
Project CS 2012 Course Report

Uppsala University

Daniele Bacarella
Jon Borglund
Paolo Boschini
Kiril Goguev

Faroogh Hassan
Marcus Ihlar

Alexander Lindholm
Knut Lorenzen

Harold Mart́ınez
Thomas Nordström
Thiago Costa Porto

Linus Sunde
Kim-Anh Tran

Abstract

Project CS is a full-time full semester course where students learn to work
in a big project in cooperation with industry partners.

In the 2012 version of the course students collaborated with Ericsson Re-
search to develop applications in the domain of Information Centric Net-
working. One team of five developed an ICN-enabled web browser for
Google’s Android platform, while another team of eight developed a backend
ICN prototype using Erlang.

Scrum was considered a big help in the development of the products. The
groups experienced difficulties with planning and time-estimation of tasks.

Contents

1 Introduction 5

2 Resources 7

2.1 Project Group . 7

2.1.1 Seating arrangements 8

2.2 Equipment . 9

2.3 Tools . 10

2.3.1 Development Languages 10

2.3.2 Continuous Integration & Build Server 10

2.3.3 Version Control . 11

2.3.4 Policies . 12

2.4 Project Management . 13

2.4.1 Redmine . 13

2.4.2 JIRA . 14

3 Project methodology and organization 15

3.1 Scrum . 15

3.1.1 Roles . 15

3.1.2 Scrum Keywords . 16

1

3.1.3 Scrum process . 18

3.2 Use of Scrum in this project 18

3.2.1 Daily meetings . 18

3.2.2 Sprint planning . 19

3.2.3 Demo . 19

3.2.4 Retrospectives . 20

3.2.5 Conflicts . 20

3.3 Quality Assurance . 21

3.3.1 Pair-programming . 22

3.3.2 Code Reviews . 22

3.4 Timeline . 23

3.4.1 Pre-Scrum . 24

3.4.2 LISA . 24

3.4.3 ERNI . 29

4 Team Building 33

4.1 Team Building . 33

4.1.1 Fika . 33

4.1.2 Birthdays . 33

4.1.3 Eating out . 34

4.1.4 Bowling . 34

5 Conclusion 35

5.1 Conclusion . 35

A Individual input 38

A.1 Daniele Bacarella . 38

2

A.2 Jon Borglund . 39

A.3 Paolo Boschini . 40

A.4 Kiril Goguev . 41

A.5 Faroogh Hassan . 43

A.6 Marcus Ihlar . 44

A.7 Alexander Lindholm . 45

A.8 Knut Lorenzen . 46

A.9 Harold Mart́ınez . 47

A.10 Thiago Costa Porto . 48

A.11 Linus Sunde . 49

A.12 Kim-Anh Tran . 50

A.13 Thomas Nordström . 51

B Git Workflow 53

B.0.1 Starting a sprint . 54

B.0.2 Working during a sprint 54

B.0.3 Deploying a Done story 54

B.0.4 Testing a sprint story 55

B.0.5 Merging in to develop 55

B.0.6 Merging in to release 55

B.0.7 Merging in to master 56

B.0.8 Post-sprint practice 56

B.0.9 References . 56

C Jenkins Setup 57

C.1 Building Jenkins . 57

3

C.2 Jenkins configuration . 57

C.2.1 Java JDK . 58

C.2.2 Android tools . 58

C.2.3 Ant . 58

C.2.4 GIT . 58

C.2.5 JIRA . 59

C.2.6 Email server . 59

C.2.7 Projects . 60

C.3 our GIT workflow with Jenkins 62

C.3.1 Backend Staging . 62

C.3.2 Backend Develop . 62

C.3.3 Backend Release . 63

C.3.4 Backend Demo . 63

D Erlang Coding Standards 65

D.1 Engineering Principles . 65

D.1.1 Export As Few Functions As Possible From a Module 65

D.1.2 Prefer Readability Over Speed 65

D.1.3 Directory Structure of an OTP Application 66

D.2 Specific Lexical and Stylistic Conventions 66

D.2.1 Comments and Documentation 67

E Java and Android Coding Standards 68

E.1 Java Language Rules . 68

E.2 Java Style Rules . 69

4

Chapter 1

Introduction

Project CS1 is a university course at Uppsala University that offers a soft-
ware project in cooperation with a company. Ericsson Research ([2]) acted
as the customer for this project whereas the IT department of Uppsala
University facilitated us with a project room, software and hardware infras-
tructure.

The main purpose of this project was to develop a product based on Information-
Centric Networking(ICN), as described in [11]. One out of four architectures
that realize this concept of ICN is the Network of Information (NetInf, see
[11]). The new idea behind ICN and thus NetInf is to retrieve requested
content from any device instead of retrieving it from a specific host. As a
result, content can be theoretically downloaded from any number of nearby
devices via peer-to-peer. This way network congestion could be avoided.

The project group was divided into two teams where one team was dedicated
for developing the front-end of the application whereas the other team was
given the task to develop the back-end. The front-end group was called
LISA (abbreviation for ”Look! I see ants!” which sounds like ICNs) and
consisted of five members whereas the back-end team was named ERNI
(Erlang NetInf) and was made up of eight individuals.

Starting off with the front-end’s loose requirement to use NetInf within an
application that can communicate with the back-end’s server, the front-end
decided to develop a mobile browser called ”Elephant”. Elephant looks like

1http://www.it.uu.se/edu/course/homepage/projektDV/ht12

5

http://www.it.uu.se/edu/course/homepage/projektDV/ht12

a normal browser from an end-user’s perspective. So what differentiates
a normal browser from the developed one? Instead of using normal host-
based networking, a more information-centric networking approach is used.
Many recent papers and research efforts have noted that we should move the
Internet away from its current reliance on purely point-to-point primitives
to designs that make the Internet more data-oriented or content-centric. [10]

Therefore the browser is a proof-of-concept towards a new networking model
where Information Objects are in focus. For the development Ericsson pro-
vided Android phones. Thus, Java was the language of choice.

The back-end team developed the Name Resolution Service (NRS, see [11])
to perform the back-end operations using Erlang/OTP[3]. The details of
the functionalities developed by the front-end and back-end teams can be
found in the product report.

Both teams followed Scrum as the software development methodology. Scrum
is a framework structured to support complex product development. Scrum
consists of Scrum Teams and their associated roles, events, artifacts, and
rules ([15]). You can find a short description about Scrum and how we used
Scrum in Section 3.1.

This document describes in detail the various tools, methodology and equip-
ment we used to achieve our goals. For more technical details about the
products developed during the course please refer to the product report[12].

6

Chapter 2

Resources

2.1 Project Group

In our project we were 13 students coming from 7 different countries (see
Figure 2.1). It was a great experience to have team mates from different
parts of the globe - not only working-wise but also food-wise! As our fika
rule states, any person who comes later than 9 o’clock should bring fika for
the rest of the group. Thus, we could try Tequeños (”cheese sticks”) from
Venezuela or Tiramisu from Italy.

Due the scale of the project, the group decided to divide itself into two
teams: The frontend team (LISA), responsible for implementing the client
side of the NetInf project and the backend team (ERNI), responsible for
implementing the server technology.

The groups were divided as follows:

7

Group member Nationality

Daniele Bacarella

Jon Borglund

Paolo Boschini

Kiril Goguev

Faroogh Hassan

Marcus Ihlar

Alexander Lindholm

Knut Lorenzen

Harold Mart́ınez

Thomas Nordström

Thiago Costa Porto

Linus Sunde

Kim-Anh Tran

Table 2.1: Each group member’s nationality

The Frontend team (LISA)

Paolo Boschini
Harold Mart́ınez
Thiago Costa Porto
Linus Sunde
Kim-Anh Tran

The Backend team (ERNI)

Daniele Bacarella
Jon Borglund
Kiril Goguev
Faroogh Hassan
Alexander Lindholm
Knut Lorenzen
Thomas Nordström

Since we had two office rooms, each team could have one of its own. Never-
theless, we had to continuously communicate with each other, since we were
working on the same project with the same customer.

2.1.1 Seating arrangements

The seating arrangement of both groups are shown in Figure 2.1 and Figure
2.2. The main point of the seating within both groups was to face each other,
so that social interaction and communication was facilitated.

For bigger discussions though, the backend team used the coffee room,
whereas the frontend team had a separate discussion table in the corner

8

Figure 2.1: Frontend seating arrangement

of the room. Therefore other team mates could continue working without
being distracted.

2.2 Equipment

All the members in the teams were provided with a Desktop PC. In addi-
tion to the main development PC’s there were three servers running Git,
Redmine, JIRA and Jenkins and a projector from Uppsala University. The
teams installed Ubuntu 12.04 LTS on all the machines.

Ericsson Research also gave the LISA team eight Android phones for devel-
opment and testing. Each Android phone came with the JellyBean Android
OS.

9

Figure 2.2: Backend seating arrangement

2.3 Tools

2.3.1 Development Languages

The LISA team used Java along with the Android SDK. Their application
was targeted at JellyBean Android OS version 1.4.1 (Version 16).

The ERNI team used Erlang, Javascript, and HTML 5 as their development
languages. The main product was coded in Erlang. During the final sprints
the client wanted to add video streaming. As a result of this ERNI also
created an HTML client interface to our system using Javascript and HTML
5.

2.3.2 Continuous Integration & Build Server

A continuous integration (CI) server was adopted which allowed the devel-
opers to create special ’jobs’ which controlled the compilation, error report-
ing/blaming and source control. Other instances of this project used tools
like Buildbot[1]. but after a long and fruitless effort to make and configure
buildbot properly the teams determined that Buildbot was a waste of time
and looked into a more powerful/user friendly CI server called Jenkins[6].

10

Jenkins is a CI tool with an HTTP interface that allows users to setup cus-
tom jobs for their project. Things like monitoring a version control system
for changes or running command line arguments on the code in the project is
easy and user friendly with Jenkins due to plenty of tutorials and resources
available online. Jenkins controlled both the ERNI and LISA project.

Jenkins was particularly useful for informing individuals who ’broke the
build’. If Jenkins is configured with the email addresses of all people and
a build job fails after someone has updated the source code then, Jenkins
will send an email out notifying those who have broken the build and those
who are affected (all other collaborators on the current code file which is
broken).

Appendix C C.1 describes in detail how Jenkins was setup for use in this
project.

2.3.3 Version Control

In order to keep the workflow going at a good pace the teams elected to
have version control, which is good practice in all projects. Git[5] was used
with a custom workflow shown below.

Have a server side repository with 4 initial persistent branches.

• master

• staging

• develop

• release

The following naming convention for temporary branches was adopted:

• SprintX.shortStoryName

The temporary branches were deleted after each successful merge to the
DEVELOP branch.

11

2.3.4 Policies

• master

The ’master’ branch was allowed only to contain Demo code. This
is the code which contains ONLY the fully tested and integrated sto-
ries.

