
Project CS 2012 Product Report

Uppsala University

Daniele Bacarella
Jon Borglund
Paolo Boschini
Kiril Goguev

Faroogh Hassan
Marcus Ihlar

Alexander Lindholm
Knut Lorenzen

Harold Mart́ınez
Thomas Nordström
Thiago Costa Porto

Linus Sunde
Kim-Anh Tran

Abstract

In Information Centric Networking (ICN), content is delivered to users based
on the name of the requested resource without taking its physical location
into consideration. Based on the NetInf protocol, an Android application
backed by an Erlang implementation of a Name Resolution Service was
implemented and both products are presented in this report. By communi-
cating with each other, the systems store, share and retrieve data objects in
an ICN fashion. In situations of network congestion content is difficult or
impossible to retrieve. Using ICN, the system can provide alternate transfer
methods to facilitate the delivering of content.

0.1 Glossary

API - Application Programming Interface
CH - Content Handler
CL - Convergence Layer
ERNI - Erlang NetInf
EH - Event Handler
HTML - HyperText Markup Language
HTTP - HyperText Transfer Protocol
ICN - Information-centric Networking
IO - Information Object
IDE - Integrated Development Environment
JSON - JavaScript Object Notation
LRS - Local Resolution Service
MAC - Media Access Control
MH - Message Handler
NDO - Named Data Object
NRS - Name Resolution Service
NetInf - Network of Information
OTP - Open Telecom Platform
SAIL - Scalable and Adaptive Internet soLutions
SDK - Software Development Kit
SQL - Structured Query Language
TCP/IP - Transmission Control Protocol/Internet Protocol
UDP - User Datagram Protocol
URL - Uniform Resource Locator
URI - Uniform Resource Identifier

1

Contents

0.1 Glossary . 1

1 Introduction 9

1.1 Background . 9

1.2 NetInf enabled applications 9

1.2.1 A NetInf based web browser for Android 9

1.2.2 An Erlang implementation of NetInf 10

2 Preliminaries 11

2.0.3 Information-centric Networking 11

2.0.4 Network of Information 12

2.0.5 OpenNetInf . 13

2.1 Development Languages . 14

2.1.1 Java-Android . 14

2.1.2 Erlang . 14

2.1.3 Javascript . 14

3 Goals and Scope 15

3.1 Frontend . 15

3.1.1 NetInf Enabled Browser 15

2

3.2 Backend . 16

3.2.1 Goals . 16

3.2.2 Scope . 17

4 Product Description 18

4.1 Frontend . 18

4.1.1 Elephant Web Browser 18

4.1.2 NetInfService . 21

4.2 Backend . 25

4.2.1 Erlang NetInf Name Resolution Service 25

4.2.2 NetInf Video Streaming Client/Protocol 25

4.2.2.1 First Implementation 26

4.2.2.2 Modified NetInf Streaming 26

4.2.2.3 Pure NetInf Streaming 27

4.2.2.4 Streaming Frontend 27

5 System Architecture 29

5.1 Architecture Overview . 29

5.2 NetInfService . 30

5.2.1 Configuration . 31

5.2.2 RESTful API . 31

5.2.2.1 Publish . 33

5.2.3 Retrieve . 34

5.2.4 Search . 34

5.2.5 ResolutionController 35

5.2.5.1 NameResolutionService 35

3

5.2.5.2 LocalResolutionService 36

5.2.6 SearchController . 36

5.2.6.1 UrlSearchService 36

5.2.7 TransferDispatcher . 36

5.2.7.1 BluetoothProvider 36

5.2.7.2 BluetoothServer 37

5.3 Elephant . 37

5.3.1 Configuration . 38

5.3.2 Control Flow . 38

5.3.3 RESTful API Access 38

5.4 Erlang NetInf NRS . 41

5.4.1 Architecture layers . 42

5.4.2 NetInf Messaging . 42

5.4.2.1 Named Data Objects 42

5.4.2.2 Internal NetInf Messaging 42

5.4.2.3 Publish . 43

5.4.2.4 Publish Message Workflow 44

5.4.2.5 Get . 46

5.4.2.6 Get Message Workflow 46

5.4.2.7 Search . 47

5.4.2.8 Search Message Workflow 48

5.4.3 Dependencies . 49

5.4.4 Configurations . 50

5.4.4.1 Meaning of the config values 51

5.4.5 Using config files . 51

4

5.4.6 Extracting the config parameters 52

5.4.7 Convergence Layers 52

5.4.7.1 HTTP . 53

5.4.7.2 UDP . 53

5.4.8 Notes on other CL . 54

5.4.9 Plug N’ Play Database Wrapper 54

5.4.10 Setup of Database Module 55

5.5 Chunked data streaming . 57

5.5.1 Content dispatcher . 57

5.5.2 Stream handler . 57

5.5.3 HTTP client handling 58

5.5.4 HTML5 interfaces . 58

5.5.5 Difference between implementations 58

5.5.6 Advantages and disadvantages 59

6 Evaluation and testing 60

6.1 Frontend . 60

6.1.1 Test Setup . 60

6.1.2 Hardware . 61

6.1.3 Limitations . 61

6.1.4 Results . 62

6.1.5 Discussion . 64

6.2 Backend . 65

6.2.1 Video streaming protocol evaluation 65

6.2.2 Pure video streaming evaluation setup 66

6.2.3 Modified video streaming evaluation setup 66

5

6.2.4 Results . 67

6.2.5 Discussion . 67

6.2.6 Notes on Interoperability 68

7 Conclusions and Future Work 70

7.1 Conclusions . 70

7.2 Future Work . 71

7.2.1 Elephant and NetInfService 71

7.2.1.1 Dynamic Content 71

7.2.1.2 Search . 71

7.2.1.3 Delete Functionality 72

7.2.1.4 NetInfService 72

7.2.1.5 Database and Bluetooth convergence layer . 72

7.2.2 NetInf NRS . 72

7.2.2.1 Precaching 72

7.2.2.2 Access Control 73

7.2.2.3 Interoperability 73

7.2.2.4 Handle large file 73

7.2.3 Security . 73

7.2.3.1 NRS required folder creation 73

7.2.3.2 Polling Logic 74

7.2.4 General . 74

8 Appendix A: Installation instructions 75

8.1 Frontend . 75

8.1.1 Configuring Eclipse with Android 75

6

8.1.2 Installing and debugging the application 76

8.2 Backend . 76

8.2.1 Dependencies . 76

8.2.2 Script . 78

8.2.3 Riak Database . 79

8.2.4 Running the NetInf NRS 80

9 Appendix B: Maintenance instructions 82

9.1 Frontend . 82

9.1.1 Default Application Settings 82

9.1.1.1 Elephant Web Browser 82

9.1.1.2 NetInfService 84

9.1.2 Development Environment 85

9.1.3 Eclipse Project Structure 85

9.1.3.1 Elephant Packages 85

9.1.3.2 NetInfService Packages 86

9.1.4 Javadoc . 88

9.2 Backend . 88

9.2.1 Default Application Settings 88

9.2.2 Development Environment 89

9.2.3 Code and folder structure 90

9.2.4 NetInf NRS modules 93

9.2.5 Generating documentation 98

10 Appendix C: NetInf Video Streaming Draft 99

10.1 NetInf Video Streaming Protocol 99

7

10.1.1 Introduction . 99

10.1.1.1 Proposed method of retrieving chunked NDOs 99

10.1.1.2 Testing criteria 100

10.1.1.3 Extra notes 102

11 Appendix D: License 103

8

Chapter 1

Introduction

1.1 Background

The current architecture of the Internet is based on a host-to-host based
model of communication. Much of the content transferred over the network
is generated by a single source and accessed by many recipients. This type of
communication is not well-suited for the current Internet architecture [15].

An alternative to host-to-host based networking is Information Centric Net-
working (ICN). In the ICN model data is requested and fetched regardless
of its location. Currently four major specifications of ICN exist [7].

1.2 NetInf enabled applications

The Network of Information (NetInf) is one of four major existing ICN
specifications. NetInf is designed to run independently or on top of current
network topologies such as TCP/IP, UDP, Bluetooth etc [9].

1.2.1 A NetInf based web browser for Android

When many people in a confined area use 3G-devices to retrieve content
simultaneously there is a high load on the common 3G uplink. The Elephant
web browser is designed to enhance the browsing experience under such

9

conditions by employing an information centric approach to the retrieval of
web content.

1.2.2 An Erlang implementation of NetInf

In order to support the Elephant web browser an implementation of the
NetInf specification has been developed.

10

Chapter 2

Preliminaries

2.0.3 Information-centric Networking

The Internet was originally designed based on a host-centric paradigm (one-
to-one communication), where users explicitly connect to hosts in order to
use services and retrieve resources. In the early days this worked well due to
the low amount of users per host, but as the internet gained popularity the
use of services began to increase. Over the past decades, the host-centric
approach has become a growing impediment for services with large user
bases, with workarounds like load-balancing and content delivery networks
to circumvent bandwidth bottle necks in place. Today most traffic involves
transferring of audio/video media and social networking content, both rely-
ing on one-to-many communication. Information-centric networking (ICN)
is a research field aiming to redesign the internet in a fundamental way for
today’s and the near future’s usage patterns. In ICN, the actual host pro-
viding a specific resource or service can be arbitrary and therefore unknown
to the user. Instead of connecting to a host, the user queries the network
as a whole. This enables low-level caching in every network node, so that
repeated forwarding of identical information can be minimised and band-
width can thus be used more efficiently. The main challenges in ICN are
the ways of addressing information units and the integration with existing,
host-centric networks. At this time ICN only exists in the form of indepen-
dent research projects (e.g. NetInf), with no cross-industry standards on
the horizon yet [15].

11

2.0.4 Network of Information

Network of Information (NetInf) was one of the first approaches proposed
by the 4WARD project [3]. This ICN paradigm was intended to deal with
the issues that the current Host-Centric Networks suffer from. Every object
on the network is called a Named Data Object (NDO) and is self-verifying.
This leads to the user being able to request a certain object, an NDO, and
fetch it from any source without worrying who or where it gets it from.
The NDO can verify itself by using its own hash value as part of its name
along with the used hash-algorithm. A lot has changed in NetInf since the
4WARD project made the first draft. Currently the most recent versions
are managed by the SAIL project [6]. Figures 2.1 and 2.2 show, at the
conceptual level, two ways how NetInf can handle NDO requests.

Figure 2.1: Handling an NDO request using forwarding

12

Figure 2.2: Handling an NDO request using locators

2.0.5 OpenNetInf

OpenNetInf [8] is an open source Java implementation of NetInf developed
at the University of Paderborn. OpenNetInf is still in the very early de-
velopment phase and mainly aimed at research. The frontend development
team decided to use OpenNetInf as a starting point for the Android client’s
NetInf functionality, but still had to implement and extend it to provide
additional functionality. One reason for choosing OpenNetInf, rather than
starting from scratch, was to avoid reinventing the wheel. It was also a
chance to contribute to an existing project. Another reason was the closely
related work done in a previous master thesis [14] which used OpenNetInf.

