baseline: 08-17

e Core hours: 09-16

e Daily standup: 09

e Other meetings: Can only be planned and occur during core hours.

e Lunch: 12-13 +-15 min in 4411 or individual preference.

e Other breaks: Individual preference, at most 40 minutes per day.

e Flex: Allowed, flex has to be communicated and balanced every week.
e Tracking: Individual tracking of 7 hours worth of work per day.

o Weekends: Weekend work is not banned but not encouraged.

e Sick: Tell the team and stay at home.

16

3.4.2 Food

e Food is not allowed in 4408.

Water, coffee, tea, soda, fruit, snacks (those that doesn’t make strange
noises) are allowed in 4408.

Weekly Fika: Monday at 3 pm

e One person has to provide Fika (not store-bought) on Monday

3.4.3 Communication

e Contact person: Erik Grafstréom
e System administrator: Moritz Rogalli and Fartash Mehdinejad.

e We will setup project tracking software and and give Teachers/Mobile Arts
access to certain parts.

e We will use the software for announcements, planning, all kinds of docu-
ments, and version control.

3.4.4 Misc

e Language: Use English only, even during breaks.
e Keep 4408 and 4411 clean at all times.

e Put your bags and coats on the coathanger.

e Cellphones should be quiet.

e Calls and visitors should be handled outside 4408.
e Project visitors has to be planned in advance.

e Gaming, newsreading, social networking, music listening is selfregulated,
bring it up if it is a problem.

e If you see a problem with the agreement or the behaviour of a group
member bring it up as early as possible.

17

Chapter 4

Discussion

4.1 Scrum process

We opted for a very lightweight scrum process as described in This, and
our people-centric, direct communication approach worked very well for us. See
the Scrum masters’ reflections in [3.3] for details.

4.2 Resource management

A red stress ball was used as a mutex for the nanoBTS, groups who wanted
access to the base station had to queue for the mutex. The stress ball helped us
to determine conflicts and to use the nanoBTS efficiently. Though started for
fun, it proved extremely handy when working on a tight schedule.

4.3 Pair programming

We used pair programming for developing our code. It really helped in some
phases as the specifications are dense and inconsistent. The pairs could
always solve their problems and communicate problems with other pairs when
needed. We reused quite a few components we sometimes did not really un-
derstand the choices made by the original authors, discussing them in the pairs
made it easier for us to solve misunderstandings.

4.4 Weekly fika

Weekly fikas were held every monday where all project members gathered in the
kitchen and spent one hour socializing. It had a nice impact on team spirit and
made the team members getting to know each other better. Each week it was

18

one team member’s task to provide fika, and as we worked in an international
atmosphere, we got to know experience many delicacies from different countries.

4.5 FErlang workshop

Before the project started we had a two week Erlang workshop where we learned
how to use the language. This proved to be helpful by providing an insight into
the language, the tools and the platforms involved. We learnt the language and
felt confident using it within a few weeks. One problem though was that we
started our project with reading specifications and designing the product. This
created a big gap between learning and using Erlang making it harder to use
when we needed it.

4.6 Erlang User Conference

As part of this course, all project members were invited to the annual Erlang
User Conference. It is one of the largest gathering of Erlang users both from
the industry and the academic world. One of the requirements was to give a
poster presentation about our project there. This was an interesting experience
and helped us to understand our product better. We could also attend sev-
eral presentations on the conference and mingle with potential employers and
interesting people from the Erlang community.

4.7 Hardware

Setting up the nanoBTS and configuring it took about half a day, Tejas from
Mobile Arts as well as the openBSC website helped us with the task.

4.8 Testing constraints and integration

Testing a entire GSM system without GSM test suite proved to be a challenge.
Having only one base station also proved to a hindrance in running concurrent
tests. Fully fledged functional testing was possible only with manual test cases.
We wrote test cases for EUnit where feasible.

4.9 Working environment

A continuous possible distraction for us was to get used to noises and distrac-
tions made by external people. Working together closely in one room was an
important factor to successfully communicate in the group. The room was a bit
bare.

19

4.10 Working agreement

In the first sprints, up to the second individual interview, from time to time,
there was this problem of people coming late. One consequence was that people
would lose track of what others were doing. By enforcing Fika to latecomers at
the end, the problem seemed to be solved as the late coming occurrences de-
creased dramatically. The working agreement worked out really well otherwise.