Tags were made here under the following convention:
SprintX.shortStoryName

This was Jenkins build tool controlled area - No human user was al-
lowed to operate in this branch.
Jenkins is responsible for merging from ’release’ to ’master’ at the end
of a sprint- in order to keep the branches synchronized and provide a
fresh clean start for each sprint from working demo code.

• release

The ’release’ branch was allowed only to contain individual stories
which were completed and fully unit tested. Here the team could pick
and choose which stories to include in a specific demo. This branch
was also a Jenkins build tool area.
Jenkins was responsible for integration testing and merging between
’release’ and ’master’.

• develop

The ’develop’ branch was allowed to contain all the code that was
able to be compiled on the server and is where the human users would
start their personal story branches. Also a Jenkins build tool area, the
code here was considered in a ”Story done and compiles but not yet
tested” state.
Jenkins was responsible for unit testing and merging between ’develop’
and ’release’.

• staging

The ’staging’ branch contained all the dirty code and is where the
human users would push all their code when finished for the end of

12

the day. This was also the branch where Jenkins was used. Jenkins
would pull each new commit and try to compile it, if it compiled then
it would be merged with the ’develop’ branch. If not, Jenkins would
notify the users who had commited changes since the last failing com-
mit.

• SprintX.shortStoryName

The branch’s name contained the word ’Sprint’ with the current sprint
number appended by a short story name-typically the name written
on the post-it note for example: Message Handler. A merge to the
’develop’ branch would mean the story was considered done for the
sprint but required testing by integration tools and Jenkins. This
branch would be deleted after the tests were passed and a successful
merge was complete.

For instructions on how to utilize this workflow see Appendix B.0.1.

2.4 Project Management

There have been many suggestions from previous instances of this course
to use project management/issue trackers. Initially both teams were using
Redmine[8] but then decided to diverge and try out another project man-
agement tool.

2.4.1 Redmine

The ERNI team decided to use Redmine[8] for the duration of the project.
The tool provided useful features such as

• Wiki

• Version Control explorer

• Bug and Issue tracking

• Time keeping

• File storage

13

Redmine is easy to install and free of cost, including plenty of plugins for
various needs. BitNami offers a free one-click-installer package for Redmine.
Both teams started the first sprint with Redmine installed and two projects
configured. Redmine was used heavily for the first sprint by ERNI for cre-
ating issues and trying to keep track of time spent for each task in order to
aid in planning the time required for each task.

However by sprint two’s retrospective and a changeover to a new Scrum
master, the ERNI team decided to drop the issue tracking and the time
keeping as they felt it was too much overhead and did not help so much
with the time estimation of tasks. The wiki became the most extensively
used feature of this tool followed by the Version control explorer.

Instead of creating issues and assigning them in Redmine the ERNI team
opted for a simpler solution, writing tasks on post-it notes and adding them
to the Scrum board. Even though this was simpler, it became messier as
sprints became longer.

2.4.2 JIRA

The LISA team wanted to test out JIRA[7] since they had many issues
getting the plugins and the right functionality for their team. JIRA unlike
Redmine is not free, and comes with a 3 month trial license. LISA felt
that this provided much more functionality than Redmine and was easily
customizable.

JIRA worked well for LISA as each member was at one point Scrum Master,
and was able to keep work logs, issues and assign tasks easily. The major
point for using JIRA was persistence as each Scrum sprint was catalogued.

14

Chapter 3

Project methodology and
organization

3.1 Scrum

Scrum is an agile software development framework that is used for planning,
managing and undertaking a software project. Scrum is designed to optimize
flexibility and productivity, as it demands short working phases (sprints)
that make it possible to deliver a working software product continuously
throughout the project. Thus, the Scrum team can react on time when the
customer changes the product specifications.

Agile methodologies are rapidly becoming the standard in software devel-
opment companies. As a student, the Project CS is a great opportunity
to experience Scrum, as we are about to go into the real world of software
development.

3.1.1 Roles

Scrum distinguishes between the Scrum Master, the Product Owner and the
Development Team.

The Scrum Master acts as a bridge between the team and the product
owner. He is responsible for making sure that the team adhere to the Scrum
guidelines. He is not to be seen as the head of the group, but instead as

15

someone who’s main responsibility is to remove impediments in completing a
task. He should also make sure that the team is on the right track keeping a
constant eye on the sprint goal and the definition of “done” for the different
tasks. On the other hand, the Scrum Master needs to ensure that nothing
interferes with the development team so that the developers can constantly
concentrate on their work.

The Product Owner is an individual who can be seen as a connection between
the client and the development team. Within the team, the Product Owner
acts as the client, although the client normally is an external actor. The
Product Owner is the person who owns and controls the development of
the software with the help of the backlog, prioritizing features and generally
the one who is supposed to give direction to the development team during
the sprint planning and at the product demonstrations. In some cases, the
Product Owner can be the same person as the client.

The Development Team is the set of individuals who are working on the
project for the product owner. The team is responsible for creating incre-
ments and releasing a working version of the software after each sprint.

3.1.2 Scrum Keywords

• User story
A user story is a description of an end user interacting with one small
part of the product. It gives the developers an intuition of what func-
tionalities need to be available to accomplish the intention of the user.
Each product requirement is translated into a user story. Stories are
usually broken down into tasks and each task is the smallest unit of
work to be implemented. It is important that the development team
agrees on the definition of done for each task and story.

• Product backlog
The product backlog is the ordered list of all user stories for a product.
The backlog is created by the customer. Stories are prioritized by the
product owner depending on criteria such as date needed or business
value.

• Sprint
A sprint is the core artifact of Scrum. A sprint is an iteration that
usually lasts between two to four weeks during which a part of an entire
product is implemented. Each sprint has a goal and each member of

16

the team should strive to fulfill that goal. The whole project period
consists of several sprints.

• Sprint planning
In the beginning of each sprint the team meets for planning and agree-
ing on the current sprint’s goal. Stories are picked from the product
backlog and broken down into tasks. The team estimates the workload
for each task and moves the highest prioritized tasks from the product
backlog to the sprint backlog. This is done until the maximum work-
load is reached for the sprint. The output of the sprint planning is a
sprint backlog that everyone agrees on.

• Sprint backlog
A list of stories that should be completed by the end of the sprint.
The sprint backlog is filled by picking the highest prioritized stories
one by one from the product backlog.

• Sprint demo
At the end of each sprint a demo is scheduled with the client. At
the demo the team presents the results of the sprint in the form of a
working product to the customer. The good part of having frequent
demos is that the team and the customer can feel the progress. It is
also an opportunity to see if the customer and developers share the
same idea.

• Sprint retrospective
After each sprint is completed, the team gathers together to reflect on
the good and bad parts of the sprint. To make improvements through-
out the project it is important that everyone is honest and shares their
opinion during the retrospective. This is the point where you can not
only improve the working process but also the team environment.

• Standup meetings
A mandatory short meeting (usually 10 minutes) starting every day
at the same time. Each person tells the others what he did the day
before, what he is going to do next and if there are any impediments
(problems) preventing him from finishing his tasks. The participants
attend the meeting standing up so that everyone is encouraged to be
concise when telling the status of their work.

17

3.1.3 Scrum process

The following picture summarizes the Scrum methodology.

Figure 3.1: The Scrum Process[?]
http://effectiveagiledev.com/portals/0/scrum-process-basic.png

3.2 Use of Scrum in this project

Throughout the project the teams tried to apply the Scrum methodologies
thoroughly. Both rooms and desks were arranged to facilitate direct com-
munication among team mates, as well as setting up a whiteboard for the
post-its. The frontend team agreed that each team member should try to
be the Scrum Master at least once during the whole duration of the project.
Project CS provides a great advantage in that it is a course within university
and the Scrum master role could easily be shifted from one person to the
next.. Since there were two teams, there was always two Scrum Masters,
one for each team.

3.2.1 Daily meetings

Due to the separation of the group into two teams, there were two distinct
sets of meetings in the offices. Daily meetings for the frontend team took

18

http://effectiveagiledev.com/portals/0/scrum-process-basic.png

place everyday at 9:00 o’clock sharp and time boxed to 15 minutes, while at
9:15 the standup meeting would start for the backend group. Both scrum
masters were present at each meeting. The reason for this was to facilitate
synchronization between both teams.

In our opinion these meetings were of great value. They encouraged every-
one to actively talk to the other team members about the status and the
problems they faced while completing a task. Each stand up meeting was
mandatory so that we could be sure that everyone would start working at
the time. Moreover it was a good way for planning short tasks and catching
bad decisions early.

3.2.2 Sprint planning

After each demo the teams planned the sprint for the next iteration, trying
to get done before the weekend. In this way work started directly at the
beginning of the new week. Most of the times the demos were on Thursdays.
Thursday was chosen so that pre-planning could be done on the same day
and to meet the client on Friday for planning approval.

To estimate the available working days for each sprint, the teams calculated
the total amount of days according to the number of the team members, and
used a productivity factor of 0.7. One story point corresponds to one man
day (8 hours). A team of 5 developers working for two weeks would have
5*10*0.7 = 35 available story points. In order to estimate the workload of
each story “planning poker” was used. Each individual had a set of cards
with numbers and votes with a card giving points to each story.

In our case, the requirements were not set from the beginning. Therefore
the teams had a continuously changing product backlog, which was updated
at each pre-planning phase.

3.2.3 Demo

Demos were held at the end of each sprint during which the teams showed
their results. We demonstrated the application to Olle, Muneeb and Ericsson
in a very relaxed environment. Having short sprints and doing frequent
demos ensured that Ericsson saw progress often.

19

3.2.4 Retrospectives

Retrospectives were done in form of meetings after each sprint. Each mem-
ber had to say three good things and three bad things about the completed
sprint. It was a great way to point out what was positive during the sprint
and to have constructive criticism for the bad parts. In this way the teams
could always try to improve the process in the next sprint.

3.2.5 Conflicts

In any large group project there will be many different personalities, opin-
ions, experiences and backgrounds. Some people have very little experience
of working in larger groups (10+ people). This course forces the members to
work together and to do it in a specific project management style (Scrum).
It is inevitable that there will be conflicts and disagreements.

The following are some points that the teams followed when there were
conflicts.

• Try to address the problem with the individuals involved.

The first and foremost approach is to try to talk it out with the people
involved. Please note that you may have very different personal and
work experiences. This is a good thing but keep in mind that how you
worked in a previous course or at a previous workplace may not be
the best way to do it in the current project. It is best to come to the
project with an open mind and offer your past experiences as a way to
suggest how to go about preforming certain tasks, but never blatantly
ignore everyone else because you feel they are wrong. This course is a
team-effort based project and not to be treated as a workplace, here
you are allowed and even encouraged to make mistakes and to learn
from them.

• Realize that just because you do a task does not mean that it was the
right one.