13

2.1 Development Languages

2.1.1 Java-Android

Elephant was developed for Android, an operating system targeted at mo-
bile devices. The fact that both OpenNetInf and a closely related previous
master thesis [14] also used Java further solidified this decision. Java is
an imperative object-oriented programming language. Access to Android
API libraries and other tools needed for development are provided by the
Android SDK.

2.1.2 Erlang

Erlang is a concurrent, functional, fault-tolerant language with great scala-
bility and ease of distribution. It was developed by Ericsson in the mid 80’s
and became open source in 1998.[12] These factors among others such as
the customer being Ericsson Research made Erlang the language of choice
for the NRS implementation. Another reason for choosing Erlang is that
it uses the idea of modules and nodes as a primary platform for serving
a function. This allowed the product to be broken up into several parts,
supporting concurrent development.

2.1.3 Javascript

Javascript [5] was used when the backend development team decided to
create a simple HTTP interface to the NRS in order to show a proof-of-
concept (NetInf streaming). Javascript was used to calculate the hash of files
for streaming as well as for asynchronous communication with the NRS.

14

Chapter 3

Goals and Scope

3.1 Frontend

3.1.1 NetInf Enabled Browser

The goal of the frontend was to produce a NetInf enabled browser for An-
droid devices. The browser utilizes NetInf technology to retrieve web pages
from other nearby devices and/or caching nodes in order to reduce the usage
of shared 3G uplinks. The NetInf messages should conform to the NetInf
HTTP convergence layer [9]. Web pages are split into several parts to make
them available from multiple sources.

NetInf protocol requires that the browser have the possibility to:

• Inject existing web pages into the NetInf network as NDOs.

• Given a traditional web URL be able to find the corresponding NDO.

• Get NDOs from other devices.

The following problems are considered to be out of scope:

• Privacy

• Security

15

• Dynamic Content

• Battery Consumption

• Bluetooth Congestion

Privacy and security are both very important aspects, but would require
complex considerations. They are areas that require future work.

Dynamic content is relevant since a lot of content that is of interest to many
users is dynamic and changes often (e.g. newspapers, Facebook, Twitter).
However this adds a lot of complexity to the problem since dynamic content
means the mappings from traditional web URLs to NDOs are constantly
changing.

Battery consumption is a serious issue in this type of application. The
application uses Bluetooth which is a battery draining technology. The
simplest solution here is to let the user disable Bluetooth. Hopefully the
problem of heavy battery consumption will be solved by future technological
advancements.

A final problem that is not taken into consideration is possible congestion
in the Bluetooth network due to a large amount of devices running simulta-
neously.

3.2 Backend

This section describes the goals and scope set by the backend team for this
product.

3.2.1 Goals

The following goals were set for the Erlang implementation of the Name
Resolution Service (NRS):

1. Build a Name Resolution Service (NRS) for the Erlang NetInf appli-
cation.

16

2. Be able to publish, store and retrieve Named Data Objects (NDOs) in
a NetInf network.

3. Make each NetInf node a caching node that can store NDOs.

4. Be able to stream video using the Erlang NetInf application.

3.2.2 Scope

The scope of the NRS application is limited to providing all the function-
alities outlined in the NetInf Protocol draft document. [9] This document
outlines what information a NetInf Get, Publish and Search message should
contain. It also defines how a Get, Publish and Search response message
should look like. Apart from that it also covers specifications for the HTTP
and UDP convergence layers. The team made sure that the application fol-
lowed all these specifications accurately. Providing video streaming was not
part of the scope at the beginning of this project but at the customers re-
quest preliminary(proof-of-concept) work was done. However readers should
note that the video streaming is not meant to be a complete product and
the development team encourages further research into it.

17

Chapter 4

Product Description

4.1 Frontend

The following section describes the product the frontend team developed
during the course. The product consists of two different applications: Ele-
phant, the web browser, and an implementation of the NetInf services. The
architecture of these applications are described in Sections 5.3 and 5.2 re-
spectively.

4.1.1 Elephant Web Browser

The color of the spin-progress-bar indicates the medium used for fetching
data.

• Red indicates the uplink connection (3G or Wi-Fi)

• Green indicates the database

• Black indicates a NRS caching node

• Blue indicates Bluetooth

Other than these colors, grey means that a search is currently in progress.
The application also offers the possibility to interrupt the loading process

18

Figure 4.1: Loading a web page via uplink

19

by tapping on the the same icon used to start loading a page, as it toggles
between a refresh icon and cancel icon.

Figure 4.1 shows an example view of the web browser.

To make sure that Elephant is able to retrieve resources from other mediums
than the uplink, the NetInf service application must be up and running. This
is because the NetInf service enables communication to other nodes in the
network and to keep track of which devices have a certain resource to serve
via Bluetooth.

Elephant contains some customizable settings that can be found in the menu
entry on the top right of the application. These settings make it possible
to take advantage of the NetInf service. In comparison to other available
browsers, Elephant makes use of Information-Centric Networking as well as
Location-Based Networking in an attempt to lower network congestion. In
the setting page, see Figure 4.2, the user can decide if they want to share
visited pages as well as upload web pages to a caching node. The first menu
entry gives the possibility to register the local device as a locator that can
serve other devices via Bluetooth. By enabling the second menu entry the
device will not only register as a locator, but will also transfer the actual
files to a NRS cache node, if any.

The last menu entry for the setting is for opening the NetInf Service’s set-
tings, so that the user does not have to switch applications manually when
changing the service settings.

20

Functionality Description

Search The application searches for the hash value of the resource
requested, specified by a URL. This search includes search-
ing for the hash value within the local database and the re-
mote Name Resolution Service (NRS). It returns the value,
if found.

Get A Get request that contains the hash value of an NDO trig-
gers a content retrieval of the corresponding resource. The
application tries to retrieve the content either from the Lo-
cal Resolution Service (LRS), the NRS or from a remote
Bluetooth device.

Publish The application can register the local device as a locator for
a resource specified by a hash in the NRS. This way, remote
devices can try to retrieve that resource from the local device
using Bluetooth.

Full put The full put is a publish request that contains the actual con-
tent corresponding to the resource that is published. Thus,
the NRS, to which the local device is connected to, can store
the content and serve it itself.

Table 4.1: Functionalities

Finally, Figure 4.3 shows a simple help view presenting a brief description
of the functionalities of the application, so that the user can have a better
understanding of how the web browser works.

4.1.2 NetInfService

The NetInfService is a stand-alone application that can be used by other
applications in order to make use of Information-Centric Networking. All
functionalities that are provided are listed in Table 4.1. If an application
needs the ICN services, the NetInf Service application has to run in the
background.

The services are configurable within a simple and self-explanatory user in-
terface that is shown in Figure 4.4. If a user wants to change the NRS
that the device is communicating with, the address as well as the port can

21

Figure 4.2: Settings view of Elephant

22

Figure 4.3: Help view

23

Figure 4.4: NetInf Service Settings

24

be changed accordingly. In addition a user can decide whether they want
to share their downloaded content with other remote devices. Only if the
Bluetooth Server is turned on, data will be shared. Finally, the database as
well as the logs created during the run can be cleared. The database stores
every single resource that is published. At some point, the database will
contain a huge amount of old data that is not usable anymore. Clearing
the database will then improve the run time since the search among stored
content will perform faster. Log files are used for debugging purposes. In
case a log is old, clear it and rerun the application in order to gain new
logs.

4.2 Backend

The customer agreed on having an Erlang NetInf NRS. The backend product
implements the, as of writing, current draft of the NetInf Protocol[9] in a
purely functional language. The product promises a high level of scalability
and fault-tolerance. The client initially asked for only the NRS as a product
however the backend team was able to complete the initial product in a
timely manner, allowing for applications of this network technology to be
explored.

4.2.1 Erlang NetInf Name Resolution Service

The first of the two deliverables from the backend team to the customer.
The Erlang NetInf NRS provides a new way to organize and retrieve data
on the Internet. Based on an initial NetInf NRS protocol draft from devel-
opment teams such as SAIL and Ericsson Research[9]. This product allows
for flexibility and extension of the existing protocol.

Erlang’s concept of modularization allowed the team to break up the NRS
functionality into distinctive convergence layers, runtime database switch-
ing, and even allow for a proof-of-concept data streaming client/protocol.

4.2.2 NetInf Video Streaming Client/Protocol

The last of the deliverables from the backend team. The customer re-
quested a proof-of-concept video streaming protocol and HTML client inter-

25

face which lies on top of the Erlang NetInf NRS technology. The streaming
protocol is a completely new addition to the NetInf draft[9]. The team de-
veloped a way to utilize the code and transporting mechanism of the first
product in order to stream video content. Along with the protocol outlined
in Appendix C 10.1, the team has created a HTTP interface client which
allows the user to see the streaming protocol in action in addition to access-
ing the NRS functionality. This particular product was not specified in the
initial conversations with the customer in September, but was added late in
the development cycle and is a proof-of-concept.

4.2.2.1 First Implementation

In addition to normal NRS functionality, a HTTP transfer-dispatcher had to
be implemented in order to transfer chunks between clients. The streaming
works by clients subscribing to a stream from a specific NRS. Once connected
the stream the client with a constant interval will ask the NRS where to find
these chunks. All the chunks are transferred via the transfer-dispatcher. The
playback of the video chunks is done by polling the local NRS, this implies
that every client has its own NetInf node running. See figure 4.5. The
benefit of using this approach is that only one NDO containing the filename
has to be published. The receiver can then derive the chunks locations,
by appending the chunk number to the end of the locators provided in the
filename NDO.

4.2.2.2 Modified NetInf Streaming

Due to a request from the customer a more true NetInf implementation
of streaming was implemented. Instead of using the transfer-dispatcher be-
tween the client nodes a workaround was added that disabled content valida-
tion, this resulted in fetching chunks via NetInf messages. The polling logic
is still the same as first implementation, seen in figure 4.5. Instead of using
ordinary HTTP locators, the receiver is required to modify the NetInf GET
requests to get the chunks. This is done by replacing the hash algorithm
with the custom hash name demo, this fictitious hash name is used to avoid
the content validation and database lookups. For example, to get the first
chunk of ni:///sha-256;abc, the request should contain ni:///demo;abc1.
The HTTP transfer-dispatcher is still used to transfer the chunks to the
HTML-interface.

26

Figure 4.5: Original/Modified Chunked Data Transfer

4.2.2.3 Pure NetInf Streaming

To be able to evaluate the modified NetInf streaming another implemen-
tation was added. This implementation uses NetInf searches and gets for
chunks. See Figure 4.6. In this implementation the stream source is required
to publish each chunk to the NRS, and modify the NDO metadata with the
stream name and stream chunk number. The receiver is then required to
search for each chunk to find it.