4.11 Previous Year

In contrast to the previous year we did not start using Scrum right away, but
we did have deadlines and demos for the product owner about what we had
learned. This helped us during the reading by not trying to plan how much
time it would take and only focusing on reading and learning. Later on, when
we started implementing, we used Scrum with three week sprints not two weeks
as done by the previous year. Something that we concluded from the course
report of the previous year is that the planning did not go well and because of
this we focused on the planning part of Scrum, which we believe helped us a
lot.

20

Chapter 5

Conclusion

All in all the project was successful. We achieved almost all of our goals and
had a great time working together. We worked efficiently and our skills added
up to a very competent team that was able to deal with all bigger problems that
arose during the project.

The project course is a concept that has proved itself over the years and we had
no bigger difficulties. However spontaneous ideas like t-shirts for all Project CS
students at the Erlang User Conference came in too late some times and could
not be realized since we were usually too busy with the project itself.

The training exercises at the beginning of the course were valuable and helped
us a lot during development and to manage the group.

Having our own room with all amenities, and because the course was full time
which meant that we had no other courses running in parallel helped us a lot
in achieving the project goals.

Communication with the stake holders outside the group and the course as-
sistant proved difficult sometimes. They were usually busy with other tasks
and could sometimes not provide as much feedback as we hoped for. This was
however not a big problem for us as we could solve most problems.

Since the course should be as close to a real work experience as possible, we
suggest that all the group members be given a defined number of days off which
they have to manage themselves and which could serve both as an upper and a
lower boundary for absent days.

21

Bibliography

[1]

Dialyzer User’s guide. http://www.erlang.org/doc/apps/dialyzer/
dialyzer_chapter.html.

EDoc User’s guide. http://www.erlang.org/doc/apps/edoc/chapter.
html.

EUnit User’s guide. http://www.erlang.org/doc/apps/eunit/chapter.
htmll

Kernel-based Virtual Machine. http://www.linux-kvm.org/page/Main_
Page.

PropEr webpage. http://proper.softlab.ntua.gr/.
Rebar readme. https://github.com/basho/rebar#readmel
Redmine. http://wuw.redmine.org/.

SASL User’s guide. http://www.erlang.org/doc/apps/sasl/users_
guide.htmll

Wireshark webpage. http://www.wireshark.org/.

3GPP. GSM 04.08 v.7.0.0. http://www.3gpp.org/ftp/Specs/archive/
04_series/04.08/0408-700.zip, 1998. Mobile radio interface layer 3
specification.

3GPP. GSM 23.002 v.7.0.0. http://www.3gpp.org/ftp/Specs/archive/
23_series/23.002/23002-700.zip, 2005. Technical Specification Group
Services and Systems Aspects; Network architecture.

3GPP. GSM 23.018 v.7.0.0. http://www.3gpp.org/ftp/Specs/archive/
23_series/23.018/23018-700.zip, 2005. Technical Specification Group
Core Network and Terminals; Basic call handling; Technical realization.

3GPP. GSM 48.008 v.7.0.0. http://www.3gpp.org/ftp/Specs/archive/
48_series/48.008/48008-700.zip, 2005. Technical Specification Group
GSM/EDGE Radio Access Network; Mobile Switching Centre - Base Sta-
tion System (MSC-BSS) interface; Layer 3 specification.

22

http://www.erlang.org/doc/apps/dialyzer/dialyzer_chapter.html
http://www.erlang.org/doc/apps/dialyzer/dialyzer_chapter.html
http://www.erlang.org/doc/apps/edoc/chapter.html
http://www.erlang.org/doc/apps/edoc/chapter.html
http://www.erlang.org/doc/apps/eunit/chapter.html
http://www.erlang.org/doc/apps/eunit/chapter.html
http://www.linux-kvm.org/page/Main_Page
http://www.linux-kvm.org/page/Main_Page
http://proper.softlab.ntua.gr/
https://github.com/basho/rebar#readme
http://www.redmine.org/
http://www.erlang.org/doc/apps/sasl/users_guide.html
http://www.erlang.org/doc/apps/sasl/users_guide.html
http://www.wireshark.org/
http://www.3gpp.org/ftp/Specs/archive/04_series/04.08/0408-700.zip
http://www.3gpp.org/ftp/Specs/archive/04_series/04.08/0408-700.zip
http://www.3gpp.org/ftp/Specs/archive/23_series/23.002/23002-700.zip
http://www.3gpp.org/ftp/Specs/archive/23_series/23.002/23002-700.zip
http://www.3gpp.org/ftp/Specs/archive/23_series/23.018/23018-700.zip
http://www.3gpp.org/ftp/Specs/archive/23_series/23.018/23018-700.zip
http://www.3gpp.org/ftp/Specs/archive/48_series/48.008/48008-700.zip
http://www.3gpp.org/ftp/Specs/archive/48_series/48.008/48008-700.zip