The idea of Scrum, simply put, is to change the product during the
development cycle quickly. As developers we may sometimes get at-
tached to the code we have written and can take offence when the

20

team or client decides to remove the code. In this case it is not a
matter of the team or client attacking you, it is a matter of whether
or not the code or task is still relevant to the project after a design
change. The project will be very different from the beginning to the
end. Code will be obsolete and deprecated at certain points, just live
with it and continue contributing and understand that your work is
still recognized by everyone else.

• Use the Scrum master as a mediator.

In the case where addressing the problem yourself did not work out,
the use of Scrum in this project gives everyone a great resource, the
Scrum Master. It is the Scrum Masters duty to remove impediments
in the sprint, however big or small. Conflicts are a great impediment
and can sometimes lead to failed sprints and worse, de-motivation of
the team. The Scrum Master should in this case act as an impar-
tial mediator. And strive to come up with a solution to the problem,
even if it means making sure the conflicting personalities do not work
together.

3.3 Quality Assurance

In large projects there is a need to be able to control the quality of the
product. Does it do what the client asked? Is it extensible? Is it releasable?
While some companies have specific quality assurance teams, this course
usually does not. Therefore, the team had to explore ways of answering the
above questions.

While Scrum and Agile methodology easily answers the “Is it releasable?”
question, just because the team implements Scrum and Agile does not mean
it is being followed correctly. In Scrum, at the end of every sprint the team
should have something that is demo-able. Sometimes this is not the case –
failed sprints, outstanding issues, etc.

21

3.3.1 Pair-programming

Both teams decided to take the pair programming approach for quality as-
surance. Two programmers complete a task and two other programmers
review that work for bugs, imperfections (according to coding standards),
and integration status.

The ERNI team felt that this worked particularly well as we all had little
to no experience in functional programming and large group work projects.
Often bugs were caught way before the task was completed and put into the
review process.

Using pair programming also helped develop our skills faster as we taught
each other how the language worked and had knowledge redundancy (if one
person was away the task would not be stopped). After review you had
twice as many members of the team having full knowledge of the code and
functionality introduced into the product.

3.3.2 Code Reviews

The LISA team decided to use a tool called Gerrit[4] to preform code reviews.
Gerrit is a web-based code review system, which makes it easier for us to do
the review, as every team member can see what is up for review and what
has been reviewed at all times. Gerrit is dependent on Git and acts almost
like a filter, only allowing authorized changes to be pushed to the master
branch on Git. Therefore, it promotes code quality by forcing code reviews
to take place before code is placed on the repository.

Initially, we had some trouble setting up the tool. While installing Gerrit
itself is not a problem, integrating it with Jenkins was a bit of an issue.
After a few emails with the maker of the Gerrit/Jenkins plugin, we found
out that the issue was due to encoding in the terminal. Make sure you have
the proper terminal encoding (UTF-8) before setting it up. After this small
mix-up, Gerrit was ready to be used and tests suggested that it was working
properly.

After everything was running, it took us about 2 hours to drop Gerrit al-
together. The reason for it was mainly cultural – we implemented a code
reviewing tool in the middle of the project – and we did not have enough
time at that point to invest in learning how to do it properly and maybe

22

circumvent the main issue we had with the tool. The main issue was that,
in our team of 5, code was flying around back and forth. New feature
branches were created and merged into the main branch. These branches
often contained features that were required by other features that were be-
ing developed at the same time. Gerrit provided a filter, as advertised, but
it ended up with not being very productive for us. We would have to change
our workflow and, in the middle of the project, that was a major overhead
for all of us. Being a team of 5 people, we could manage, to a certain degree,
the code quality by doing pair programming and reporting to others about
strange code that one has come across.

Gerrit is a very nice and interesting tool, which will probably help your
development a lot if you implement it before the actual coding has begun.
Thrive to understand and make effective use of this tool. And follow the
proper installation guides.

3.4 Timeline

This section presents a timeline of both team’s Scrum sprints. It is recom-
mended that the timeline is read after or in conjunction with the product
report[12], as it details how our final product was implemented. The time-
line specifically points out the technical aspects that were tackled during
each sprint.

Both teams were synchronized with each other until sprint 4 when the ERNI
group chose to have two one week sprints instead of one two week sprint.
The result was a series of one week sprints for the ERNI team ending with
seven sprints in total, while LISA had only six.

The course ran over a period of four and a half months starting on September
the 3rd and ended on January 18th, with two major presentations. This
particular instance of the course was unique since the client did not have a
very concrete project laid out in terms of requirements. In the beginning
of the course, a lot of time was spent learning about ICN and thinking
about scenarios which would be interesting to implement. We held different
meetings on trying to unders Therefore the real work and Scrum sprints
started slightly later than other course instances. Furthermore there were
too few people in order to have two groups with two completely different
clients.

23

3.4.1 Pre-Scrum

During the month of September the group met with the client who presented
the idea, although it was not very concrete at the time. The basis for
the project was known – the group would work with Information-Centric
Networks – but what was going to be developed was still undecided.

This meant that the group had the freedom to discuss different scenarios to
be implemented during the course. It also meant that the first few weeks
of the course were spent reading up on research papers that discussed ICN.
There were numerous meetings during September that helped increase the
knowledge about ICN and investigate further the pros and cons of this tech-
nology.

In previous years, the course started with an Erlang workshop which consists
of two weeks of intensive Erlang. However, this instance of the project was
so open, that it was unknown whether the project would need Erlang at all.

By the end of the month, we had a better idea of what we were going to do,
especially after meeting our client. It was also time to separate the groups,
define the teams and rearrange our workspace. All of this happened right
before the first sprint, which started after approximately one month.

3.4.2 LISA

Sprint 1
Scrum Master Thiago
Goal Send and receive a message to the backend’s

server
Sprint length 2 weeks
Met Yes

Sprint 1 started off with setting up the working environment. This included
reading up on and configuring the tools we chose to use during the project,
which are described in Section 2.3. The work of installing the tools was
directed to the ERNI group, which took over the tools for the beginning of
the project.

A major point for this sprint was also getting started with Scrum. It was
very important for the team to develop a culture, some sort of a Scrum

24

routine that we were going to follow. The front-end did a good job doing
this from the start of the project.

During the initial stages of development, the front-end team had a Skype
meeting with Hugo Negrette Otaola and Miguel Sosa, who had worked on a
similar project before. They wrote a Master Thesis [13] that was a funda-
mental starting point for the project.

Finally, the front-end implemented a simple application that could send a
message to the server developed by the Backend team and receive an answer.
The front-end turned out to have more time than expected, so parts of the
Bluetooth communication and some side functions were implemented.

Sprint 2
Scrum Master Thiago
Goal Communicate with another device using Blue-

tooth & Publish and retrieve content with meta-
data

Sprint length 2 weeks
Met Yes

Now that we succeeded to communicate with the backend’s server, we needed
to send messages according to the NetInf specifications in [14]. Thus, we
investigated the specifications and implemented those message regulations
into our code.

We designed our first architecture draft based on OpenNetInf and imple-
mented the most important modules for sending/receiving messages to/from
the NRS - this time using OpenNetInf. We managed to share objects be-
tween Android phones using Bluetooth.

At this stage, the application could request content using a short hash. The
specified hash was sent to the NRS and a list of locators, that owned the
requested object, were recieved in return. The locators were Bluetooth MAC
adresses. The application was then starting a Bluetooth discovery in order
to find out whether one of these locators was within reach. If so, a Bluetooth
communication to that locator was established. The hash was sent to the
connected device, which replied with the file that was identified by the hash.

The efforts at the end of the sprint were focused on the message that was be-
ing shared and we spend two days creating the objects and making sure the
under-the-hood part of our application was working. During this time, we

25

worked on creating the Metadata and a parser for it, building the messages
in a correct manner and checking where files were being saved and retrieved
from. We also worked on getting multiple types of files available for visu-
alization, leading us to work with the Gallery supported by the Android
phones. We ended up using the files’ mime-type to open them.

Sprint 3
Scrum Master Paolo
Goal Successful presentation. Search content, cache

and retrieve content from the NRS, implement
a minimal web interface

Sprint length 3 weeks
Met Yes

Within the first week we mainly worked on the presentation for our review at
Ericsson in Kista. We prepared a paper prototype (consisting of screen shots
of the final application) of our project idea of creating a browser application
that we later called Elephant. The application looks like a normal browser
and behaves as expected. The idea that we wanted to convey was that
the browser uses information-based networking instead of location-based
networking. Our idea was to create a browser using NetInf in a way, that the
user does not need to know what actually happens. It would be a first step
of changing our way of networking. Note: Using the paper prototype helped
us a lot to agree on our project in the end. Our client could understand our
ideas and was very happy to see where the project was going.

Before continuing adding new functionalities, we took some time during
the third sprint to clean up and refactor the code. The git branches were
restructured due to the experience gained from the previous sprints. The
structure is described in Section 2.3.3.

The new functionalities we added were publishing (register the device as
a locator), full-put (uploading the content to the NRS) and searching for
contents using URLs. Furthermore we added a Local Resolution Service
(LRS) besides the NRS. The LRS looked up content in a local database,
that we designed and implemented within this sprint.

Now our application could search for content within a local database and
in a remote NRS by a URL. The response was a corresponding hash, that
identified a web page associated to that URL. In case the NRS owned the
web page that was searched for, we directly retrieved that web page instead

26

of a hash. Using the hash, we could get a web page from the LRS or a list of
locators from the NRS. In case of a list of locators, the device would start to
connect to other devices and download the content through Bluetooth. As
soon as we retrieved the web page, we could register ourself as a locator in
the NRS or even upload the content to the NRS. At this stage we displayed
simple HTML web pages within a Android WebView environment, without
any pictures or java scripts.

It is worth to note that the search implemented in this stage was not de-
veloped in accordance with the NetInf standards, not being connected to
Resolution controllers. This was due to a perceived complexity of the code
and the short amount of time we had to finish the sprint. We left this to be
completed in the next sprint.

Sprint 4
Scrum Master Kim-Anh
Goal Higher granularity browsing
Sprint length 2 weeks
Met No

As requested from Ericsson, we separated our application into two applica-
tions: Elephant, our browser that uses the services of another application
and the NetInf services.

In sprint 4 we created our final application. This included creating the min-
imal browsing functionalities: Handling clicks on links as well as displaying
web pages correctly as they are displayed in other browsers. The main chal-
lenge was to intercept the Android WebView to redirect resource requests
to our NetInf services, instead of simply downloading them from uplink.

We also integrated the search functionality to NetInf, making use of the
Search Controller and implementing our search functionalities as Search Ser-
vices.

Furthermore we needed to add settings and help pages. The user should be
able to decide which NRS to connect to and whether he wants to upload
content to the NRS or register his device as a locator.

After sprint 4 we had our final application that offered a browsing function-
ality based on NetInf. Since some bugs were left to be reviewed, we tackled
these in the upcoming sprint.