4.2.2.4 Streaming Frontend

To merge the chunks, a simple HTML5 frontend was created. HTML was
chosen to make the player platform independent. In both implementations
the player starts a JavaScript that continuously polls the local NetInf node
for the chunks through the HTTP dispatcher. The difference is that the pure
NetInf player uses the NRS search to build the playlist, while the modified
NetInf version only increases the chunk number.

27

Figure 4.6: Chunked Data Transfer With Pure NetInf

28

Chapter 5

System Architecture

5.1 Architecture Overview

The system is a combination of frontend and backend subsystems that com-
municate using network protocols including HTTP and Bluetooth. Fig-
ure 5.1 shows how messages can flow between the different subsystems. All
messages are of a request-response type, therefore messages are always flow-
ing in both directions between subsystems. The messages contain NetInf get,
publish or search requests except for messages emitted from the Elephant
web browser to the Internet, these are normal HTTP requests.

The following sections describe the different subsystems in detail.

29

Figure 5.1: The Elephant browser initially requests an object from the Net-
Inf service, if the object is not found the request will be forwarded to an
Erlang NRS. The Erlang NRS responds with object or locators to the ob-
jects if the object is present in the NetInf network. If the object is not found
within the NetInf network, the Elephant browser will try to fetch it from the
Internet and then publish it to the NetInf Service which in turn will send a
publish request to the NRS.

5.2 NetInfService

NetInfService is the first of two Android applications. It provides a NetInf
node which can be accessed through a RESTful API. This allows any ap-
plication running on the same device as the NetInfService to access NetInf
functionality through simple HTTP requests. The interface is described in
detail in Section 5.2.2. NetInfService is based on the work done in a previ-
ous master thesis [14]. The NetInfService uses and extends OpenNetInf to
provide this functionality. An overview of the design of NetInfService can
be seen in Figure 5.2, the individual components are described below.

30

Figure 5.2: NetInfService Overview

Figure 5.3 shows a picture of the internal control flow of the NetInfService,
and provides the packages and/or source files, as well as some text and
arrows describing the control flow. The digits on the connections between
boxes illustrate the order actions are taken.

5.2.1 Configuration

The default settings for NetInfService are stored in the properties file ”as-
sets/config.properties”. This includes but is not limited to NRS IP address,
NRS port and RESTful API port. Some of these settings can be changed
when running the NetInfService on an Android device. This does not change
the default values in the properties file but the changes are instead stored
using the default Android shared preferences file, which is persistent.

5.2.2 RESTful API

The RESTful API receives HTTP requests for NetInf functionality. De-
pending on the type of request, the ResolutionController, SearchController
or TransferDispatcher is called. Publish requests are handled by the Reso-
lutionController. Retrieve requests first trigger a get request using the Res-
olutionController and, if the get response contained locators, it will transfer
the file using the TransferDispatcher. Search requests are handled by the
SearchController.

31

Figure 5.3: NetInfService Control Flow

32

The HTTP request uses the following format:

http://{Host}:{Port}/{Prefix}?{key1}={value1}&{key2}={value2}...

Since the NetInfService should be running on the same device as the ap-
plication that is using it, the host would most likely be either localhost or
127.0.0.1. The default port is 8080, for changing these settings see Section
5.2.1. The key-value pairs must be URL encoded as they can contain illegal
characters.

5.2.2.1 Publish

Publish requests use the prefix publish.

They require the following key-value pairs:

key value

hash The hash of the object being published.

hashAlg The hash algorithm used to hash the object.

ct The MIME content-type of the object being published.

The following key-value pairs are optional:

key value

btmac The Bluetooth MAC address of the publishing device.

meta Metadata as a JSON string.

filepath Path to the file being publish.

• btmac: The Bluetooth MAC address of the publishing device, it will
be added as a locator to the published object.

• meta: The metadata [9] of the object that is being published. Remem-
ber to URL encode illegal characters.

• filepath: The file path of the object that is being published. If this is
present, a full put is done, otherwise not.

A successful publish returns HTTP status code 200. Any other code in-
dicates that something went wrong and should give an indication of what
went wrong.

33

Below is an example of how a HTTP publish request could look like, notice
the URL encoding:

http://localhost:8080/publish?hash=TcoP1fQkoxsDq4B8uud%2Bsyvy0Inu0c7hVLOv7UWN4Nw
&hashAlg=sha-256&ct=text%2Fplain&btmac=F0%3AE7%3A7E%3A3F%3AD2%3A43

Unencoded it would look like:

http://localhost:8080/publish?hash=TcoP1fQkoxsDq4B8uud+syvy0Inu0c7hVLOv7UWN4Nw
&hashAlg=sha-256&ct=text/plain&btmac=F0:E7:7E:3F:D2:43

5.2.3 Retrieve

Retrieve requests use the prefix retrieve.

They require the following key-value pairs:

key value

hash The hash of the object being published.

hashAlg The hash algorithm used to hash the object.

A successful retrieve returns HTTP status code 200. The HTTP response
should contain a JSON object with two key-value pairs. The key path should
contain a local file path to the retrieved object. The key ct should contain
the MIME content-type of the retrieved object. Any other code indicates
that something went wrong and should give an indication of what went
wrong.

Below is an example of how a HTTP retrieve request could look like, notice
the URL encoding:

http://localhost:8080/retrieve?hash=TcoP1fQkoxsDq4B8uud%2Bsyvy0Inu0c7hVLOv7UWN4Nw
&hashAlg=sha-256

Unencoded it would look like:

http://localhost:8080/retrieve?hash=TcoP1fQkoxsDq4B8uud+syvy0Inu0c7hVLOv7UWN4Nw
&hashAlg=sha-256

5.2.4 Search

Search requests use the prefix search.

34

They require the following key-value pairs:

key value

tokens The tokens being searched for.

The following key-value pair is optional:

key value

ext An optional JSON, meant for future extensions.

• tokens: Currently NetInfService only supports one token. This should
be changed to accept a string of space separated search tokens to follow
the specification.

• ext: The ext field is meant for future extensions. It is allowed, but
currently ignored.

Below is an example of how a HTTP search request could look like, notice
the URL encoding:

http://localhost:8080/search?tokens=http%3A%2F%2Fwww.ericsson.com%2F

Unencoded it would look like:

http://localhost:8080/search?tokens=http://www.ericsson.com/

5.2.5 ResolutionController

The ResolutionController handles a number of ResolutionServices. Each
ResolutionService should provide publish, get, and delete functionality us-
ing some convergence layer or equivalent. Currently there are two Resolu-
tionServices, the LocalResolutionService which uses a local SQLite database
and the NameResolutionService which communicates with a specific NRS
using the HTTP convergence layer.

5.2.5.1 NameResolutionService

The NameResolutionService uses the Named Information URI [16] and the
HTTP convergence layer [9] to communicate with a single NRS. Currently
the NameResolutionService supports publish and get. Delete is not yet
supported but the framework for its implementation is there.

35

5.2.5.2 LocalResolutionService

The LocalResolutionService uses a connection to the device’s local SQLite
database. The LocalResolutionService has higher priority than the NameRes-
olutionService meaning that when preforming a get request the LocalResolu-
tionService will be used first and then if needed the NameResolutionService
as well.

5.2.6 SearchController

The SearchController handles a number of SearchServices. Each Search-
Service should provide search functionality using some convergence layer
or equivalent. Currently there is one SearchService, the UrlSearchService,
which provides search functionality using a single token which is assumed
to be a URL.

5.2.6.1 UrlSearchService

The UrlSearchService provides the functionality to search for a single token
in the local database used by the LocalResolutionService. If the token is
not found in the database, then a search will be preformed using the HTTP
convergence layer. This new search looks for tokens in the NRS, which uses
the NameResolutionService.

5.2.7 TransferDispatcher

The TransferDispatcher handles a number of ByteArrayProviders. Each
ByteArrayProvider should provide functionality to retrieve a file (as a byte
array) in some way. Currently there is one ByteArrayProvider, the Blue-
toothProvider, which uses Bluetooth to transfer files between Bluetooth
enabled devices.

5.2.7.1 BluetoothProvider

The BluetoothProvider provides the functionality to retrieve the bytes of
an NDO through a specified Bluetooth locator. It first tries to establish

36

a connection to the remote Bluetooth device. If successful, it requests the
bytes of an object by sending the hash value that describes the object. As
a response, the provider retrieves the bytes of the object, if it was available
on the remote Bluetooth device.

5.2.7.2 BluetoothServer

The BluetoothServer continuously listens to incoming Bluetooth file re-
quests. If a remote device wants to connect to the local device, the Blue-
toothServer establishes a BluetoothSocket through which both devices can
communicate with each other. The BluetoothServer expects to receive a
string that represents the hash of a requested object. Using this hash, the
BluetoothServer will send back the byte arrays of the corresponding object,
if available.

5.3 Elephant

Elephant is the second Android application. It is a simple browser which
uses NetInf through the NetInfService to cache and share web pages.

The idea behind the Elephant browser is simple. When a traditional web
URL is entered into the address bar and the refresh button is clicked, instead
of downloading the web page from the Internet the browser first tries to use
NetInf to retrieve the web page.

This is done by using the NetInfService. For the entered URL and each
resource it links to:

1. Search for the hash of the URL/resource.

2. Get the file with the given hash.

3. Possibly publish the file so that other devices can retrieve the file from
this device.

If the search or get fails for any reason, be it a timeout, no matches found
or something else, the webpage is downloaded using the a standard HTTP
request.

37

5.3.1 Configuration

The default settings for Elephant are stored in the properties file ”asset-
s/config.properties”. This includes but is not limited to RESTful API IP
address, RESTful API port and RESTful API timeouts.

5.3.2 Control Flow

Figure 5.4 shows an overview of the control flow of the interaction between
Elephant and NetInfService. Figure 5.5 shows a picture of the internal
control flow of the Elephant web browser, providing the packages and/or
source files that are involved in different parts of the program, as well as
some text and arrows describing the control flow.

The NetInfService mainly does its work by passing around Identifiers and
NDOs (each encapsulating an Identifier).

An Identifier contains information about an NDO. The most important
pieces of information in these applications are:

• Hash Algorithm

• Hash

• Content-Type

• Metadata (as a JSON string)

NDOs can contain attributes. In these applications the only used attributes
are locator attributes. More specifically locators pointing to other Bluetooth
devices and locators pointing to the local file system.

5.3.3 RESTful API Access

Access to the RESTful API is handled by the subclasses of NetInfRequest.
There are three subclasses NetInfPublish, NetInfRetrieve and NetInfSearch
corresponding to the API calls for publish, retrieve and search. NetInfRe-
quest extends the class AsyncTask provided by Android, and hence all sub-
classes of NetInfRequest are also AsyncTasks.