[14]

[24]

[25]

[26]

3GPP. GSM 48.006 v.7.0.0. http://www.3gpp.org/ftp/Specs/archive/
48_series/48.006/48006-700.zip, 2006. Technical Specification Group
GSM EDGE Radio Access Network; Signalling transport mechanism spec-
ification for the Base Station System - Mobile-services Switching Centre
(BSS - MSC) interface.

Ericsson AB. GSM System Survey. Ericsson AB, 2008.

Ericsson AB. Megaco/H.248 Users Guide. http://wuw.erlang.
org/documentation/doc-5.4.12/1ib/megaco-3.2.3/doc/html/part_
frame.html) 2011.

Ericsson AB. Erlang/OTP R15B. http://www.erlang.org/doc/), 2012.

Francesco Cesarini and Simon Thompson. Erlang Programming. O’Reilly,
20009.

Gunnar Heine. GSM Networks: Protocols, Terminology, and Implementa-
tion. Artech House, 1999.

Harold Welte. Free Software GSM Protocol Stacks OpenBSC, OpenS-
GSN, OpenGGSN, OsmocomBB. http://elinux.org/images/6/65/
Elce2010-welte-openbsc.pdf, 2010.

Henrik Kniberg. Scrum and XP from the Trenches. InfoQ, 2007.

ISEL. Sistemas de Telecomunicagbes III. http://www.deetc.isel.
ipl.pt/sistemastele/ST3/arquivo/GSM/420Messages.pdf, 2009. Layer
3 GSM signaling protocols messages.

Ken Schwaber and Jeff Sutherland. Scrum Guide. http://www.scrum.
org/storage/scrumguides/Scrum_Guide.pdf, 1991-2011.

Kevin Breit and Henry House and Judith Samson. Dia manual. http:
//projects.gnome.org/dia/doc/dia-manual.pdf, 2000.

Linus Torvalds. Git User’s manaual. http://schacon.github.com/git/
user-manual.html, 2005.

nanoBTS. The world’s most deployed picocell. http://www.hexazona.
com/nexwave/docs/ipaccess/nanoGSM/,20Brochure. pdf, 2012.

Olle Géallmo. Projekt DV (project CS) 2011. http://www.it.uu.se/edu/
course/homepage/projektDV/ht11, 2011.

Team Mobile Arts Project CS 2011. Product report GSM Call Service,
2012.

23

http://www.3gpp.org/ftp/Specs/archive/48_series/48.006/48006-700.zip
http://www.3gpp.org/ftp/Specs/archive/48_series/48.006/48006-700.zip
http://www.erlang.org/documentation/doc-5.4.12/lib/megaco-3.2.3/doc/html/part_frame.html
http://www.erlang.org/documentation/doc-5.4.12/lib/megaco-3.2.3/doc/html/part_frame.html
http://www.erlang.org/documentation/doc-5.4.12/lib/megaco-3.2.3/doc/html/part_frame.html
http://www.erlang.org/doc/
http://elinux.org/images/6/65/Elce2010-welte-openbsc.pdf
http://elinux.org/images/6/65/Elce2010-welte-openbsc.pdf
http://www.deetc.isel.ipl.pt/sistemastele/ST3/arquivo/GSM%20Messages.pdf
http://www.deetc.isel.ipl.pt/sistemastele/ST3/arquivo/GSM%20Messages.pdf
http://www.scrum.org/storage/scrumguides/Scrum_Guide.pdf
http://www.scrum.org/storage/scrumguides/Scrum_Guide.pdf
http://projects.gnome.org/dia/doc/dia-manual.pdf
http://projects.gnome.org/dia/doc/dia-manual.pdf
http://schacon.github.com/git/user-manual.html
http://schacon.github.com/git/user-manual.html
http://www.hexazona.com/nexwave/docs/ipaccess/nanoGSM%20Brochure.pdf
http://www.hexazona.com/nexwave/docs/ipaccess/nanoGSM%20Brochure.pdf
http://www.it.uu.se/edu/course/homepage/projektDV/ht11
http://www.it.uu.se/edu/course/homepage/projektDV/ht11

Chapter 6

Appendix A: Individual
contributions

6.1 Praveenkumar Bhadrapur

Mainly worked and was responsible for Connection Service, Media Gateway, Me-
dia Gateway Controller and Operator Handling functionality for Media gateway.