27

Sprint 5
Scrum Master Linus
Goal Running application without bugs (not neces-

sarily with Bluetooth Convergence Layer)
Sprint length 2 weeks
Met Yes

During this sprint we tried to fix a bug that prevented some pages to display
correctly. The bug showed up during the previous demo, so the goal of this
sprint was to solve this bug and make sure we had a working application.
After several tests we spotted the problem that was causing the corrupted
pages. The problem resided in the way we managed the search function and
the messages sent to and from the NRS, causing the loading of the wrong
identifier of the sought web page after a search. The backend could solve the
problem easily and our application started working as expected. During this
iteration we also noticed some slow downs due to how we used the timeout
in our network requests, so we fine tuned them to get a decent speed when
browsing web pages.

Afterwards we discussed what to evaluate and how to evaluate our appli-
cation. We then implemented logging of network activities by storing each
request with the relative type of transmission used (uplink, NRS cache, blue-
tooth or database). In order to produce some statistics we also stored the
amount of data that is transferred for each request and the time that it
takes to transfer the data. To simplify the test we added a functionality
to automate the loading of several web pages in sequence. That way it be-
came possible to gather a considerable amount of data from many web pages
during each run of the application.

At this point we had a working web browser that used NetInf services and
could support four different types of transmission link. The next and last
step would be to run the automated tests and analyze the obtained results,
so that hopefully we would have interesting material to show in the final
report.

28

Sprint 6
Scrum Master Harold
Goal Successful presentation and both the product

and course report
Sprint length 2 weeks
Met Yes

The last sprint involved the preparation of the final presentation and writing
the final course report and product report. As usual we divided the work
into different tasks so that we could write different parts of both reports
simultaneously. The difference between the course report and the project
report is the target reader. The intended audience of the course report are
the teachers and future students of this course, while the product report is
intended for the customer. The course report contains information on how
we got to the final product, while the product report focuses more on the
product itself, the implementation, how to run it and how to continue the
development.

In this sprint we also ran the automated tests we had implemented in the
previous sprint and organized the results. The final presentation was made
with Prezi1, an online tool to produce presentations.

3.4.3 ERNI

Sprint 1
Scrum Master Knut
Goal Send and receive a message to the frontend’s

client
Sprint length 2 weeks
Met Yes

During the first two-week sprint the ERNI team mainly setup their environ-
ment along with coordinating with LISA on building a server which would
communicate to a client using simple non NetInf messages. The code from
this demo became the reference for the real NetInf server which was devel-
oped during the second sprint.

1http://prezi.com/

29

http://prezi.com/

Sprint 2
Scrum Master Knut
Goal Implement NetInf Publish and Get content with

metadata
Sprint length 2 weeks
Met Yes

In the second sprint which ran for another two weeks, ERNI created the
basic NetInf server which was able to use the appropriate Publish and Get
messages from the NetInf protocol draft. A major part of the sprint was
devoted to creating the Message handler and the formatter which would
accept messages passed in from the HTTP handler and convert them to the
internal representation of a NetInf message. The ERNI team also developed
a very basic list database in order to store information.

Sprint 3
Scrum Master Faroogh
Goal Implement NetInf Search, binary caching and

retrieve content, implement a real database
(Riak) and implement a plug and play database
wrapper

Sprint length 3 weeks
Met Yes

The third sprint consisted of refining the Publish and Get messages, imple-
menting search and binary storage and finally introducing a real database.
The client also stressed that they would like the ability to easily attach
other databases, thus a database interface was created and the ERNI team
attached Riak[9] to the NetInf system. During this sprint a presentation of
the progress so far was held at Ericsson in Kista.

Sprint 4
Scrum Master Jon
Goal Provide the client with a draft of the NetInf

Video Streaming
Sprint length 1 week
Met No

During the fourth sprint the ERNI team had chosen to diverge from the

30

LISA team since we had finished all the functionality described in the draft
document and were no longer required to build features for LISA. The client
was impressed and suggested that the team look into applications for the
NetInf system. The major application that was discussed was the use of
NetInf and Video streaming to alleviate congestion problems while broad-
casting content. The goal here was to provide the client with a draft of the
new protocol but there were many disagreements on what the draft should
contain and the team missed the deadline to hand in the draft.

In an effort to fine tune our sprint planning, the team decided to try one
week sprints in order to see how much we could accomplish with a smaller
amount of time. This was due to problems estimating the amount of work
the team could finish. The team always overestimated the time it would take
to finish tasks leaving the team with too little to do at the end of sprints.

Sprint 5
Scrum Master Jon
Goal Implement NetInf video streaming on top of the

existing NetInf NRS code and UDP convergence
layer

Sprint length 1 week
Met Yes

In the fifth sprint the ERNI team had gotten the approval of the client to
start implementing the NetInf video streaming protocol. It was a one week
sprint where the team also added the UDP convergence layer after request
from the client in the previous sprint.

Sprint 6
Scrum Master Marcus
Goal Fixing bugs within the system, implementing

feedback from client on video streaming
Sprint length 2 weeks
Met Yes

In the sixth sprint the ERNI team mostly fixed the main bugs in the system
and finalizing the NetInf video streaming. The major feedback here was
to get rid of the HTTP content-dispatcher and replace it with a modified
version that uses NetInf messages to transfer the chunks.

In the final sprint both teams joined together and had one large sprint

31

writing the course and product reports.

32

Chapter 4

Team Building

4.1 Team Building

In order to maintain a friendly environment at the work place and to make
people feel comfortable and confident with each other, the team arranged a
series of activities which are explained in the upcoming sections.

4.1.1 Fika

Fika is a Swedish word that is used to describe a break to drink coffee or tea.
It was a popular word in our project. Every Wednesday two group members
would bring something to share with the rest of the group. The fika break
started at 15.00 on Wednesdays. This time to get to know each other better
and discussed everything from politics to weather. Apart from the weekly
fika, there was also the “late arrival punishment fika”, where anyone who
didn’t show up on time would arrange an extra fika.

4.1.2 Birthdays

Group members who had a birthday during the course were celebrated. For
this purpose money was collected at the start of the project from everyone.
This “birthday fund” was used to buy a cake for the birthday celebration.
The teams would then take a break from work to celebrate the birthday of

33

the person and eat the cake with coffee or tea.

4.1.3 Eating out

Every now and then the team used to go to a restaurant or a student nation
to eat something for lunch or dinner. Also when the weather was nice at
the beginning of the project, there was an outdoor BBQ which gave the
team members the opportunity to spend time with each other outside of the
working environment.

4.1.4 Bowling

After the midcourse presentation at Ericsson Research in Kista, they invited
us to bowl, drink beer and eat dinner at a bowling alley in Stockholm. This
was a really good evening, since the students got a chance to mingle with
the people involved in the project on a more personal level.

34

Chapter 5

Conclusion

5.1 Conclusion

At the end of this project both teams can proudly say that this project was
a success. Almost all the goals that we had set for ourselves at the beginning
of the project and during each sprint were achieved and those which were not
were achieved later on. The client, Ericsson Research, was happy with the
performance and offered thesis opportunities to a number of team members
to continue working on the application that was built.

• What went well:
Even though the teams were not 100% efficient, Scrum helped a lot
during all stages of this project. The daily stand-up meeting kept ev-
eryone updated on the progress of the project. The sprint planning
gave everyone the opportunity to participate in meaningful discussions
regarding how to build different functionalities into the product. A lot
of feedback was gained during the retrospectives that made it possi-
ble to improve the product development. The teams are thankful to
the teaching staff for arranging different workhops for us. The Agile,
Erlang and Testing workshops, held by experienced professionals who
have been part of the industry for many years, were very helpful.

For those who are going to be working with Erlang in future instances
of this course, Erlang OTP in action is a great resource and helped
in the beginning of the course. Traditionally the course has a two
week Erlang workshop, but this instance had one week of self-study

35

(Erlang OTP In Action and the online resource ”learn you some erlang
for great good”1) followed by two days of an Erlang workshop. The
teams believe this was a much better way to handle things since the
opportunity to make all the mistakes before and ask valuable questions
afterwards when the expert came was there.

The weekly fika is also something that is recommended to future stu-
dents. It is a good way to keep a friendly environment in the team
and to get to know each other.

• What did not go well:
Another thing learnt during the course of this project was that not
everything is going to be the way it is planned to be. There were
problems with estimating the duration of different tasks in almost all
the sprints. At times the teams overestimated the time assigned for
the completion of a particular task and at times it was underestimated.

Another problem was choosing the right software tool for a particular
purpose. At the beginning of this project a considerable amount of
time was spent on installing and reading about the tools that were
never used later because of better options that we did not know about
in advance. To give an example, the team installed Buildbot for con-
tinuous integration but found it difficult to learn and manage so a
switch to Jenkins was made instead. The advice to future students is
to spend some time in investigating what is the best tool that is easy
to use and can be learnt quickly.

• What can be improved:
At times during this project functionalities were built that had to be
scrapped later because they were not within the scope of the project. It
is important to have a discussion before starting to code anything and
to have the consensus of the team on the overall design, but not on
every implementation. Communication is very important and team
members should not shy away from asking questions or demanding
clarifications on anything.

Communication with client is also an important part of any software
project and the teams think that for future instances of this course
the client should be involved more in the project and should provide
concrete requirements. In our case Ericsson Research was the official

1http://www.Learnyousomeerlangforgreatgood.com

36

client but most of the time the teams had to act as a client for them-
selves and make decisions that otherwise the real client would have to
make.

In closing, always make sure that a working agreement exists (timing, work-
ing hours, fika rules and much more) and is kept by all team members! It
is important to stick to what everyone has agreed on or else conflicts might
arise. Remember to commit to the team. Project CS can be a course which
provides the chance to get to know new friends but it also comes with a big
responsibility. It is a great opportunity for an individual to work in such a
big group since it resembles the work environment in the future.

Finally, readers interested in the individual input by team members can be
found in appendix A below. Tool setup guides for a Git workflow, Jenkins
Continuous Integration Server as well as Coding Standards can be found in
appendices B, C and ?? respectively.

37

Appendix A

Individual input

A.1 Daniele Bacarella

Sprint 1: I setup my working environment by installing all the software
needed to start developing such as the Erlang compiler along with the build
tool Rebar and the editor Emacs. Once the environment was ready I started
studying and practicing Erlang while getting familiar with the editor Emacs.

Sprint 2: Kiril and I both worked on the NRS logging and the HTTP handler
for the system. Then we researched GIT practices and came up with our
own workflow and taught it to the group. Afterwards I created the inital
version of the project Makefile and integrated Rebar into it.

Sprint 3: Jon and I researched database alternatives to the one already
adopted that uses an Erlang internal data structure which is a list of key-
value pairs. For obvious reasons it did not represent a valid solution to store
data since it did not provide reliability and persistency along with other
concurrent features that regular DBMS provide. Among the many available
options, we chose Riak. After having set everything up to make it fully
working we proceeded writing some tests and the database wrapper for it.
Finally we wrote a install guide on the wiki.