38

Figure 5.4: Elephant/NetInfService Control Flow

These classes can be used in two ways. Either by doing a blocking call:

1 // Create a new search

2 NetInfSearch search = new NetInfSearch("tokens", "ext");

3 // Execute the search

4 search.execute ();

5 // Block until the search response is available

6 NetInfSearchResponse searchResponse =

7 (NetInfSearchResponse) search.get();

8 // Do things with the response ...

Or in a non-blocking way by overriding the function that is called when the
response becomes available:

39

Figure 5.5: Elephant Control Flow

40

1 // Create a new search

2 NetInfSearch search = new NetInfSearch("tokens", "ext") {

3 @Override

4 public void onPostExecute(NetInfResponse response) {

5 NetInfSearchResponse searchResponse =

6 (NetInfSearchResponse) response;

7 // Do things with the response ...

8 }

9 }

10 // Execute the search

11 search.execute ();

5.4 Erlang NetInf NRS

In the overall design there are two distinct process types: persistent and
non-persistent. The persistent processes will run for the entire uptime of
the system whereas the lifetime of a non-persistent process is the duration
of its given task. Figure 5.6 below shows the current system design.

Figure 5.6: Current system design

41

5.4.1 Architecture layers

The system architecture is divided into four(4) distinct layers: a network
(HTTP, UDP) convergence layer, message validation and formatting layer,
an Erlang NetInf layer and finally an external storage layer consisting of
a database as well as access to the file system. Within these layers lie
the modules(Erlang processes) which are responsible for specific functions
such as sending/receiving convergence layer messages, sanitizing messages,
forwarding, accessing databases/file systems and logging.

5.4.2 NetInf Messaging

According to the draft specification[9] NetInf has three well defined mes-
sages which comprise of the core functionality of the system. The following
sections describe the purpose and flow of each of these messages in addition
to how the Erlang NetInf NRS handles them.

5.4.2.1 Named Data Objects

NetInf describes any piece of information as a Named Data Object(NDO).
In the current state of networks, the same piece of information is considered
to be host centric and mutable with many copies of the same information
lying around. The purpose of an NDO is to provide a convenient way for
the protocol to be able to catalogue and preform operations such as storing,
retrieving and finally searching for information while eliminating the need
for host centric information.

5.4.2.2 Internal NetInf Messaging

The Erlang NetInf NRS uses an internal record to represent a NetInf protocol
message. For each request in the system, an instance of the following Erlang
record is created and passed to various modules in order to have the specific
operation preformed. Afterwards the NRS constructs a response message
and sends it back to the requester. There are two records defined in the
module nn proto, the first defines a request, primarily a Publish, Get, or
Search message from outside of the system(external clients and other NRS’).

42

While the second record defines the NDO. The message record includes the
NetInf record (if available).

-record(message,

{

msgid = undefined :: term(),

time_to_live = undefined :: undefined | integer(),

octets = undefined :: undefined | binary(),

tokens = undefined :: undefined | [binary()],

method = undefined :: undefined | get | search | publish | error,

netinf = undefined :: undefined | proto() | [proto()] | term()

}).

The ”netinf” field in the above record is dependent on the method and
whether or not the message is a request or a response.

-record(netinf, {

% name of the ndo

name = undefined :: undefined | binary(),

% list of possible locations and or URI’s

uri = [] ::[] | [binary()], % either empty list or a list of binary terms,

% list of extensions stored in json format

ext = {[]} :: {[]} | {[{binary(), any()}]},

% timestamp of the ndo in json format

time_stamp = undefined :: undefined | binary()

}).

5.4.2.3 Publish

NetInf describes a Publish message which consists of the following fields:

URI - Contains the hash of the NDO. It is unique to the piece of information
that is going to be published into the system. It is also mandatory.

msgid - A mandatory field as well and it is a unique number(string).

loc1 - An optional field, this is a locator that can be used to access the
information that will be shared.

43

loc2 - Same as the above.

ext - An extension field, it is responsible for containing the metadata if any,
in JSON format.

rform - The response format, The NetInf will format the response message
using either HTML or JSON. JSON is the default if this field is not
set. This is convergence layer specific.

fullPut - This field is set to determine if octets(binary data) is present with
the publish message with either ”true” or ”false”

5.4.2.4 Publish Message Workflow

Figure 5.7: Publish Message workflow

A requester would like to share information. Using an external client the
requester sends a NetInf Publish request message with the mandatory fields
set as described above through a supported convergence layer(HTTP for

44

example). The Erlang NetInf NRS will then receive the message and create
a ’message’ record(see section: 5.4.2.2).

A convergence layer handler(CL handler) is spawned and receives the re-
quest. Once a request is in the system, the CL handler that received it will
pass the request onto the message handler(MH). The MH is independent of
the CL however, the formatting library used by the MH will depend on the
CL the request was received on.

At this point the original request will be validated and sanitized for use
in the internal NRS system and a NDO will be created. If the request is
malformed the MH will construct a response message immediately and pass
the new message back, informing the requester of the specific reason the
request was rejected and then the MH will die.

In the case that the validation and sanitization succeeds the MH will have
a newly sanitized and internal message representation of the original re-
quest(NDO). The request is now ready to be passed deeper into the system.
The MH spawns an event handler(EH) and goes to sleep waiting for the
message to complete the process.

The event handler will then read the NDO and determine if a content han-
dler(CH) will need to be spawned in order to store the binary data(octets).
The CH is only spawned if the ”FullPut” flag in the original request was
present and set to ’true’. Finally the EH will pass the NDO to the storage
module and wait until the process is complete.

The storage module will call the appropriate function for the database(through
the functions defined in the database wrapper nn database). In this case the
database will store the published NDO. If a NDO with the same name exists,
the two NDO’s are merged and the result is stored.

Once the NDO is stored in the database a message is sent back through
the chain of waiting processes. This occurs until the message formatter can
create a response containing the NDO that was stored and any CL specific
response codes. Note that any processes that were temporarily spawned
will kill themselves after the job is complete. Figure 5.7 shows the flow of
communication for Publish requests.

45

5.4.2.5 Get

NetInf describes a Get message which consists of the following fields:

URI - Contains the unique hash of the NDO as well as the hash algorithm.
The user requests the specific data object using this hash.

msgid - A mandatory and unique number for each message in the system.

loc1 - Same as above

loc2 - Same as above

ext - A field reserved for future extensions.

5.4.2.6 Get Message Workflow

Figure 5.8: Get Message workflow

46

A requester would like to retrieve information, using an external client the
requester sends a NetInf Get request(assuming they know the name of the
NDO they are looking for) in the format described above. The process is
similar to the publish, until the NDO is passed to the event handler. The
event handler will call the database to lookup the NDO using the URI field.
If found the NDO will be returned back through the system to the message
formatter in order to construct the appropriate response message. However,
if the NDO is not found a message forwarder will be spawned and the NDO
request is broadcasted out on the UDP CL. If there are other Erlang NetInf
NRS’ on the network a UDP response packet will be sent and the original
NRS which forwarded the request will eventually respond to the requester
with the NDO or timeout. Figure 5.8 shows the flow of communication for
Get requests.

5.4.2.7 Search

NetInf describes a Search message which consists of the following fields:

msgid - Mandatory and a unique number.

tokens - Space delimited text. This is the text that the user will search for
within the system

rform - Optional and will default to Json if not specified, however this is
convergence layer specific.

ext - A optional field reserved for future extensions.

47

5.4.2.8 Search Message Workflow

Figure 5.9: Search Message workflow

A requester would like to retrieve information but does not know the name
of the NDO. A NetInf search request can be sent to the Erlang NetInf NRS
to retrieve a list of NDO names and the metadata which match a particular
criteria(search tokens). The process is similar to both the Get and the
Publish however the event handler calls the appropriate search function in
the attached database. If no match is found the request is automatically
forwarded on the UDP CL where the same procedure takes place. If a
match is found, a response is created and sent back to the original CL
handler. Figure 5.9 shows the flow of communication for Search requests.

48

5.4.3 Dependencies

The system architecture for the backend relies on a few external libraries.
The following are important for the system to run well.

1. Erlang Cowboy [11]

Erlang Cowboy is a small light-weight HTTP server and library written
in Erlang for the purpose of handling HTTP requests. The Erlang
NetInf NRS product uses functions in Erlang cowboy to communicate
with the HTTP convergence layer. Erlang cowboy is responsible for
all the multi-part and HTTP requests that are created in the system.

2. Erlang RTS [2]

Erlang Runtime application system is the core Erlang system. Erlang
NetInf NRS would not run on the computer system without the core
part of Erlang.

3. Erlang covertool [10]

Erlang covertool is an Erlang library created by Ivan Dubrov in order
to convert the Erlang ”cover” reports into a specific format called
cobratura XML. This is required for compiling code metric reports
and passing them into Jenkins for display on the build server.

4. Erlang JSON library [18]

Erlang JSON is a library created by Yamashina Hio and Paul J. Davis.
This library contains functions which allow Erlang to convert data
structures to JSON data structures. The Erlang NetInf NRS uses this
library extensively to support storing, retriving and manipulating data
in JSON format.

5. Riak [17] - with search hooks and a Key-Value(KV) bucket installed.
(Only used for using the system with Riak database)

Riak is an open-source scaleable and distributed Erlang database. Cre-
ated by Basho Technologies, The NetInf NRS uses this database when
run with the Riak Database option. Riak was chosen because of it’s
ease of use and recommendation by the customer. It is the only ’real’
database that is currently supported since the other ’database’ shipped
with the product is an Erlang list data structure.

49

5.4.4 Configurations

Since the system is supposed to be modular, configuration files are also
implemented.

Configuration files allow the user of the system to quickly start it with a pre-
determined setup, things such as which database to use, which convergence
layers are supported, and timers for various functionality are also stored here
for quick use and editing. The benefit of using Erlang specific configuration
files is the great way they are organized, giving a highly readable and easy
to swap out functionality.

We have created three(3) config files which live in the ”config” directory.

• list.config

• riak.config

• static peers.config

Note: the static peers configuration is used only for testing of the HTTP
forwarding. This configuration contains a list of IP addresses to other NRS’.

For new databases the developers encourage a new configuration to be cre-
ated in order to keep things simple.

The following is the syntax for a config file

[{netinf_nrs,

[

{key1, value1},

...

{keyN, valueN}

]

}].

And here is an example of a config file:

[{netinf_nrs,

50

[

{database, nn_database_riak},

{convergence_layers, ["http"]},

{ip_timer, 5000},

{discovery, on},

{nrs_port, 9999},

{ct_port, 8078},

{client_port, 8079}

]

}].