During the initial sprint , I worked with Ebby to understand MG, Media Gate-
way Controller and Connection Service. and worked with other team members
to understand GSM architecture and network signaling.

During the design phase of our project, I designed Connection Service with
Fartash, Reza. Re-jigged the design of Media Gateway and Media Gateway
Controller to suit our project. Operator functionality was designed along with
Max for Media Gateway. Helped design the system architecture.

During the implementation phase, I implemented Connection Service and in-
terface’d with workers. Implemented operator handling functionality for media
gateway. Implemented modifications to have megaco terminations independent
of RTP as bearer. Used eclipse with erlide and found it to be write Erlang
programs.

During the testing phase, I tried E Unit’s ,E Unit was cumbersome for more
interactive components like [CS] [MGC| Dialyzer was run over CS, MGC,
MG helped fix warnings and have better code in general. Wireshark was use-
ful and Max helped me use it to get the RTP packets routed to BSC’s RTP
terminations. Latezr , dia have been useful.

During the documentation phase, documented product report for CS, MGC,
MG components. Presentation and EUC poster preparation was done with
Erik, Max and Moe, Fredrik respectively.

In the 1st Sprint, I took up scrum master role to achieve the goal of designing
components, interfaces and overall system architecture.

24

6.2 FErik Grafstrom

Design

To be able to design something handling a couple of MSs and calls with media I
had to both understand Erlang/OTP and the message passing nature of GSM.
We did have a set of requirements but those were written in telecom language
which forced me to read up. I had some prior knowledge of GSM and the
RAN/CN but only at the network level. My previous experience in distributed
and embedded systems was helpful.

My first task was to define signaling sequences for call and location procedures.
I did this together with Max and Fartash and we finished the task with great
confidence since we had a solid specification collection and books/sites to use
as reference.

I worked with Ebby and Egemen on my second design task, the MUS component.
We defined what is session is and how messages would be passed back and
forth between a MS and the corresponding procedure handler in the MUS. The
design consisted of a MUS gen_ server, Session Store record and gen_ fsm for
the procedure handlers. Inter working of the A, B, C, D and E interfaces were
one of our major concerns, our internal interfaces had second priority.

The third design task was overhauling the VLR since the VLR from previous
year lacked proper procedure handling, we used our experience from the MUS
design and defined a VLR server with procedure handlers.

Overall we worked hard to make the product modular to make it easier to add
more services like SMS, O&M and maybe data.

Implementation

The first real implementation task was done with Max, we extended previous
years A interface codecs and wrote a proof of concept MUS capable of handling
one signaling session. It handled signaling required for call and location proce-
dures. After the MUS concept was running we looked into media circuits. We
played around with the media capabilities of osmo-bsc and supervision of the
MUS.

The next task was creating the procedure handlers for call setup, Max and I
worked on originating and terminating while Egemen worked on the gateway
role. The first rough implementation was integrated with the session, routing
and connection service logic which resulted in an MUS capable of concurrent
calls.

The third task was improve the location procedures. Moe, Egemen, Reza and
I took the path of reimplementing the VLR and that was a commitment which
I carried over a couple of sprints. The gen_ server and gen_ fsm approached
allowed us to implement a VLR supporting specification compliant procedure
handling on both the B, C and D interface.

25

Testing and cleanup

We did not have an overall plan for testing the system which translated into
doing manual ad hoc testing. I did it throughout the project which took a lot of
time but it was fruitful. I was able to fix impediments in the parts of the code
I was responsible for and also discuss the inter working with other components.

Since I had been working on location, call and MUS procedures throughout the
project, I had to maintain that code and later clean it up.

Documentation

I have been part of the presentation group throughout the project covering the
bachelor, poster, MA, review 2 and final presentation. I have continuously been
working on creating diagrams for implementation, design and presentation. One
of my major concerns has been to figure out how to explain the GSM domain,
our design and implementation ideas to an audience without domain knowledge.