Sprint 4: The back-end team started working independently from the front-
end team on the new NetInf NRS Streaming feature. It required us to
implement an HTTP client interface to the upcoming NetInf Nrs Stream-
ing. During this sprint I worked with Alex to create the first prototype of

38

the web interface and the Http client which would communicate with the
running NRS to perform the operation requests issued by the user. We also
researched video players suitable for the web page.

Sprint 5: I worked with Alex and Jon fixing bugs and design in the Http
client and the web interface.

Sprint 6: I helped Kiril with starting the Product and Course reports as
well as finalizing the HTTP client interface with Alex.

Sprint 7: I started writing the Product and Course reports.

A.2 Jon Borglund

During the first sprint I mainly refreshed my functional programming skills
and also studied quite a bit of Erlang OTP. During the first couple of days
Faroogh and I compiled some coding standards, and researched Extreme
Programming practices which we later presented to the group.

In the second sprint we started the implementation of the NRS. During the
first days Alex, Linus and I read and compiled a compact version of the
NetInf protocol draft to be sure that both the frontend and the backend
would interpret it in the same way. Alex and I also created a curl-script
that allowed us to test our NRS according to the draft. We then continued
to design, implement and test the initial storage module. We also started
to implement an integration test with Erlang and Eunit.

In sprint 3 Thomas and I fixed some bugs in the message handler and
message formatter. Then I joined Daniele to choose and add a persistent
database. We first investigated which database alternatives there were. We
decided to go with Riak, hence we proceeded with its installation, configu-
ration and finally testing.

During sprint 4 I was the Scrum master, therefore I spent time on Scrum
master specific tasks, such as entering stuff into Redmine, updating the
whiteboard and burn down chart and also conducted minor conflict medi-
ation. Thomas and I defined and implemented interesting state statistics,
such as number of active request, number of received request etc. We also
went through the NetInf protocol draft again to be sure that we have covered
everything in the HTTP convergence layer in our implementation. Marcus,
Knut, Faroogh and I also put down half a day to conduct backlog grooming,

39

to generate new backlog items for the next sprint.

The team was satisfied with me as Scrum master during sprint 4, so during
this sprint I was re-elected to fulfil these obligations. During sprint 5 I
worked mainly with Marcus and the implementation of the streaming.

I continued to work on the video streaming with Daniele and Alex developed
during sprint 6. After some discussion with Ericsson, we changed some of the
streaming, mainly to send the chunks as NetInf messages between the nodes,
but without content validation. I also worked with the HTML5 streaming
interface. It later turned out that Ericsson also wanted a comparison with
the modified chunked data with a pure NetInf streaming solution, I started
to implement another HTML5 interface to playback video with pure NetInf
while Marcus and Thomas worked on the client backend.

In the beginning of sprint 7 Alex and I finished the HTML5 interface for
pure NetInf streaming. Then I conducted an evaluation of the streaming.

A.3 Paolo Boschini

During the first sprint I was in charge of investigating what mobile phone
models would be a good fit for running the application we would build
during the project. I looked at their specification and chose two models that
Ericsson would then provide to us. As a frontend member I then started
working on Bluetooth communication between phones together with Kim.
We managed to get the phones sending messages to each other and transfer
files as this was one important feature our application should support.

In the second sprint I studied a previous implementation of NetInf and tried
to understand it in depth to get a valid reference to use during the project.
I also wrote the code conventions for our workflow. After that I continued
working on the Bluetooth implementation with Kim and implemented pro-
grammatic discovering of other devices and the ability to exchange binary
information object (BO) between phones.

In the third sprint I took the role of Scrum Master. I got acquainted with
Jira, a digital tool for keeping track of stories and sub-tasks. To have a
more instant overview about the sprint state I also used post-its on the
whiteboard in our office making sure to synchronize them with Jira. I was
also responsible for keeping track of the work state of the backend group in

40

order to facilitate the communication between the two groups. The rest of
the time was spent on testing and refactoring. I read up on best practices
when following test driven methodology in an Android environment and
integrated that into our application. At this point our team felt the need to
reorganize and optimize our version control system workflow, so Kim and
I reorganized git branches to simplify our version control workflow. The
refactoring part consisted of adding utility classes, fixing incomplete code
comments and adding license information to our code. I then read up more
on Android UI components and refined the UI structure and design of our
application. At last I helped Linus to implement functionalities for fetching
and posting data to the NRS cache implemented by the backend group.

In sprint four I helped Kim to separate the main application and the NetInf
functionalities into two different projects. This decoupling was very impor-
tant since it makes it possible for other developers to develop their own
application and use our existing Netinf Android implementation. Another
important feature was implemented in this iteration, namely the routing
of network requests to our Netinf service when downloading web resources
before displaying them into our application. Since each html page contains
resources (images, text, videos) we could save them individually and pass
them to our NetInf service as NDO.

The last sprints involved minor bug fixes so that our application would
support and correctly display a major number of web pages.

A.4 Kiril Goguev

During the first sprint I helped setup the build tool environment (investi-
gating Buildbot with Alex, Faroogh and Jon). Then, I read OTP, attended
the Erlang workshop and started to get a grasp of Erlang.

In the second sprint, I setup Jenkins with Alex and connected the GIT
repositories, I also created a document on how to set it up from scratch.
Daniele and I designed and implemented the HTTP Handler and the NRS
logging service. We also created the GIT practices document and taught the
groups how to use the proper workflow for our project. Finally, I along with
Thomas helped design and implement the foundation of the NetInf protocol
(The internal representation of messages in the system).

41

In the third sprint Faroogh and I migrated all the data and build tools from
the old server to a new server(due to errors). Alex and I fixed merging
the metadata in the list database, creating and implementing the plug and
play (PNP) database architecture, abstracting the list database to use the
new PNP database architecture and finally the content validation. Later, I
worked with Marcus to implement content storage and content handler into
our system as well as fixing the integration test which was broken when we
added all the new modules. Finally towards the end of the sprint, Faroogh
and I designed and implemented a UDP discovery protocol to be able to find
other NRS’ on the network. At the very end of the sprint I started looking
into Python SAIL implementation of NetInf but had to abandon it since
there was too many problems to fix in order to be able to communicate(this
was a problem of the differences in the drafts each implementation followed).
I also wrote a wiki article for the plug and play database architecture.

This is the sprint where I felt that I had a good grasp of Erlang and how to
code in the proper OTP way.

In sprint 4, I had a part in designing the very first NetInf video streaming
draft along with Faroogh and Knut. Later Faroogh and I added truncation
to the NRS system and verified that we met all the required components
of the netinf protocol draft provided at the beginning of the course by the
client.

In sprint 5, I designed a setup/install script. I also designed and imple-
mented the UDP convergence layer from the draft with Thomas and depre-
cated the UDP discovery protocol Faroogh and I coded in sprint 3. I also
took over Faroogh’s old task of making the list database persistent. Finally,
I wrote the wiki article on how to use the script and test the UDP conver-
gence layer.

In sprint 6, Alex and I organized the Course and Product Reports into sep-
arate files. Thomas and I made the system configurable using external files
(.config files) that can be loaded on the command line at runtime and I
wrote the wiki article for how to write for the reports using the structure
we created as well as how to use the configuration files in the system. Also

42

populated draft sections of the course and product report using all the wiki
articles the backend team had written during the course with Daniele. I
fixed and finalized the setup/install script.

Finally in sprint 7, I reorganized the structure for the reports into folders
and showed people how to use the structure. I wrote parts of the product
and course report.

A.5 Faroogh Hassan

During the first sprint the whole back-end group concentrated on learn-
ing Erlang and Open Telecom Platform (OTP). A two day workshop on
Erlang by Henry Nyström (Campanja) and another workshop by Gustaf
Naeser (Hansoft) on Agile software development were also part of this sprint.
I worked with Jon to establish the coding standards which we followed
throughout the rest of the project. Jon and I also investigated if there
are any Extreme Programming (XP) practices that we can incorporate in
our development methodology and we came up with a set of recommenda-
tions.

I started the second sprint by taking part in developing the overall design
of our application. I also worked with Thomas to write code and some tests
for message handler and message parser.

Third sprint was the longest sprint of this project (3 weeks) and I got the
opportunity to be the Scrum master of the back-end team for this sprint.
As Scrum master my major task was to remove any impediments that may
arise during the course of development. I worked with Alex on writing for
the search functionality. I also worked with Kiril on the NRS discovery pro-
tocol where we used UDP messages for the discovery purpose. Apart from
that I also wrote unit tests for the modules where unit tests were missing.

In the fourth sprint I was involved in designing the architecture of the
streaming video functionality. We wrote a draft specification for this func-
tionality based on the proposed architecture. I also worked with Kiril on

43

hash truncation.

In the fifth sprint I investigated if our implementation of Netinf protocol is
compatible with other implementations. We aborted this task later on the
customer’s request.

Sixth sprint was the last sprint before the Christmas break where we made
some final adjustments to our application and cleaned up our code. I wrote
’specs’ and comments in the modules where they were missing.

Seventh sprint was the last sprint of our project and we dedicated the whole
sprint to write course and product reports.

A.6 Marcus Ihlar

During the first sprint I studied OTP design principles, investigated existing
HTTP libraries for Erlang and implemented a simple demo server together
with Thomas. We decided to use Cowboy for HTTP handling. The server
partially implemented NetInf publish and get functionality.

The second sprint signaled the start of real product development. In the
beginning of the sprint I did an overall design of the intended system with
Faroogh and Thomas. When actual coding started I wrote a lot of the
boilerplate code necessary to setup an OTP application, later I focused on
event-handling logic and test code.

In sprint 3 I implemented content storage together with Kiril, after that
we focused on getting the integration test working properly. I designed
the architecture for forwarding of NetInf messages together with Thomas
and Alex. I implemented message id storage (as part of the distribution
architecture) together with Thomas and then updated the event handler to
handle message forwarding, this led to alot of re-factoring throughout the
system, especially to make message passing asynchronous.

Sprint 4 was short, only one week. I focused on re-factoring and code
cleanup, especially in the http message formatting module. We also did
some backlog grooming and at the end of the sprint I helped finish the

44

streaming draft.

During the fifth sprint I implemented streaming functionality together with
Jon in accordance to the draft written the week before.

Sprint 6 was my turn to try the role of Scrum master. Being Scrum master
at this point felt very straight forward since we were so far into the project
and had a good working environment. I did a lot of bug fixing and work on
the integration test. Thomas and I rewrote some of the streaming code and
started implementing pure NetInf streaming. We ended the sprint with a
beer and Quake 3 session!

I started sprint 7 by finishing the pure NetInf streaming in order to be able to
run evaluation tests. I also worked on presentation, evaluation and reports.