5.4.4.1 Meaning of the config values

database This is used to define what database to use. The value must
be the name of a module that implements the nn database behaviour.
Default is the Riak implementation.

convergence layers Deprecated. This was used to define which conver-
gence layers the node should support. Currently UDP multicast is
used instead.

ip timer Deprecated. This was used to define how often the node broad-
casted that it was live to other nodes via UDP multicasts.

discovery Deprecated. This was used to control whether or not the dis-
covery service was active for testing purposes.

nrs port This defines what port the NRS will use to listen for NetInf mes-
sages

ct port This defines the port used to transfer HTTP chunks to clients.

client port This defines the port the HTML client interface interacts with.

5.4.5 Using config files

To run the application with a config file, the -config flag must be set on the
Erlang command line.

erl -pa ebin deps/*/ebin -config configs/list

51

OR

erl -pa ebin deps/*/ebin -config configs/riak

Note: if the netinf nrs.app.src file has some configuration options in the env
section and there is a config file specified on the Erlang command line then
the parameters in the config file will take precedence.

5.4.6 Extracting the config parameters

Developers can use the following code to extract the values associated with
a configuration parameter.

application:get_env(app-name, parameter-name).

The argument app-name is the name of the application, in this case net-
inf nrs, and parameter-name is the name of one of the parameters defined
in the config file or the env section of the netinf nrs.app.src file.

For example to retrieve the value associated with the database a developer
can use the following:

application:get_env(netinf_nrs, database).

This code would return {ok, nn database list} or {ok, nn database riak}
depending on the configuration. However if the parameter name is not
defined, the above code will return undefined.

5.4.7 Convergence Layers

The NetInf NRS protocol introduces the concept of Convergence Layers(CL).
CL’s are specific protocols that can be used to talk to other nodes on the
network. For example it is possible to use the HyperTextTransferProto-
col(HTTP), Erlang Messaging or User Datagram Protocol(UDP). The CL’s
are implemented as a set of Erlang modules whose sole jobs are to receive
and send messages of the specific type of the CL. These modules receive(CL
handlers) clean/format(CL specific formatter) and forward into and out of
the system.

52

5.4.7.1 HTTP

The NetInf protocol draft discusses using HTTP as a primary layer of com-
munication between nodes. All requests on this layer are arriving into the
system as HTTP messages and then subsequently changed into internal Net-
Inf messages. The HTTP CL consists of three(3) modules.

1. nn http handler - Uses Erlang cowboy to receive and send HTTP re-
quests to/from the system

2. nn message handler - Specifically spawned with the attached HTTP
formatter in order to process requests

3. nn http formatting - Handles converting requests/responses from HTTP
to NetInf messages and vice versa.

5.4.7.2 UDP

The NetInf protocol draft lists UDP as a CL, however its function is more
like a discovery protocol for other NRS’ of any type of implementation. The
current UDP CL broadcasts NetInf messages on the network on a multicast
IP 225.4.5.6 and port 2345.

The UDP CL is called when the NetInf NRS receives either a Get or a Search
request from some other convergence layer and the requested NDO is not
in the the NRS. The Forwarding module will forward the request using the
multicast address. Similar to the HTTP CL, this layer consists of three(3)
modules as well.

1. nn udp handler - Uses the Erlang gen udp library to send/receive UDP
messages into and out of the system.

2. nn message handler - Spawned with the attached UDP formatter in
order to process requests.

3. nn udp formatting - Handles converting requests/responses from UDP
to NetInf messages and vice versa.

Once the UDP Get/Search messages are sent out to the network, the system
may receive back a response with the details asked for by the original request.

53

The UDP handler in conjunction with the nn message handler(Spawned
with UDP formatting) will then extract the details, create an internal NetInf
Message and forward the message to the process that is currently waiting
on the original request. In the case of an HTTP CL, the NetInf message
would be forwarded back to the process which deals with the HTTP CL
formatting/message handler.

Currently UDP Get and UDP Search requests are supported. The frame-
work for UDP Publish requests are included in the current code base, but
have not been used for the purpose of forwarding publishes.

5.4.8 Notes on other CL

There was a plan to include an Erlang specific CL, this would become a
group of modules(handler, formatter) which deal only with Erlang specific
messages. However this was a thought that later turned out to be of no
real benefit, but extending the system to include this or other CL’s could
be easily done.

5.4.9 Plug N’ Play Database Wrapper

The Erlang NetInf NRS includes functionality to allow for run-time database
switching as well as providing an easy way to add interfaces to existing
databases. At the time of writing this report the Erlang NetInf NRS provides
support for Riak, as well as a default Erlang list ’database’ implementation.
The database interface is designed to be intuitive to implement. Figure 5.10
shows the interface.

54

Figure 5.10: Database Interface

5.4.10 Setup of Database Module

All modules which wish to implement a database connection will use the
custom nn database behaviour.

-module(nn_database).

The following functions must be implemented by all database wrappers:

Initialization

init() ->

{ok, pid()} | {ok, registered_name:atom()} | {error, string()}

The above function returns the connection for the specified database. Re-
member the init should return an identifier to the persistent process of the

55

specified database.

publish(NetInfObject::nn_proto:proto()) ->

{ok, ReturnNetInfObj::nn_proto:proto()}

Takes the NetInfObject and returns: {ok, NewObject} where NewObject is
the NDO created when merging the object being published with an object
with the same name in the database. If there was no object with that name
in the database, NewObject is the object being published.

Get

get(Name::string()) ->

{ok, nn_proto:proto()} | {ok, no_match}

Takes the NetInf Name of the object and returns: {ok, Data} where Data
is the NDO that was found or no match if not found.

Unpublish

unpublish(NetInfObject::nn_proto:proto()) ->

{ok, ReturnNetInfObj::nn_proto:proto()} | {ok, no_match}

Takes the NetInfObject and returns {ok, ReturnNetInfObj} where Return-
NetInfObj is the NDO entry that was deleted from the specified database.

Search

search(SearchList::list()) ->

{ok, list()} | {ok, no_match}

Takes a Erlang list of search keywords and returns a list of the NDOs which
match those key words.

Flush

flush() -> ok

56

Deletes all the entries in the database.

See the module src/nn database list as an example of the wrapper imple-
mentation for use with a ’list’ database in the source code.

5.5 Chunked data streaming

A chunked data stream can for example be a video or audio stream. The
Erlang NetInf NRS includes two different ways to stream chunked data.
The first is the modified version of NetInf that removes the overhead of
publishing each chunk to the NRS. The other implementation uses pure
NetInf to publish each chunk. Both of them use an HTML5 interface to
playback the video stream.

5.5.1 Content dispatcher

To be able to transfer the video chunks to the local HTML5 interface a
content dispatcher service was added. The difference is that the content
dispatcher service serves the NDOs’ octects directly through HTTP, that
is without the multi-part response as done in the HTTP CL. The module
for this is the nn ct handler. This service is spawned when the NRS system
starts and runs on port 8078. To request the octects of the NDO ni:///sha-
256-64;abc pass the url:

http://localhost:8078/octets/ni%3A%2F%2F%2Fsha-256-64%3Babc

5.5.2 Stream handler

The stream handler module nn stream handler handles fetching and polling
of chunked octets between different NetInf nodes. In both streaming imple-
mentations the logic for fetching the chunks is to shuffle the list of available
locators and fetch all available chunks in the ICN. When there are no more
chunks, the stream handler retries on a regular interval. After a defined
number of retries it will finally terminate itself.

57

5.5.3 HTTP client handling

The nn http client handler module is used to serve the HTML5 interface for
NetInf Get, Publish and Search requests. It forwards these requests to the
local NRS. The client runs on port 8079. The different interfaces that can
be seen are:

The interface for regular NetInf interaction, located at http://localhost:8079/

The modified streaming, located at http://localhost:8079/stream

The pure streaming, located at http://localhost:8079/streampure

Other than the above viewable URIs there are a couple of other requests
that are used to interact with the system.

Subscribe to a modified chunked stream http://localhost:8079/subscribe

Subscribe to a pure NetInf stream http://localhost:8079/subscribe/search and get

5.5.4 HTML5 interfaces

To combine the video chunks, two HTML5 video elements are used to pre-
cache the chunks through the content dispatcher. This is done by alternating
the visibility and playback of the two elements with JavaScript. With this
method of playback the video chunks looks like one continuous stream. To
make the usability of the interface smoother, some asynchronous network
requests are used to communicate with the HTTP client. To the right of
the interface it is possible to see the current state of the local NRS.

5.5.5 Difference between implementations

The main difference between the implementations is in the module nn event handler.
When requesting a chunk with the modified version, the special hash algo-
rithm name demo is used to avoid database lookups and content validation.
To request chunk number 80 of the stream ni:///sha-256;abc, the NDO name
will be ni:///demo;abc80. The metadata and locators in such a response are
empty. To add a new chunk to the stream just increase the chunk number
and add the physical chunk to the storage.

58

The pure NetInf streaming assumes that each chunk in the stream
has been published to the NRS, with an ordinary NetInf publish request
along with required metadata. The chunk metadata should include stream
name and chunk number. For the stream mystream and chunk number 80
of ni:///sha-256;abc, the metadata must include:

{"meta": {"stream":"mystream", "chunk":"mystream80"}}

To obtain the chunk of a pure stream the receiver will have to search for
each chunk and then get the NDO.

5.5.6 Advantages and disadvantages

The biggest advantage with the modified streaming is that the overhead of
handling the chunks is reduced. A flaw is that the content validation has
been disabled and it is possible to add chunks with modified content.

59

Chapter 6

Evaluation and testing

6.1 Frontend

The evaluation of the Elephant browser and the NetInfService applications
tries to answer the following core questions:

1. How much uplink bandwidth is saved?

2. How much content is reused?

3. How much of linked resources are dynamically generated?

4. How fast is the browser?

6.1.1 Test Setup

The first test consists of a set of web pages and four Android phones. Each
phone will automatically retrieve the set of pages in a random order. Using
the logging functionality of the applications, information about how (In-
ternet, Bluetooth, NRS or Database) resources are retrieved is gathered.
Information about how many bytes each resource consists of and how long
it takes to retrieve is also acquired. Full put is enabled on all four phones,
because the answer to question one does not depend on which method of
transfer is used. The results are meant to give an idea of the answer to
questions one and two.

60

The web page sets are of sizes 15, 20, 25 and 30. They are derived from the
service Alexa [1], which is renowned for its web metrics. This service keeps
track of the most visited web sites by country, and the top sites were used
to create the sets.

The test also uses a Name Resolution Service that is reset between retrieving
each set of web pages.

The second test setup consisted of two runs: First, retrieving all web pages
in the set of 15 web pages using one blank phone. Second, the same phone
retrieves the same set of web pages again. This time, the phone should
already have the web pages in its database. The results are meant to give
an idea of the answer to question three. The test is repeated two times, with
the Name Resolution Service reset in between.