Since we have been using latex for reports and presentation material I have
introduced and helped some team members to get started with typesetting in
latex.

Tools

I've extensively used the 3GPP and ITU-T specifications as reference during
design and implementation since we wanted to make our product as specification
compliant as possible. 3GPP 23.012, 23.018, ITU-T Q.713, Q.763 and Q.764
have been extensively used for call and location procedures. [11] [12] 3GPP
48.008, 48.006 and GSM0408 were used as reference for A interface messaging.
113] [14] [10]

Development tools like Erlang/OTP, Red mine, git, wire shark, eunit, edoc,
rebar have been interesting to work with. I have used some of the tools before
but learnt a lot about the tools, especially Erlang/OTP.

Methodology

Pair programming in combination with Scrum has been one of the best things
about the project. Working in the same room made communication between
pairs easier, but there is always noise and sometimes individual space is com-
promised. We made sure we spent time on fika to get to know each other.

Contact person
I have been the contact person from day one, responsible for communication with

MA, examinator Olle and assistant Muneeb. I have assembled sprint reports
and made sure all stakeholders have been informed about upcoming events. I've

26

also handled the day-to-day business of relaying external communication into
the stand ups and reporting sick people.

Scrum master

I wanted to try out the role of scrum master. The 4th sprint was my pick since
it involved both tying the product together and coach the team to focus on the
right tasks.

6.3 Ebby Wiselyn Jeyapaul

During the design phase I collaborated with Praveen, since it was the require-
ments sprint, we spent a lot of time reading through the specs, what could be
highlighted was the effort taken to get a complete picture of the problem we were
trying to solve, an hack and learn approach was impossible so we spent most of
the time with the documents, trying out possibilities of design, understanding
how the signalling and the components fell in place.

After the initial design and gathering we had to describe the overall system
design. This was much easier and also left us with a lot of gray areas not fully
understanding certain aspects of our design. The final part of the design phase
was to design components and do the flowchart, to design connection service,
and media gateway. I also collaborated with Erik, Egemen in designing the
component design of MUS Controller, the MUS and the TCP Server. At the
start of the implementation phase I initially worked a bit on the codecs library.

I was paired up with Fred for the implementation phase, it proved very handy,
fred could analyse and solve the problems faster and pretty good coder too, this
was good for me to pair up and implement the crucial components like the TCP
Server, which was the intial component done, to test with the codecs library, we
needed a simple, working, design to get to the implementation phase, and this
proved handy.

Next was the implementation of the complicated MUS module, me and Fred
had to run through the documents created in the requirements phase, the MUS
module was the connecting bridge between the BSS and the MG team, so we
had to deal with a lot of stress, accomodate many changes, and also consider
effective integration, I could relate to MG because I was involved in the design,
and fred could relate to BSC . MUS Controller, was the module which contained
a lot of complexity and it was done in best effort way, the only change of design
that we could envision now was to clear seperate layers of signalling, but it still
has it’s cost with extra complications in dealing with stray messages that have
no associations with any layer.

I also implemented the Session Store and Transit Module with fredrik, and pe-
riodically maintain small parts of location worker, MO, MT and the gateway
workers. I also watched out for commit reviews, changes in modules responsi-
ble, and also random commits which should affect functionality. Handling the

27

integration and writing a module which was susceptible to many changes and
extremely cohesive

In the final sprint, I designed the initial test case document, to test and docu-
ment the entire system.

6.4 Fartash Mehdinejad

I joined the project with no background in GSM. Thus, I had to spend a lot of
time doing readings and research to gain a general understanding of the field. It
started with general GSM networks topic and how they work, and ended with
detailed call sequences that are necessary for a call to be established.

After the research phase, along with other members of the team, I participated
in the architecture and interface design of the system. In the next stage, the
team divided itself into a number of subgroups, each of which implementing a
part of the system. I joined the Connection Service subgroup whose task was
design and implementation of an application platform for the system.

Considering that 1T did not have any background in Erlang, I needed to do
readings about Erlang/OTP and different behaviors. The Connection Service
was supposed to communicate with the MG to create contexts, so I had to
understand how the MG that had already been given to us worked thoroughly,
and also read the documentation of Megaco/H.248.

After implementation of the Connection Service, I reviewed all the code to make
sure it was flawless.

In the debugging phase of our project, I spent time learning how Dialyzer
worked, and used it to extract some of the issues of the Connection Service.
Also, I worked with VLR team to resolve minor bugs in the system that had
roots in VLR’s behavior.