A.7 Alexander Lindholm

The first few weeks of the project were all about team-building as well as
reading up on the subjects ICN and NetInf. The first sprint was mainly
about refreshing our functional programming skills as well as setting up all
the tools such as Git, Redmine, Jenkins, Emacs etc. We also came to certain
agreements such as trying to use test-driven-development.

The second sprint I was involved in the creation of a external protocol draft
as well as setting up Jenkins along with Kiril and creating Curl scripts for
testing of our system along with Jon. Jon and I also created a first naive
version of a storage. At the end of sprint most of us were busy fixing bugs
before the presentation at Ericsson in Kista. Here I also spent time on
implementing a ”beautiful logging system” for the presentation in Kista.

Sprint three started off with the presentation in Kista and it went well.
Everyone was pleased with how the presentation went. During the rest of
the sprint I mostly worked with Kiril and we were involved in writing a
module for validation of hashed content as well as writing code for merging
of NDO’s in the database as well as fixing the tests for the storage module.
Kiril and I also created the plug-n-play database architecture. Other than
that Faroogh and I implemented searching of NDO’s within our system.

Sprint four I developed modules for forwarding of messages on the HTTP
convergence layer. A few days after the sprint had started the backend
team started to diverge from the frontend due to several facts; we were

45

done with the basic NRS functionality in the backend and we were planning
on implementing streaming within NetInf, which was something that the
frontend didn’t have time to do. Therefore I mainly worked with Danielle
and Jon this sprint and implemented an HTTP-client that would come to
be used mainly for streaming, but also worked as a fully functional NetInf-
client.

During sprint five I mainly worked with bug fixing within the system as well
as making the HTTP-client more robust and fully functional.

During sprint six we had feature-freezed and my work mainly consisted of
fixing bugs as well as refactoring code. A lot of time was spent on fixing a bug
that resolved around multipart-Http-data being corrupt after transmission,
it turned out that the bug was within Cowboy, the open-source Http-client
we used. Kiril and I also created the initial structure for the reports.

In the beginning of sprint seven I worked with Jon on the implementation
of a different version of NetInf-streaming that uses pure NetInf for all trans-
missions instead of a mix of NetInf-messages along with a content-handler
which were used in the previous streaming version.

A.8 Knut Lorenzen

In the pre-Scrum phase I made two project proposals: One was to integrate
NetInf into the Android OS, the other one to start a new NetInf branch
in Erlang. As Linux kernel level development was considered tedious the
first idea was dropped immediately. The Erlang idea initially received a
luke warm response as it did not sound very original compared to other
proposals. However our Ericsson contacts mentioned that they would love
to see a NetInf implementation in Erlang as it is “their” own language, and
after a few days more and more group members changed their mind, perhaps
because they realised it would be a great opportunity to practise and learn
Erlang on a real project.

I became the Scrum master of the backend group for the first two sprints
since nobody else volunteered. Having worked as a software developer for a
few years after my graduate studies and therefore being more experienced,
I felt that I would be more useful in overseeing the development process
rather than writing code. During that period I spent my time curating the
backlog, reviewing people’s tasks, coaching them in working test-driven and

46

setting up and using the development infrastructure. I did not write a single
line of code until the third sprint. I also presented the backend group’s work
during first review at Ericsson after sprint two.

Unfortunately for me (I had really enjoyed being the Scrum master), Olle,
the course teacher, requested both teams to appoint new Scrum masters after
that, so that others could have the opportunity to practice that role. In the
three weeks of sprint 3, my work focussed around creating an integration
test. So far, only module tests existed, and the HTTP interface was tested
interactively using Curl. I tried hard to convince people to write tests for
the (automated) integration test rather than interactive Curl-tests or module
tests. I continued to add test cases to the integration test and improve it
until the end of the project

In sprint four, I decided to become an additional spokesperson for the back-
end team. I had the impression that there was a lack of communication
between the product owners and us during the previous sprint, i.e. none at
all until the demo. This had led to some members implementing features
not requested by the product owner. At that point, we had mostly fin-
ished implementing the NetInf protocol draft, and the focus of the project
changed towards adding streaming functionality. For this, no specification
or prior implementation existed. I tried to develop a design draft together
with Börje, our contact a Ericsson, through email communication. This did
not work out very well, and so we decided to come up with our own design
and present it at the demo after sprint five.

A.9 Harold Mart́ınez

In the first sprint, I worked on defining the code conventions that we wanted
to use. We discussed them, refined them and I set up the Eclipse plug-in
Checkstyle with the chosen conventions. Also, I was selected as the groups’
spokesperson for the whole project, so I managed the communication be-
tween the customer and the group.

In the following sprint, Kim-Anh, Paolo, Linus and I worked on the first ar-
chitecture draft. I also worked with Linus on the development of the earliest
version of the Resolution Service, which connects with the backend’s Name
Resolution Service, implementing the GET and PUBLISH methods.

47

In the third sprint, I prepared, together with Knut and Thomas, the pre-
sentation for Ericsson. I also presented this. Then I worked together with
Kim-Anh designing the NDO database that will be used for the Local Res-
olution Service.

In the fourth sprint, Linus and I created the GUI settings for the Android
application, letting the user change some configurations values. I also set up
a GitHub account to share the evolution of our project. In order to improve
the user experience in the application, I separated the Bluetooth discovery
process and created a scheduled discovery that will be triggered from the
moment the application starts, running every five minutes.

In the fifth sprint, I began defining and implementing the Bluetooth Con-
vergence Layer, however, due to time constraints and other priorities, this
job was not finished.

I was Scrum Master for the whole group for the last sprint when we wrote
these reports. I was also in charge of presenting our results at the end of
the course.

A.10 Thiago Costa Porto

When the project started, I read a few papers about ICN and tried to focus
on the issues that we were going to face going forward. We had meetings to
decide what our project would be like and I felt I was very active in those
days. One thing that helped was my previous experience with Scrum, which
lead to greater understanding of it by doing it at the university level, giving
you the chance to try things the proper way, so to say. When time came, I
chose the frontend team because I thought it would be fun to work on the
“client”, shaping it to the way that we had planned.

I was the Scrum master for the first two sprints. In the first sprint, I set up
Jira, our project tracker tool, and did all the things the Scrum master should
do. I was very focused on getting Scrum to work, at the same time I coded

48

small features for our client. I focused on the networking side of the client,
and spent several hours understanding how Android works and how the code
we had at our disposal worked. In the second sprint, I could focus more on
developing the application and less on Scrum – everything was going as it
was supposed to go – and I wrote a few of the classes used on the client’s
backend. I also provided support for measurements (download/upload) and
added early support for metadata during transfers.

On the third and fourth sprints I focused mainly on getting the search
functionality to work properly. In the third sprint, I provided a solution that
was out of the “NetInf” architecture, and I focused on integrating it to NetInf
using the Resolution Services on the fourth sprint, together with Linus.
Apart from the search, I also refactored some code and helped document our
code, helped a little with the design of the database, started user feedback
and setting up our revised workflow. In the fourth sprint, I worked a lot
with JSON, communication with the NRS and making responses uniform
throughout our application, with Linus.

Near Christmas, I defined the Evaluation with the other team members and
started working on that. I implemented the logging functionality together
with Linus and did some extra refactoring on the side. Close to the finish
line, I spent time documenting the code for further usage.

This was a very interesting course because it not only simulates a work
environment, but provides a lot of insights on your own behavior and on
team management. It is very good working with people from different places
and with different backgrounds. I definitely recommend this course.

A.11 Linus Sunde

During the first sprint I attended the Erlang Workshop which was mainly
directed towards the backend group. This made it natural for me to work
with integration between the groups. Together with Thomas and Marcus
I worked on sending NetInf messages using HTTP between our application
and their server.

In the second sprint I sat down with Jon and Alex and discussed the protocol
draft for the NetInf HTTP convergence layer. This discussion resulted in an
initial specification. The frontend group decided to use OpenNetInf in our
application. I spent some time incorporating OpenNetInf into our project.

49

After this I worked with Harold to create the Resolution Service which
communicates with the backend’s NRS. This also involved working together
with Thomas and Marcus from the other group to solve integration issues as
they popped up. Integration issues kept popping up during all the coming
sprints and I spent a huge amount of time working on these, most often
together with someone from the other group.

I started sprint three with creating a paper prototype together with Kim
and Paolo, in preparation for the first review in Kista. The review went well
and I felt the paper prototype really gave us a more concrete feeling of our
goal. After the review I looked into speeding up the compile time of our
application as it was making testing of small changes slow and painful. I also
spent a lot of time refactoring, which in hindsight was time well spent. As for
new functionality, I worked together with Paolo creating some setup dialogs
and downloading of simple web pages using NetInf, as well as sending and
receiving cached files from the backend’s NRS. Finally I read up on testing
using Android JUnit and created tests for some of my code.

During sprint four I once again spent time refactoring, and once again I feel
it was time well spent. I worked with Harold to create a settings menu for
our application and to make the program use these settings. I worked with
Paolo to create a way for our application to know if files were acquired using
the Internet, Bluetooth, the NRS cache, or the database on the phone.

I was Scrum Master during sprint five. I spent some time making sure some
backend fixes we needed were implemented by the backend. Other than that
I mainly worked on preparing evaluation together with Thiago and Paolo.
We implemented logging functionality to be able to gather some statistics
for our report.

The last sprint was dedicated to writing the reports.

A.12 Kim-Anh Tran

In the first sprint I read up on JIRA and presented the ways to use JIRA
within our project. Afterwards I mainly worked together with Paolo on
establishing the first Bluetooth communication, so that we could handle file
requests from other connected devices.

During the second sprint Harold, Paolo, Linus and I created the first draft

50

of our architecture using OpenNetInf. Thereafter Paolo and I continued on
our previous Bluetooth implementation. We added the Bluetooth discovery
and more importantly the functionality to request and transfer NetInf NDO
between devices.

The third sprint I worked on reconfiguring Jenkins with Git and writing
a document on our git workflow. I added a test project for our code that
was run by Jenkins. Afterwards Harold and I worked together in order to
develop a database for storing NDO and thus a Local Resolution Service.

Sprint four involved separating our current application: one that provides
only the NetInf services and one that contains our application which uses
these services. With help from Paolo I separated the two projects and re-
solved all dependencies. Afterwards I joined Paolo in order to finish parsing
HTML files to be properly displayed within our WebView component while
using our NetInf services. During this sprint I was Scrum Master. Amongst
other tasks I needed to attend the other group’s stand-up meeting, create
the stories and tasks in JIRA and update our Scrum board. It was a good
experience to take the role as a Scrum Master and to organize our Sprint.

Within the last sprint I solved the text encoding problem when displaying a
number of web pages. I cleaned up our logs so that they were readable and
more useful during debugging. Finally I created a JAR file for libraries that
were used in both applications.

A.13 Thomas Nordström

Pre-Scrum: In the first few weeks the entire Project CS team read up on
ICN in general and NetInf in particular while trying to decide on what our
project would be. We also had team-building exercises.