A third test uses four phones, each retrieves the 15 web pages set. This
test is repeated three times once with full put enabled on all phones, once
with full put enabled on two phones and finally with full put disabled on all
phones. This is done to test the Bluetooth functionality. The goal of this test
is to simulate the scenarios where there is no, limited, or full peer-to-peer
interaction, respectively.

6.1.2 Hardware

The tests are run on three Samsung Galaxy Nexus phones and one HTC
One X phone using Android OS 4.1.1 Jellybean

The Name Resolution Service was run on an Intel Core 2 Quad CPU Q9400
@ 2.66GHz 4 with 4 gigabytes of volatile memory using Ubuntu 12.04 LTS.

6.1.3 Limitations

The Name Resolution Service supports two types of databases for storing
published NDOs. The first uses Erlang lists stored in volatile memory, the
other uses a Riak database. The tests use the list database as it was the
database used during the development of the browser application.

This means that the test is limited by the amount of free volatile memory
of the system. A preliminary test using a set of 50 web pages caused the
system to run out of memory, resulting in a crash. Because of this, no set

61

contains more than 30 web pages.

6.1.4 Results

The results of test one can be seen in Figure 6.1. Each bar represents a
specific set size and the colors show how much of the data was transferred
with each technology.

Table 6.1 shows the total time spent and the time spent transferring the
files while retrieving the 15 web page set.

The results of test two can be seen in Figure 6.2. The two leftmost bars
represent the first run of the test and the two rightmost the second.

The results of the third test can be seen in Figure 6.3

 0

 20

 40

 60

 80

 100

15 20 25 30

%
 o

f
to

ta
l
d

a
ta

 t
ra

n
s
fe

rr
e

d

web sites visited

Database
NRS
Uplink

Figure 6.1: Percentage of data transferred over the different transport meth-
ods during test one

62

Phone # Total time (s) Time downloading (s) Time downloading (%)

1 251 17 6

2 303 15 4

3 241 20 8

4 254 18 7

Table 6.1: Total time and time spent downloading for the set of 15 web
pages used during test one

 0

 20

 40

 60

 80

 100

Run #1 Rerun #1 Run #2 Rerun #2

%
 o

f
to

ta
l
d

a
ta

 t
ra

n
s
fe

rr
e

d

Database
Uplink

Figure 6.2: Percentage of data retrieved from the local database during test
two

63

 0

 20

 40

 60

 80

 100

No Bluetooth Half Bluetooth Bluetooth

%
 o

f
to

ta
l
d

a
ta

 t
ra

n
s
fe

rr
e

d

Database
Bluetooth
NRS
Uplink

Figure 6.3: Percentage of data transferred over the different transport meth-
ods during test three

6.1.5 Discussion

Figure 6.1 shows that approximately 30% of the data can be retrieved with-
out accessing the Internet. Precaching of popular web pages is expected to
improve this result.

It was observed that if one phone had a jump start on another phone when
retrieving a certain web page, the second phone shortly caught up with the
first phone. The two phones would then try to retrieve the same resource
at the same time. Since this resource will not be in the NRS, both phones
will retrieve it from the Internet.

In Figure 6.1 it can be seen that a few percent of the resources are retrieved
from the database. The reason behind this is that some resources are reused
multiple times throughout the web pages. Since resources are cached in the
database the first time they are retrieved, additional requests can use the
cached version.

Figure 6.2 demonstrates that when accessing a web page a second time, a
small part still has to be retrieved using the Internet. An example of when

64

this can happen is when a web page links to a resource using JavaScript to
add a timestamp to the resource’s URL. Because of the dynamic nature of
this content, it will not be found when searched for. Therefore, there will be
a small amount of resources that always will be retrieved from the Internet.

In Figure 6.3 the amount of data retrieved without using the Internet is
similar whether or not full put was used. This is as expected because the
data that is not made available through full put should be available through
Bluetooth.

An unexpected behavior observed during testing is that the application
spends most of the time searching. More specifically, the NRS does not
respond in a timely manner to requests that result in no match. Unfortu-
nately, the time spent searching is not logged. As can be seen in Figure
6.1 the time downloading is a small fraction of the total time spent. It is
strongly suspected that most of the total retrieval time is spent waiting for
search results.

A second unexpected behavior observed is that the NetInfService randomly
pauses until it regains focus. When this happens all NetInf functionality
becomes unavailable, which causes all resources to be retrieved from the
Internet. It is suspected that this is caused by how the Android OS handles
background applications.

6.2 Backend

The following section describes how the Erlang NetInf streaming function-
ality was evaluated and tested.

6.2.1 Video streaming protocol evaluation

One of the problems discussed was reducing congestion when broadcasting
content. This was solved by implementing an alternative way of sending
chunked data as seen in Section 5.5 according to the video streaming draft
in Appendix C 10.1. In the following section this implementation is referred
to as the modified streaming. The following tests were conducted:

• Testing the modified version of NetInf video streaming.

65

• Testing the pure version of NetInf video streaming.

• Comparison between both implementations of the NetInf Video stream-
ing

The testing was done by transferring 500 chunks of bogus data between a
number of different NetInf nodes running the NRS. All the receiving nodes
started the transfer at the same time. To be able to publish N number of
chunks in an easy and fast manner, the nn evaluation module was imple-
mented.

6.2.2 Pure video streaming evaluation setup

The nodes that were included in the pure version of the streaming were the
following: Central NRS node, one streaming source node that published all
500 NDOs to itself with fullput set to True, then also published the NDO to
the central NRS with fullput set to False. The central NRS can not have the
octets because otherwise it would provide all clients with the octets directly,
hence prevent the network load to be more balanced.

Five client nodes then retrieved each chunk by:

1. searching NRS for the chunk with chunk number and stream name.

2. getting the NDO metadata and locators from the NRS.

3. fetching NDO with octects from one of the locators.

4. publishing the NDO to itself

5. adding itself as a locator and publish to the NRS.

6. repeating the procedure for the next chunk.

6.2.3 Modified video streaming evaluation setup

In this setup one node served both as the source and central NRS while
there were five other client nodes. The source first published the stream
NDO to itself, then used the content dispatcher to put all the chunks into
the storage. The clients then get the streamed NDO, added themselves as

66

locator and published it to the NRS. To retrieve the chunks each client need
to:

1. append the current chunk number to the NDO name.

2. send the request to one of the locators.

3. if status of the response is 404, repeat step 2.

4. store the octects in its storage.

5. increase the chunk number

6.2.4 Results

The Figure 6.4 shows that the pure NetInf streaming is faster when it comes
to transferring all the chunks.

The CPU load of the central NRS was recorded with the built in system
monitor, the result of the pure version is in Figure 6.5 and the modified in
Figure 6.6.

Figure 6.4: Pure streaming vs modified streaming

6.2.5 Discussion

As can be seen in Figure 6.4 the transfer of the chunks took less time using
the pure streaming, this was not unexpected since the modified version has

67

Figure 6.5: Central NRS CPU usage during pure streaming

Figure 6.6: Central NRS CPU usage during modified streaming

a lot of overhead in this case, if it tries to get chunks from another client
which does not have them yet, this will yield an 404 response and the client
will need to try another source. The pure NetInf however will get a hit every
time.

Comparing CPU load in Figure 6.5 and Figure 6.6, shows that even with
only five receiving nodes the pure central NRS was under considerably high
load. While in the modified versions load was almost not noticeable. The
CPU load on the pure NRS is caused by the number of database lookups.

6.2.6 Notes on Interoperability

There are already existing implementations created by SAIL and Ericsson
Research for the NetInf protocol. In the beginning of the product life-cycle
the customer requested the development team to evaluate the interoperabil-
ity of this product with other systems. However as the product evolved the
customer requested that the interoperability be left to them to evaluate and
that this development team continue with evaluating the video streaming
instead.

Therefore the development team did not evaluate interoperability, but there
is confidence that with minor tweaking of the code (due to differences in the
various draft versions of the NetInf protocol specification) this product and
others will become interoperable.

The following list describes the evaluation performed for testing the NetInf
NRS application.

68

• Evaluation of the search time and get time for the supported databases

• Measuring the number of requests per frontend phone client

69

Chapter 7

Conclusions and Future
Work

7.1 Conclusions

The main goals of this project was to develop applications based on the prin-
ciples of information centric networking using the NetInf protocol. These
goals were achieved and the teams were able to build the applications using
Java and Erlang/OTP. The backend product(NetInf NRS) is a concurrent
and fault tolerant application as per the principles of OTP. Both teams had
clear goals when they started the project and achieved it comfortably in
the end. Infact, the backend team added functionality to support streaming
videos using the application. This functionality was not part of the original
plan but because the team achieved all the other major goals well before
time.

Both frontend and backend teams performed testing and evaluation of the
application. The backend team evaluated the streaming with pure NetInf
messages and the modified version of streaming based on the draft. Other
results that the backend team observed during the evaluation of streaming
was that the list database is very slow. This is because the search time is
T*N where T is the number of search tokens and N is the number of meta
data attribute stored. But as mentioned in the future work section, some
other database should be implemented to see if the application works better.
In the modified version of streaming we can improve the polling strategy to

70

transfer all the chunks faster. Also the content validation is disabled in
the modified version of video streaming and that can cause unauthorized
content to be published. The front-end evaluation showed that apart from
two problems the application seems to be working as expected. The first
problem is the slow searches, which is mentioned above. The second is the
problem with NetInfService randomly pausing, which might result from how
the Android OS handles background applications.

7.2 Future Work

7.2.1 Elephant and NetInfService

7.2.1.1 Dynamic Content

Currently, the dynamic content problem is ignored. Given a traditional web
URL, the browser application maps it to an NDO. As long as the web content
is static, the mapping from URL to NDO will be a one-to-one relation.
However, if the web content is dynamic, the mapping will be one-to-many.
If this is the case a search could return several matching NDOs. At a first
glance adding a timestamp specifying when the the page was retrieved could
seem to solve the problem. While this is true for some dynamic web pages,
it does not hold in general. For example a web page could be generated
differently depending on who or from where it was accessed. Furthermore,
a dynamic web page linking to other dynamic resources might be dependent
on getting the correct version of the linked resources. In the second case
a timestamp could help if all resources belonging together are marked with
the same timestamp and not the individual access times. Currently the first
search result is used by default.

7.2.1.2 Search

The Elephant browser relies heavily on NetInf searches as described in Sec-
tions 4.1.1 and 5.3. The time needed to perform a search increases as the
number of published NDOs grows. The NRS supports two ways of storing
published NDOs either using an Erlang list or a Riak database. Preliminary
tests had problems with increasing search times using both these approaches.
Searching is expensive because it is being performed in a list database. Bet-

71

ter results can be obtained when using databases that are suited to handling
a larger amount of data, such as Riak.

7.2.1.3 Delete Functionality

Currently the NetInf delete functionality is currently not provided by the
NetInfService.