Finally, I worked as co-system administrator with Moe. Also, I and Erik pre-
sented our project to first year students.

6.5 Max Morén

Like most people, I wrote code in almost every module, although my main
responsibility was media handling, most of all in the BSC.

During first sprint, I worked with Erik and made signalling sequence diagrams
for all the supported sequences.

During the second sprint, in which I acted Scrum master, I again worked with
Erik and we wrote the IPA and SCCP codecs. We also extended the other
GSM codecs with the new message types we needed. In the second half of the
sprint we implemented the first workers for basic originating and outgoing call
handling.

28

Also during second sprint, I started working alone on implementing an RTP
bridge in OpenBSC. I got basic media forwarding working, using a temporary
manual UDP switching application that could connect two calls together.

During the third sprint, I finished the work on the BSC and added circuit
management support to it. I also wrote the MSC RTP termination agent.
During this I communicated much with Praveen who was working on the MGC,
MG and connection service.

During the fourth sprint, I cleaned up and fixed code in various parts of the
system. I wrote unit tests where possible and set up proper OTP applica-
tion structure. I started working together with Fredrik on the supervision and
robustness features of the system. Finally I made it possible to generate a
combined release of all system applications and another release for the media
gateway.

In the fifth sprint I continued working with Fredrik and we finished the supervi-
sion and robustness work and then tested the system thoroughly. Together with
everyone else I made diagrams and wrote sections for the reports and product
presentation. Me, Erik and Praveen finally presented our product during the
final product presentation.

6.6 Fredrik Pasanen

During the first sprint, I — like everyone else — started with reading specifi-
cations and studying GSM-networks. I grouped up with Egemen and Reza in
creating sequence diagrams for different location and call scenarios which were
the deliverables for this sprint.

For the first half of sprint one, I — together with Egemen and Reza — worked on
the system architecture. During the second half I worked with Max in figuring
out how OpenBSC handles signalling and media.

In the second sprint, I got paired with Ebby in creating the Supervisors, MUS
and MUS Controller. I were also in the group creating the poster for the Erlang
User Conference poster consisting of me, Praveen, Moe and Egemen.

In the third sprint, I again got paired with Ebby in creating the Transit Module
used for routing ISUP-messages. I were also in the coding and testing guidelines
group with Ebby and Max. I also tried some tools for testing our code (PropEr
and Common Test).

In the fourth sprint, I continued working with Ebby, but now with the task of
making the Session Store and Transit Module external applications.

In the fifth sprint, I were chosen as the Scrum Master. Started this sprint with
completing the crash handling for the system and the testing and fixing the
system if necessary (worked with Max on this). During the rest of the sprint I
helped write the course and product reports.

29

6.7 Moritz Rogalli

System Administrator

I had the role of system administrator together with Fartash. This meant that
it was my job to provide an infrastructure and services to the group to be able
to work. For that I installed several wvirtual machines for our purposes. The
provided services range from development and process services like git, Red mine
and pdf exports for wiki pages to testing infrastructure. I also created support
services like an internal DNS system and a backup infrastructure. The role
also gave me the responsibility to apply for hardware and resources at systems
support. I also was responsible for supporting people from Mobile Arts to be
able to work with us. For that I applied for external remote access, provided
virtual machines and knowledge about our setup whenever needed by Tejas or
Johan from MA. In that role I, together with Tejas, was also responsible for
getting the base station up and running.

Poster for the Erlang User Conference

Together with Praveen and Fredrik I was in charge of developing the poster for
the Erlang User Conference. After we composed the input we collected from
the whole group for the content into a concept I made the layout and diagrams
for the poster.

VLR Rewriting and Spec Compliance

Together with Egemen I was responsible for redesigning and rewriting the VLR.
This task was bigger than originally expected since the old VLR was not suitable
at all for our purposes. We were later joined by Erik and Reza who took over
the location management. I mainly contributed the incoming call handler in
the VLR and the mt worker, which handle a call on the terminating side and
the roaming number support in the VLR.

Scrum Master Sprint 3

For the third sprint I was elected scrum master during which we concentrated
on improving our coding style and rewriting and improving the system to be
more spec compliant.