Sprint 1: We all set up our working environment and had two workshops, one
on Erlang and one on Agile development. I also read up on OTP, did some
example programs, helped other team members get a hang of functional
programming and worked a little on the simple demo server with Marcus.

Sprint 2: I worked on the message parsing and handling with Faroogh.
I also worked on the first draft of the internal message specification and
implementation with Kiril. At the end of the sprint I worked with Linus in
the front end to make our systems work with each other.

51

Sprint 3: First I did some re-factoring of the code, after that I worked on
the search both in the message handling and in the list database. I also
worked on the presentation at Ericsson with Knut.

Sprint 4: This sprint I fixed some minor bugs, added some statistics keeping
in the server and worked on the backlog grooming.

Sprint 5: I started working on UDP convergence layer with Kiril.

Sprint 6: I started the sprint fixing a lot of minor things and while doing
that I found a bug in one of our open source dependencies and got that
fixed.

Sprint 7: In this sprint the entire group worked on report writing and the
final presentation.

52

Appendix B

Git Workflow

The following section will detail a sample work flow for a sprint with at least
two story items.

The figure below B.1 shows how the individual story may look on a time-line.

Figure B.1: Sample workflow for one story item

53

B.0.1 Starting a sprint

At the start of each sprint the development team will perform a git checkout
-b SprintX.shortStoryName develop for a running example we will take the
HTTP Handler from the first sprint. This guide assumes that all coding will
be done in pairs.

git checkout -b SprintX.shortStoryName develop

git push -u origin SprintX.shortStoryName

This will pull all the previous items into the temporary working branch from
develop

B.0.2 Working during a sprint

As the developers work together to complete the tasks outlined in the story,
commit as usual to the local branch.

git pull origin staging

git add [files that have been added or created/modified]

git commit -m description - where description is the commit

message you would like associated with the commit.

B.0.3 Deploying a Done story

After all the tasks are completed and the pair feels ready to move the task
to the done state, merge it to the development branch using the following
command:

git checkout staging

git merge --no-ff SprintX.shortStoryName

git push origin staging

- do the following only if you wish to

54

delete your branch on the remote repository -

git push origin :SprintX.shortStoryName

- do the following if you wish to delete your branch locally -

git branch -d SprintX.shortStoryName

This will perform a merge and fast-forward on the remote ’staging’ branch
while keeping historical information. It will also create empty commits in
the development branch as a way to quickly spot revisions which can be
used to revert the code. For example if you need to remove a story that was
not working properly.

NOTE: As a human user this is typically where you stop working in the
workflow. The following steps are to be implemented by Jenkins and auto-
mated build tools. A developer should only be concerned with working on
the staging branch and your their own story branches for each sprint. Never
touch develop, master or release unless absolutely necessary.

B.0.4 Testing a sprint story

The following steps assume that a testing suite was created and works well
with the Jenkins build tool.

B.0.5 Merging in to develop

When a story branch has been merged to ’staging’, the code goes through
a set of unit tests and when they are successfully passed the code is ready
to be merged to ’develop’:

git checkout develop

git merge --no-ff staging

git push origin develop

B.0.6 Merging in to release

When a story branch has been successfully merged to ’develop’, the code
goes through a integration test and if it successfully passes it is ready to be

55

merged to ’release’:

git checkout release

git merge --no-ff develop

git tag -a SprintX.shortStoryName-RELEASE

git push origin release

B.0.7 Merging in to master

Supposing that all the sprint stories code have reached the stage of release,
before proceeding with the final merging, the developers check that all the
desired features have been implemented and tested properly. The final merg-
ing is performed upon the master branch which always contains the stable
version of all the code written so far.

git checkout master

git merge --no-ff release

git tag -a Sprint1.Demo1

git push origin master

B.0.8 Post-sprint practice

After each sprint the build tool should synchronize the ’master’ and the
’develop’ branch. This ensures a clean start for each sprint as the ’staging’
branch will inherently be considered the ”dirty” branch.

git checkout DEVELOP

git merge --no-ff MASTER

B.0.9 References

The following was an inspiration for the git model:

http://nvie.com/posts/a-successful-git-branching-model/

56

Appendix C

Jenkins Setup

The following guide describes exactly how the ERNI team installed and
configured the automated build tool for use during the course.

C.1 Building Jenkins

Make sure you download the latest *.deb file from the Jenkins website:

http://pkg.jenkins-ci.org/debian/

To install simply run the following command in a shell:

run Dpkg -; <Path to deb file>

After installed, Jenkins by default starts as a service and runs on port 8080.

C.2 Jenkins configuration

Clicking on Configure system from the Manage Jenkins button will allow
you to configure the overall settings of Jenkins. Please note you can also

57

configure *SOME* plugins from here as well. If you do not see the plugin
configuration you have installed here, then take a look in the jobs configu-
ration to find settings - if any.

C.2.1 Java JDK

Before configuring the Java JDK please install it on the server you are
working on. It is required for the Email notification service and also required
for Android project building.

1. Name: <enter any name>

2. JAVA HOME: <enter the exact directory on the server machine that
holds the bin for jdk >

C.2.2 Android tools

Before configuring this in Jenkins makes sure you have installed the Android
SDK in the server you are working on.

1. Enter the path on the server for the Android SDK Root - In our case
it is: /home/server-build/android-sdk-linux

2. Check off Automatically install Android components when required

C.2.3 Ant

1. Enter a Name for the Java ANT environment on the server

2. Check off install automatically.

C.2.4 GIT

Our version of Jenkins requires GIT plugin which can be installed from the
manage plugins page. Scroll down and look for the Jenkins GIT plugin or
use the filter in the top right hand side of the page

58

Setting up the GIT plugin is done from the overall settings page under the
section Git plugin.

Enter the following settings:

1. Global Config user.name Value: <enter a user name for the git pusher>

2. Global Config user.email Value: <enter the email for the git pusher>

3. Create new accounts base on author/committer’s email : checked -
this will automatically create people in the Jenkins people page with
thier username and email. Also a lookup for the email notifications.

C.2.5 JIRA

Install the JIRA plugin from the manage plugins page. Look for Jenkins
JIRA plugin.
Setting up the JIRA plugin is done from the overall settings page under the
section JIRA.

1. URL:<enter the url for the JIRA server>

2. Supports Wiki notation: checked

3. Update Jira for All Build Issues: checked

4. User Name: <enter the name for the JIRA user bot which will make
the updates on JIRA as builds occur

5. Password:<enter the password for the JIRA bot>

C.2.6 Email server

If you want to have emails being sent from Jenkins the best way is to use
the google SMTP server. You will want to set up a project email address at
google mail.

Enter the following settings in the Email Notification section:

59

1. SMTP server: smtp.gmail.com

2. Sender Email-Address: project.cs.2012.uu@gmail.com

3. make sure USE SMTP Authentication is checked.

Click advanced

1. Enter the email address name when you set up the account- in our
case it is: project.cs.2012.uu@gmail.com

2. Enter the password for the account

3. Check SSL

4. SMTP port set to 465

5. Char-Set is at default: UTF-8

C.2.7 Projects

Jenkins requires Projects in order to do anything useful.

To create a new job make sure you are on the jenkins tab, in the top left
corner of the webpage. Select New Job

On the screen

1. Enter a Job name - This name will show up on the main dashboard
page

2. Select Build a Free-Style software Project.

Click OK when finished and you will be taken to the Configure screen of the
project. Our specific project has the following project properties

(NOTE: steps 14-17 is for erlang only)

1. Description - enter a project description

60

2. under Source Code Management Select Git

3. In Repository URL - enter the url for the git repository you will pull
from(in our case /home/git/repositories/backend.git)

4. In Branches to build -enter the exact branch you wish to pull and build
from. in our case it is origin/BRANCH NAME i.e origin/STAGING
origin/DEVELOP , origin/RELEASE, origin/master.

5. under Build Triggers Select Poll SCM - enter the time to have jenkins
check the git i.e * * * * * for every minute.

6. under Build click add Build Step and select Execute Shell

7. in the Execute Shell command box - enter any commands required on
the commandline in order to build your project. i.e cd netinf nrs ;
make etc. . .

8. under Post-Build Actions click Add post-build action and select Build
other projects

9. In Projects to Build - enter the name of the project you wish to start
after the selected trigger has been fired.

10. select the trigger Trigger only if build succeeds(used to make sure
nothing went wrong with the current project steps).

11. under Post-Build Actions click Add post-build action and select Email
Notification - this action uses the email list built in the people directory
in the jenkins main dashboard.

12. check Send e-mail for every unstable build

13. check Send seperate e-mails to individuals who broke the build

14. under Post-Build Actions click Add post-build action and select Pub-
lish Cobertura Coverage Report - this will pull erlang eunit and cov-
erage tests into the project main dashboard.

15. In Cobertura xml report pattern - enter **/*.coverage.xml

16. under Post-Build Actions click Add post-build action and select Pub-
lish Junit test Report

17. In Test report XMLs - enter **/.eunit/*.xml

61

C.3 our GIT workflow with Jenkins

The backend team will use the workflow outlined in the report section Git
Workflow. As such the following build projects will be configured for use
with Jenkins

C.3.1 Backend Staging

1. Description - ”This Job will pull from the Backend Git Repoisitory
branch: staging and only check if the source files compile. If they
compile then they are passed on to the develop branch.”

2. Git Section - URL /home/git/repositories/backend.git

3. Git Section - Advanced - Name: staging

4. Git Section - Branches to build: staging

5. Build Triggers-Poll SCM - * * * * *

6. Build -Execute Shell - cd netinf nrs; make compile

7. Post Build Actions - Git Publisher Push only if build succeeds -checked

8. Post Build Actions - Git Publisher Branch to Push: develop

9. Post Build Actions - Git Publisher Target Remote Name: staging

10. Post-Build Actions - Build other projects: Backend Develop

C.3.2 Backend Develop

This job assumes all code already compiles when it enters this branch. This
branch is specifically for unit tests.

1. Description -”This job will pull from the Backend Git Repository
branch: develop and checks if the source files compile and pass the
unit tests. If they compile and pass the tests then they are passed on
to the release branch.”

2. Git Section - URL /home/git/repositories/backend.git

62

3. Git Section - Advanced - Name: develop

4. Git Section - Branches to build: develop

5. Build -Execute Shell - cd netinf nrs; make compile; make eunit;

6. Post Build Actions - Git Publisher Push only if build succeeds -checked

7. Post Build Actions - Git Publisher Branch to Push: release

8. Post Build Actions - Git Publisher Target Remote Name: develop

9. Post-Build Actions - Build other projects: Backend Release

C.3.3 Backend Release

This job assumes all code already compiles AND passes the unit tests. This
branch is specifically for integration testing.

1. Description -”This job will pull from the Backend Git Repository
branch: release and checks if the source files compile, pass unit tests
and finally pass integration tests. If they compile, and pass all the
tests then they are passed on to the master branch(Demo).”