7.2.1.4 NetInfService

NetInfService was implemented as its own Android application which is
supposed to run in the background. While this makes it easy to create other
applications using the provided functionality, there are currently problems
with the application randomly stopping and not resuming until it is brought
to the front. The suspected reason is that the Android OS might pause
applications in the background to save system resources, or stop them when
system settings are changed and then restart them when they are brought
to the front. If this is an unavoidable problem for Android applications
running in the background then NetInfService needs to be changed, perhaps
into an Android Service.

7.2.1.5 Database and Bluetooth convergence layer

Other suggestions for future work include testing the application with an-
other database like SQLite or building a Bluetooth Convergence Layer for
users to be able to send NetInf messages via Bluetooth.

7.2.2 NetInf NRS

7.2.2.1 Precaching

If the NetInf network starts without any objects cached, it is probable that
a lot of Internet access in the beginning while the content is entering the
network. This could be prevented by precaching content in the NRS. By
investigating which web pages are frequently accessed and when they are
accessed, the NRS could download these popular web pages in advance. If

72

the search request always uses the NRS, this information will be continu-
ously available to the NRS and it could automatically download the pages
it expects to be accessed when there is bandwidth to spare.

7.2.2.2 Access Control

Currently, any user can publish their content on the NRS. One functionality
for the future is to implement some kind of access control mechanism. Only
authorized users would be able to publish content to a particular NRS and
only a partiular group of users would be able to access the published content.

7.2.2.3 Interoperability

Further work could be done in testing the interoperability between differ-
ent NetInf implementations. Different implementations of NetInf exist, in
different programming languages. These implementations should be able to
communicate with each other if they have been implemented using the same
version of the protocol draft.

7.2.2.4 Handle large file

The current system has some unexpected behaviour when files transferred
exceed 10 megabytes. An improvement to the application could be to make
it more stable when handling larger files.

7.2.3 Security

Security is a field that was out of scope for this project. However, it is an
area that should not be overlooked in the future. Questions like how to
handle private data within the network, who can publish or retrieve data
within the network, who to trust as a content source, amongst others.

7.2.3.1 NRS required folder creation

Currently the NetInf NRS requires a few environment folders (logs and files)
to be present without crashing the system. The product relies on a separate

73

”make” file which creates these folders. In the future the folder creation can
be moved to be within the NetInf NRS product.

7.2.3.2 Polling Logic

The polling logic needs to be implemented in the video streaming client, this
is how often the receiver should get a new chunk or check if a new chunk
exists.

7.2.4 General

An important concept of ICN is the peer-to-peer comunication between de-
vices. During our project we only focused on transferring content through
Bluetooth, as this was a well known and reliable technology for emulating
peer-to-peer communication. In the future we see other technologies that
could be faster and more convenient for the realization of ICN, such as
transferring data through physical contact between devices.

As far as it concerns the ICN draft, a suggestion would be to rewrite the
HTTP Convergence Layer specifications in terms of consistency. The HTTP
Convergence Layer uses a mix of JSON and HTTP forms, which makes it
overcomplicated to work with it.

74

Chapter 8

Appendix A: Installation
instructions

8.1 Frontend

This section will describe how to configure the environment to run the fron-
tend application on an Android device. This description includes configuring
Eclipse with Android in order to continue development. The guide assumes
that the Java SDK is installed.

The frontend team have been working with:

• Eclipse Indigo, Service Release 2

• Android Version 4.1, API Level 16

8.1.1 Configuring Eclipse with Android

There are two ways to set up Eclipse with Android. If Eclipse is installed,
follow the instructions ”Installing the Eclipse Plugin” at [13] in order to
configure the Android support for the Eclipse environment.

If Eclipse is not installed yet, Android has released a Bundle that contains
Eclipse and all necessary tools for developing Android applications. This
bundle can be found at ”Get the Android SDK” at [13].

75

8.1.2 Installing and debugging the application

The latest version of the frontend code can be found on Github 1.

In order to run the application on an Android device, connect the device to
a computer, import the project and simply run it in Eclipse. Eclipse should
recognize the device on its own and immediately offer a list of available
devices, on which the application can be installed on.

For debugging, USB debugging on the device must be enabled. This setting
can be found under the settings menu of the device.

Note that the system might not detect some devices. This issue occurred
with using the HTC ONE x. In that case, a preliminary set up needs to be
done. This set up includes creating a udev rules file. More information can
be found under ”Setting up a Device for Development” at [13].

8.2 Backend

This section describes how to install/setup the Netinf NRS and the NetInf
Streaming on a server, it is intended for both end users and developers.

8.2.1 Dependencies

In order to run the system properly the following components are required
to be installed on the system, the user can either run the script from the sec-
tion below, or install these manually. Furthermore, the developers support
Ubuntu 12.04 LTS 32 bit. Attempts to run this software on other operating
systems and architectures may produce unexpected results.

For the NetInf NRS system:

• Make

• Rebar

• G++ compiler

1Project CS Frontend application. https://github.com/project-cs-2012

76

https://github.com/project-cs-2012

• Erlang - version R15B03

For the NetInf Video Streaming, in addition to the above the following
component(s) are required

• Google Chrome Web browser - or any other browser that supports
HTML 5 video tag.

To install Make and G++ manually please run the following commands in
the terminal.

sudo apt-get install build-essential

sudo apt-get install g++

To install Rebar and Erlang manually please follow the following steps

Download and install: Rebar from Github 2.

unzip the archive and run the following command

cd rebar-master

./bootstrap

sudo cp rebar /usr/bin

To Download and install Erlang - version R15B03 for the 32 bit architecture.
It can be retrieved from the Erlang-Solutions website or use the following
commands.

wget https://elearning.erlang-solutions.com/couchdb//

rbingen_adapter//package_R15B03_precise32_1354121173/

esl-erlang_15.b.3-1~ubuntu~precise_i386.deb

sudo dpkg -i esl-erlang_15.b.3-1~ubuntu~precise_i386.deb

2Rebar Github. https://github.com/basho/rebar/archive/master.zip

77

https://github.com/basho/rebar/archive/master.zip

8.2.2 Script

For the convenience of end users and developers, there is a packaged in-
stall/setup script available after obtaining the backend code. This script is
responsible for quickly installing the entire system with all the dependencies.

If the script is not immediately runnable please run the following
command:

chmod a+x netinf_nrs.sh

The script can be run by using the following on a command line terminal.

./netinf_nrs.sh

The script will be put a into a menu loop shown below and instructs the
user to type a number in order to choose an option. Choosing an option will
preform the task and then cause the script to exit normally.

The following options are available to the user

78

• Start Netinf NRS with the default list:
Assumes the system has all the dependencies installed and only starts
the NetInf NRS with the list database.

• Start Netinf NRS with riak:
Will check that Riak is running and present in the system and then
start the NetInf NRS with the Riak database. If Riak is not present
then the script will download and install all the required components.

• Install and setup riak only:
Use this option only when Riak needs to be downloaded and installed
on the machine. This will not start an NRS.

• Install and start from scratch:
This option assumes a bare machine and checks that all the dependen-
cies are satisfied. It will auto download and install anything that is
required and then start the NetInf NRS with the default list database.

8.2.3 Riak Database

Riak is a database written in Erlang. It is known for being distributed
and fault-tolerant. Riak was chosen above other database implementations
since it was suggested by the customer and the development team had great
support available.

In case there is something wrong with the script process on the target ma-
chine please follow the manual installation instructions below.

Install libssl0.9.8 with:

sudo apt-get install libssl0.9.8

Next install the Riak database:

wget http://downloads.basho.com.s3-website-us-east-1.amazonaws.com/

riak/CURRENT/ubuntu/lucid/riak_1.2.1-1_i386.deb

sudo dpkg -i riak_1.2.1-1_i386.deb

79

In order for the search to work in the Riak system and from the NRS please
enable search, Riak Search has to be enabled in the app.config (/etc/ri-
ak/app.config) file. Simply change the setting to true in Riak Search Config
section (shown below).

%% Riak Search Config

{riak_search, [

%% To enable Search functionality set this ’true’.

{enabled, false}

]},

Then run the in the terminal:

riak restart

Followed by the command below to index the bucket:

search-cmd install netinf_bucket

Lastly, please make sure that the NRS is started with the Riak database.

8.2.4 Running the NetInf NRS

To run the NetInf NRS without the script, please run the following com-
mands after navigating to the netinf nrs folder:

• Using the list database

erl -pa ebin deps/*/ebin -config configs/list -s netinf_nrs

-eval "io:format(\"NetInf NRS is running ... ~n\")."

• Using the riak databse
Please make sure the Riak daemon is started before. If it has not been
started use the first command shown below before the erl command.

80

riak start

erl -pa ebin deps/*/ebin -config configs/riak -s netinf_nrs

-eval "io:format(\"NetInf NRS is running ... ~n\")."

81

Chapter 9

Appendix B: Maintenance
instructions

9.1 Frontend

9.1.1 Default Application Settings

As mentioned in Sections 5.2.1 and 5.3.1 the default settings f or NetInfSer-
vice and Elephant are stored in two properties files located at ”assets/con-
fig.properties” inside each projects folder. These files mostly contain internal
application settings but also some settings that can be changed through the
applications’ setting menus. If settings are changed through the setting
menus the default in the files are not changed. Instead the changes are
stored using the Android concept shared preferences which in short stores
the settings in a for each application assigned file.

9.1.1.1 Elephant Web Browser

The properties file belonging to Elephant contain the following:

• hash.alg = sha-256

Constant describing the hash algorithm used. Changing this does not
change the algorithm, only the constant used in some functions.

82

• access.http.host = localhost

The address of the NetInfService RESTful API.

• access.http.port = 8080

The port used by the NetInfService RESTful API.

• sharing.folder = /DCIM/Shared/

The folder used to store downloaded and shared data.

• restlet.retrieve.file path = path

The key in the JSON response to a RESTful API retrieve request that
contains the file path.

• restlet.retrieve.content type = ct

The key in the JSON response to a RESTful API retrieve request that
contains the content path.

• restlet.search.results = results

The key in the JSON response to a RESTful API search request that
contains the search results.

• default.webpage = ul.se

The default web page of the web view.

• httprequest.timeout = 2000

The maximum time NetInfRequest subclasses wait for a response from
the RESTful API.

• httprequest.encode = UTF-8

The encoding is used for HTTP requests.

• http = http://

The HTTP schema.

• timeout.netinfsearch = 2000

Application specific timeout for searches.

• timeout.netinfretrieve = 2000

Application specific timeout for retrieves.

• timeout.netinfdownload.webobject = 2000

Application specific timeout for downloading from the Internet.

83

9.1.1.2 NetInfService

The NetInfService properties file contains several settings that are also in
the Elephant browser settings. Duplicates are not repeated here, instead see
Section 9.1.1.1.