6.8 Mohammadreza Taghilu

In the very first 3 weeks of the project, our team was divided into 3 subgroups to
do research in GSM system architecture, components and terminology. Through
instructions given by Mobile Arts as product owner, I, along with my subgroup-
Egemen and Fredrik- likewise other teammates, started working on sequence

30

diagrams over different scenarios in GSM location and call procedures by study-
ing GSM resources, such as specifications, books and diagrams. Meanhwhile,
it was also needed to survey theses done in conjuction with the company in
previous years.

Eventually, we ended up with a proposal for system architecture and 3 seperable
parts to be done: BSC/BTS, MSC/VLR and CS and MG. 1 chose CS, which
was a part of application platform. Hence, I collaborated with Fartash and
Praveen to design, and digitize CS call’s finite state machine, Service Virtual
Switch (SVS) flow, Access Virtual Switch(AVS) flow, release flow, tone flow, vir-
tual port connection and join flow, along with correspondent data structure and
skeleton. Afterwards, I needed to spend some time over Erlang error handling,
behaviours(specially gen_fsm), and database handling to help on implementa-
tion phase.

In the next sprint, in order to improve location management, 1 joined MUS
group, collaborating with Erik, Egemen, and Moe who had already spent consid-
erable time over implementation and reviewing related modules in MSC/VLR.

The task was to improve modules VLR, (MSC)location worker, and VLR, loca-
tion worker to become spec compliant and also to revise them based on code
conventions, therefore I needed to review other related Singaling modules such
as mus__con, tcp__server and codex modules as well as specifications in connec-
tion with implementation details of location and call sequences, in parallel.

Along with Erik, I tried Erlang rebar and worked over application and supervi-
ston design, location management modules and also system architecture design.
We also tried SASL application in order to log errors while running MUS ap-
plication. Using Dialyzer, 1 also reviewd mo__worker and mt_worker and drew
fixes over functions, code design, and terms.

At the end, I worked with Fartash on some parts of course and product report.

6.9 Egemen Taskin

During first 3 weeks I spent my time with the internal group(Fredrik & Reza) to
understand whole story of how basic GSM call set-up works in different scenarios
required to be handled in the product and read related specifications and I
noticed that specifications are not just enough to understand basic principles
of GSM then i read some parts of Ericsson’s education notes and a book about
GSM. Also, because of the fact that I am a newbie at writing code in Erlang, 1
started revising last year’s code and tried to catch implementation tricks.

After everybody got the whole idea behind GSM, we had brainstorming sessions
to create a system architecture. After these sessions, we are divided into 3 groups
and I involved in MUS group. We as group specified state machine diagrams and
decided initial Erlang message format for the communication among entities and
then I digitalized all state machines for future reference and for that everybody
wants to see whole story in our architecture.

I and Moritz started examining Tejas’s location worker and changed former

31

message format with the format that we had decided before. After that, I got
the skeleton code of MO & MT worker ,implemented by Max & Erik, and added
the support for specified release cases and timeouts according to specifications.
After that, i implemented Gateway worker and release cases related to it.

As whole group, we decided to re-implement VLR according to specifications.
I and Moritz designed new VLR, implemented some part of it and we noticed
that it is more complex and more work than we think. Therefore, I and Moritz
mostly focused on VLR without Location management part. Then, I imple-
mented VLR’s outgoing call handler worker and integrated it into MO & VLR.
In documentation phase, I and Ebby wrote partly product & course report.

32

	Introduction
	Resources
	Hardware
	Servers
	Backup

	Software
	Literature
	Manpower
	Environment

	Project methodology and organization
	Scrum
	Scrum roles
	Scrum events
	Scrum artifacts
	Definition of done

	Customizing Scrum
	Sprint reflections
	Sprint 1: Praveenkumar Bhadrapur
	Sprint 2: Max Morén
	Sprint 3: Moritz Rogalli
	Sprint 4: Erik Grafström
	Sprint 5: Fredrik Pasanen

	Working agreement
	Times
	Food
	Communication
	Misc

	Discussion
	Scrum process
	Resource management
	Pair programming
	Weekly fika
	Erlang workshop
	Erlang User Conference
	Hardware
	Testing constraints and integration
	Working environment
	Working agreement
	Previous Year

	Conclusion
	Appendix A: Individual contributions
	Praveenkumar Bhadrapur
	Erik Grafström
	Ebby Wiselyn Jeyapaul
	Fartash Mehdinejad
	Max Morén
	Fredrik Pasanen
	Moritz Rogalli
	Mohammadreza Taghilu
	Egemen Taskin