2. Git Section - URL /home/git/repositories/backend.git

3. Git Section - Advanced - Name: release

4. Git Section - Branches to build: release

5. Build -Execute Shell - cd netinf nrs; make compile; make eunit; make
integration

If the final Backend Release succeeds then the following job Backend Demo
should be taken care of manually until the process is perfected.

C.3.4 Backend Demo

This job assumes all code already compiles AND passes the unit tests. This
branch is specifically for tagging demos.

63

1. Description -”This job will pull from the Backend Git Repository
branch: release and checks if the source files compile, pass unit tests
and finally pass integration tests. If they compile, and pass all the
tests then they are passed on to the master branch(Demo).”

2. Git Section - URL /home/git/repositories/backend.git

3. Git Section - Advanced - Name: release

4. Git Section - Branches to build: release

5. Build -Execute Shell - cd netinf nrs; make compile; make eunit; make
integration

6. Post Build Actions - Git Publisher Push only if build succeeds -checked

7. Post Build Actions - Git Publisher Add tag - Tag to push: DemoX
(where X is the sprint number)

8. Post Build Actions - Git Publisher Target Remote Name: release

9. Post Build Actions - Git Publisher Branch to Push: master

64

Appendix D

Erlang Coding Standards

The purpose of this section is to define coding standards for the NetInf
implementation in Erlang. This document is based on the official coding
standard and conventions for Erlang 1.

D.1 Engineering Principles

D.1.1 Export As Few Functions As Possible From a Module

For better readability and understanding of code, it is recommended that we
export as few functions as possible. When exporting a function you should
define specification, also known as contract, with the erlang -spec compiler
attribute 2.

D.1.2 Prefer Readability Over Speed

It is recommended that code is initially written in an easy-to-read manner
instead of writing code that makes the program run fast but hard to un-
derstand. However, if run time complexity becomes a problem, consider
rewriting the code in an optimized way.

1http://www.erlang.se/doc/programming_rules.shtml#REF87730
2http://www.erlang.org/doc/reference_manual/typespec.html#id75681

65

http://www.erlang.se/doc/programming_rules.shtml#REF87730
http://www.erlang.org/doc/reference_manual/typespec.html#id75681

D.1.3 Directory Structure of an OTP Application

Erlang/OTP applications should have a directory structure as shown below:

<app l i c a t i on−name> [−<vers ion >]
|
|−doc
|− ebin
|− i n c lude
|−pr iv
|− s r c

Where:

doc This is where the overview.edoc file goes, if one wants to generate
documentation from EDoc.

ebin This is where compiled code (.beam files) and meta data file (.app)
are located.

include Public header files (.hrl file) should be kept in this directory.

priv Template files, shared objects and DLLs.

src Application source code, which includes .erl files and internal .hrl files.
It can also have ASN.1, YECC, MIB and other source files.

D.2 Specific Lexical and Stylistic Conventions

Use Emacs and Erlang mode when writing code. To correct indentation,
just press Tab when you are in Erlang mode. We recommend that Emacs
is used for writing the code because everybody in the team will be familiar
with everyone else’s development environment. This is important in case
team members decide to do pair programming.

• Do not write deeply nested code which means not more than 2 levels
of indentation.

• Do not write larger modules than 400 lines.

66

• Do not write long lines, at most 78 characters.

• Do not write longer functions than 15 to 20 lines.

• Choose meaningful variable names and use capitalized letter to sepa-
rate the words. Example: ReceivedMessage

• The function name should represent what the function does. Use un-
derscore to separate different words. Example: send message().

• Give space after each argument in a data structure or function argu-
ments. Example 12, 13, 45.

• Use tagged return values. This means that the return value of the
functions should be a tuple where the first key should be an atom
explaining what the tuple is.

• Do not use -import

• Use multiple -export clauses instead of grouping a lot of functions
together in one export clause. Examples: user interface, intermodule
exports and exports for use within module only.

• Always use proper indentation.

• Do not comment out old code, just remove it because it is already in
the source control repository.

D.2.1 Comments and Documentation

Instead of littering your code with comments, you should write meaningful
variable and function names. But in some cases where the code is hard
to understand you can write short comments. For every function use Edoc
notation and explain arguments and return value and, if present, side effects
3.

Each file should start with a short description of the module contained in the
file and a brief description of all exported functions. All the error messages
in an application should be documented in a single document.

3http://www.erlang.org/doc/apps/edoc/chapter.html

67

http://www.erlang.org/doc/apps/edoc/chapter.html

Appendix E

Java and Android Coding
Standards

The purpose of this section is to present the code convention used in the
implementation of the Android-based application. These code standards are
based on the Android Code Style Guidelines for Contributors1.

E.1 Java Language Rules

• Do not ignore exceptions. It is only acceptable to ignore exceptions if
there is a good reason to do it, which should be given as a comment
in the code. As a general rule, always:

– handle the exception;

– or throw a new exception according to the level of abstraction;

– or handle it gracefully;

– or throw a new RuntimeException in case there is nothing possible
to do.

• Don’t catch a generic exception e.g. Exception e. Alternatives to do
this are:

– Catch each exception with a separate catch block after a single
try.

1http://source.android.com/source/code-style.html

68

http://source.android.com/source/code-style.html

– Refactor the code in order to have multiple try blocks.

– Rethrow the exception and let it be handled on the next level.

• Do not use finalizers. Let the garbage collector do its job.

• Always write full imports.

E.2 Java Style Rules

• Use Javadoc standards for commenting code. Always write the de-
scriptions in third person. This rule can be skipped if the method is
too trivial e.g. a getters and setters.

• Try not to exceed 40 (forty) lines of code for each method.

• Try to keep the scope of a variable as small as possible. Also, try to
initialize it with a proper value.

• Order the imports beginning with Android libraries, followed by third
parties libraries and ending with java and javax classes, each group
separated by an empty line.

• For indentation, use four spaces for blocks and eight spaces for line
wraps (i.e. when the line of code is too long and needs to be cut).

• Limit the line length to 80 (eighty) characters.

• Use standard Java Annotations e.g. @Deprecated, @Override, @Sup-
pressWarnings.

• Use acronyms as words e.g. write XmlHttpRequest not XMLHTTPRe-
quest.

• Use TODO comments for temporary fixes and future work.

• Use all five levels of logging (Error, Warning, Informative, Debug and
Verbose) as applicable.

• Use the standard brace style:

public void f oo () {
i f (. . .) {

doSomething () ;
}

}

69

• Use the following naming conventions:

– Non-public, non-static field names start with m.

– Static field names start with s.

– Other fields start with a lower case letter.

– Public static final fields (constants) are letters in upper case and
spaces replaced by underscores. Example:

public class MyClass {
public stat ic f ina l int SOME CONSTANT = 42 ;
public int p u b l i c F i e l d ;
private stat ic MyClass s S i n g l e t o n ;
int mPackagePrivate ;
private int mPrivate ;
protected int mProtected ;

}

70

Bibliography

[1] Buildbot - an automated build tool. Retrieved February 4th, 2013, from
http://trac.buildbot.net/.

[2] Ericsson - a world of communication - ericsson. Retrieved January 15th,
2013, from http://www.ericsson.com.

[3] Erlang programming language. Retrieved January 15th, 2013, from
http://www.erlang.org/.

[4] Gerrit code review. Retrieved February 18th, 2013, from
http://code.google.com/p/gerrit.

[5] Git - fast version control. Retrieved February 4th, 2013, from
http://git-scm.com/.

[6] Jenkins - an extendable open source continuous integration server. Re-
trieved February 4th, 2013, from http://jenkins-ci.org/.

[7] Jira - an issue & project tracking software. Retrieved February 4th,
2013, from http://www.atlassian.com/software/jira/overview.

[8] Redmine - a project manager web application. Retrieved February 4th,
2013, from http://www.redmine.org/.

[9] Riak - open source, distributed database. Retrieved February 18th,
2013, from http://basho.com/riak.

[10] B. Raghavan S. Shenker A. Singla J. Wilcox A. Ghodsi, T. Koponen.
Information-centric networking: Seeing the forest for the trees. ACM
HotNets-X, 2011.

71

[11] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman.
A survey of information-centric networking. IEEE Communications
Magazine, 2012.

[12] P. Boschini K. Goguev F. Hassan M. Ihlar-A. Lindholm K. Loren-
zen H. Mart́ınez T. Nordström T. Costa Porto L. Sunde K-A. Tran
D. Bacarella, J. Borglund. Project cs 2012 product report. 2012.

[13] H. Otaola and M. Sosa. Using multiple transport networks in netinf
enabled android devices. Master’s thesis, KTH, School of Information
and Communication Technology (ICT), Sweden, 2012.

[14] C. Dannewitz B. Ohlman A. Keranen P. Hallam-Baker S. Farrell,
D. Kutscher. Naming things with hashes draft-farrell-decade-ni-10.
Handed to us by Ericsson, 2012.

[15] K. Schwaber and J. Sutherland. The Scrum Guide, 2011.

72

	Introduction
	Resources
	Project Group
	Seating arrangements

	Equipment
	Tools
	Development Languages
	Continuous Integration & Build Server
	Version Control
	Policies

	Project Management
	Redmine
	JIRA

	Project methodology and organization
	Scrum
	Roles
	Scrum Keywords
	Scrum process

	Use of Scrum in this project
	Daily meetings
	Sprint planning
	Demo
	Retrospectives
	Conflicts

	Quality Assurance
	Pair-programming
	Code Reviews

	Timeline
	Pre-Scrum
	LISA
	ERNI

	Team Building
	Team Building
	Fika
	Birthdays
	Eating out
	Bowling

	Conclusion
	Conclusion

	Individual input
	Daniele Bacarella
	Jon Borglund
	Paolo Boschini
	Kiril Goguev
	Faroogh Hassan
	Marcus Ihlar
	Alexander Lindholm
	Knut Lorenzen
	Harold Martínez
	Thiago Costa Porto
	Linus Sunde
	Kim-Anh Tran
	Thomas Nordström

	Git Workflow
	Starting a sprint
	Working during a sprint
	Deploying a Done story
	Testing a sprint story
	Merging in to develop
	Merging in to release
	Merging in to master
	Post-sprint practice
	References

	Jenkins Setup
	Building Jenkins
	Jenkins configuration
	Java JDK
	Android tools
	Ant
	GIT
	JIRA
	Email server
	Projects

	our GIT workflow with Jenkins
	Backend_Staging
	Backend_Develop
	Backend_Release
	Backend_Demo

	Erlang Coding Standards
	Engineering Principles
	Export As Few Functions As Possible From a Module
	Prefer Readability Over Speed
	Directory Structure of an OTP Application

	Specific Lexical and Stylistic Conventions
	Comments and Documentation

	Java and Android Coding Standards
	Java Language Rules
	Java Style Rules