• identity.nodeIdentity = ni:HASH OF PK=123 UNIQUE LABEL=456

The OpenNetInf node identity.

• nrs.http.host = 130.238.15.227

The NRS address.

• nrs.http.port = 9999

The NRS port.

• nrs.http.search.timeout = 20000

The timeout when doing a search using the NRS.

• metadata.*

Some field names used as metadata.

• bluetooth.interval = 300000

Period of time, after which a Bluetooth discovery is triggered.

• bluetooth.timeout = 10000

For how long the Bluetooth discover is allowed to run.

• bluetooth.number attempts = 2

How many times Bluetooth tries to establish a Bluetooth connection.

• bluetooth.buffer = 1024

The size of the buffer used to retrieve files over Bluetooth.

• lrs.priority = 77

The priority of the LocalResolutionService. Used to determine in
which order to use ResolutionServices, higher means more important.

• nrs.priority = 42

The priority of the NameResolutionService. Used to determine in
which order to use ResolutionServices, higher means more important.

84

• nrs.timeout = 2000

The HTTP timeout when doing publish or get from the NRS.

• nrs.max messsage = 100000000

The maximum number to use as message ID.

9.1.2 Development Environment

The Elephant browser and the NetInfService applications were developed
on Ubuntu using the Eclipse IDE and Android SDK.

For instructions on how to set up Eclipse IDE to use the Android SDK as
well as compiling the applications see Section 9.1

9.1.3 Eclipse Project Structure

There are three Eclipse projects:

• Application which contains the code for the Elephant browser

• NetInfService which contains the code for the NetInfService applica-
tion

• NetInfUtilities which contain some utility functions used by the two
other projects

Following are the different packages the applications are structured into and
the functionality that is associated with each.

9.1.3.1 Elephant Packages

• project.cs.lisa.application

Contains the Android Activities for the main view and the settings
screen as well as auxiliary code for these.

• project.cs.lisa.application.dialogs

Contains several popup dialogs either asking for input or displaying
information.

85

• project.cs.lisa.application.hash

Contains SHA-256 hashing functionality.

• project.cs.lisa.application.html

NetInfWebViewClient changes the behaviour of the WebView by telling
the WebView what to do when new resources are to be downloaded.
NetInf is used to search for, download and publish web pages and/or
resources. If necessary the Internet is used.

• project.cs.lisa.application.html.transfer

The FetchWebPageTask fetches the HTML source of a web page using
NetInf if possible and loads it into the WebView. Then the WebView
will load the resources using the NetInfWebViewClient.

DownloadWebObject is used be the NetInfWebViewClient to down-
load the web page or resource from the Internet if not accessible by
NetInf.

• project.cs.lisa.application.http

Contains the code handling the HTTP communication with the Net-
InfService’s RESTful API. The classes NetInfPublish, NetInfRetrieve
and NetInfSearch handle publish, retrieve and search respectively. The
classes NetInfPublishResponse, NetInfRetrieveResponse and NetInf-
SearchResponse represent responses to publish, retrieve and search
respectively.

• project.cs.lisa.application.networksettings

Contains code for checking and setting the Android devices network
settings properly.

9.1.3.2 NetInfService Packages

• project.cs.netinfservice.application

Contains the Android Activities for the main view and the settings
screen as well as auxiliary code for these.

• project.cs.netinfservice.database

Handles the SQLLite database used by both the LocalResolutionSer-
vice as well as the UrlSearchService.

86

• project.cs.netinfservice.netinf.access.rest

Handles the HTTP server providing the RESTful API.

• project.cs.netinfservice.netinf.access.rest.resources

Contains the implementation of the RESTful API. IOResource han-
dles publish, BOResource handles retrieve and SearchResource handles
search.

• project.cs.netinfservice.netinf.common.datamodel

Contains extensions to OpenNetInf NDOs. This includes the metadata
and content-type fields.

• project.cs.netinfservice.netinf.node

StarterNodeThread is used to start a NetInf node.

• project.cs.netinfservice.netinf.node.exceptions

The InvalidResponseException is used when an invalid response is re-
turned to a NetInf message.

• project.cs.netinfservice.netinf.node.module

The Module class binds abstract interfaces to concrete class implemen-
tations using Guice [4].

• project.cs.netinfservice.netinf.node.resolution

The resolution package contains the different ResolutionServices, see
Section 5.2.5.

• project.cs.netinfservice.netinf.node.search

The search package contains the SearchServices, see Section 5.2.6.

• project.cs.netinfservice.netinf.provider

Contains the ByteArrayProvider class, see Section 5.2.7.

• project.cs.netinfservice.netinf.provider.bluetooth

The BluetoothDiscover class is used to periodically search for and store
nearby Bluetooth devices.

The BluetoothProvider class is described in 5.2.7.1

87

• project.cs.netinfservice.netinf.server.bluetooth

The BluetoothServer listens for incoming Bluetooth pairing requests.
As soon as the local device has been successfully paired with a remote
device, the BluetoothServer waits for a file request containing a hash.
If the specified file is available, the file will be transferred to the remote
device.

• project.cs.netinfservice.netinf.transferdispatcher

Contains the TransferDispatcher class, see Section 5.2.7.

• project.cs.netinfservice.util

Contains utility classes.

The IdentifierBuilder and IOBuilder classes ease the construction of
Identifiers and InformationObjects respectively.

9.1.4 Javadoc

Javadoc was used during development to document the functionality of
classes. For more detailed desciption of classes and their methods refer
to the Javadoc.

9.2 Backend

The following section describes the maintenance and default settings of the
backend team’s NetInf NRS as well as the NetInf Video Streaming.

9.2.1 Default Application Settings

The NetInf NRS application is controlled using one out of two methods,
first through the Erlang application src file(netinf nrs.app) found in the
netinf nrs/src directory. The second from the configuration files loaded at
run time from the configs directory.

By default the following settings are used when there is no specification on
the Erlang command line which config file is to use, please refer to section
5.4.4 to understand what each setting is used for.

88

In short, the Erlang NetInf NRS will be started with the list database.

database nn database list

convergence layers [”http”]

ip timer 5000

discovery off

nrs port 9999

ct port 8077

client port 8079

list timer 3600

9.2.2 Development Environment

To those wishing to continue the development of the Erlang NetInf NRS and
the NetInf Video Streaming, the following section details how the develop-
ment environment was set up.

Please note that the applications were developed on the Ubuntu 12.04 LTS
platform, deviating from this may cause the application to behave in unex-
pected ways.

The recommended editor used was Emacs with the erlang-mode, this editor
and mode can be installed using the following commands:

• sudo apt-get install emacs

• sudo apt-get install erlang-mode

Useful emacs commands include:

• ALT+X
Sets up Emacs for the meta-command mode. Erlang-mode can be set
by typing ALT+X erlang-mode

89

• CTRL+X+F Opens a file or create a file.

• CTRL+X+S
Emacs quick short cut for saving files

• CTRL+C+K
Emacs quick short cut for compiling and saving Erlang files

• CTRL+X 1-3
Emacs quick short for dividing the windows into 1 whole window(1),
horizontally(2) or vertically(3).

Please note that Emacs has auto-completion for commands when pressing
tab. Other useful tips include Erlang-mode skeletons which allow the de-
veloper to import comment sections and whole skeletons for generic servers
and behaviours.

In addition to running the NetInf NRS, developers should note that Erlang
comes with a utility to monitor the processes spawned in applications called
AppMon. To start AppMon, start an Erlang shell and use the following
command.

appmon:start().

9.2.3 Code and folder structure

The NetInf NRS and the NetInf Video Streaming application are organized
in the following way:

netinf nrs The main folder which holds the following folders as well as the
other important files for the application.

configs The folder which contains all the configuration files for the NetInf
NRS application. Please place all the new configuration files here.

curludp This folder contains a text file which is read by udp test.sh. It has
no other uses.

deps This folder is created automatically by running the rebar (or the
script, which invokes makes and eventually rebar). It contains all the
dependency code required for libraries that were used in the NetInf
NRS application.

90

doc This folder is created automatically by running the rebar doc command
(see 9.2.5). Use the index.html file to get to the first page of the
documentation. Note that this is normally not present unless the doc
command has been run.

ebin This folder contains all the compiled Erlang beam files, this is where
the Erlang virtual machine will look for the compiled code modules.

files This folder contains all the stored binary content (NDO cache). The
NetInf NRS will look here and determine if it has the content or not.
If the NRS recieves a get message, alternatively if the NRS receives a
publish message with binary octets, it will save it here. This folder is
required for the NRS to start properly and will be created using the
make target ”set env folders”.

logs This folder contains all the logging files, it also contains a folder named
old. The logger service in the NRS will create a text file with infor-
mation about the NRS and current activities up to a default size of
10MB (may be changed in the nrs logger.erl file in the src directory).
This folder is required for the NRS to start properly, this folder will
also be created using the make target ”set env folders”

resources This folder contains all the resources associated with the HTML
client interface for the NetInf NRS video streaming.

src This folder contains all the source code for both the NetInf NRS and
the video streaming.

Please note that inside the main netinf nrs folder several files exists consist-
ing of a Makefile, rebar.config file, udp test.sh -udp testing script, readme
and the netinf nrs startup/install script.

Makefile This is the make file with several targets shown below. It is
primarily used for compiling the NetInf NRS project and invoked by
the main netinf nrs script.

• all
Creates the required folders for the environment, compiles both
erlang source code and the JSON c++ and finally runs eunit but
this does not start the NRS.

91

• all no test
Same as the above, however it does not invoke the eunit tests.

• eunit
Runs the eunit tests using the rebar and skips all the dependency
tests (only tests NetInf NRS).

• integration test
Compiles the Erlang source code and the dependencies if needed
and then runs only the integration test code.

• integration test riak
Same as the above but will attach the Riak database to the Erlang
NetInf NRS instance and run the integration test code on that.

• makec
Compiles only the C++ JSON dependency code in the deps
folder.

• set env folders
First removes the following required folders: logs and files and
then re-creates them.

• compile
First tests if the ”deps” folder already exists and then compiles
the dependencies, otherwise it will download all the required de-
pendencies and then compile them.

• compile deps
Cleans the ”deps” folder, then downloads all the dependencies
again and compiles them.

• start script riak
Runs the steps in the all no test target, then starts the NetInf
NRS with the Riak database attached.

• start script
Runs the steps in the all no test target, then starts the NetInf
NRS with the default list database attached.

• clean
Removes the environment folders (logs and files) and removes
the ebin compiled folders as well as the crash dump if the Erlang
virtual machine has crashed previously.

rebar.config This file defines all the settings for rebar in this particular
product. The dependencies as well as options for eunit and various
plugins to rebar can be configured.

92

udp test.sh This file is a script for testing the UDP convergence layer.
Please note that it is best tested with the discovery turned off in the
config file. At least two different computers are required to run these
tests. All instructions are in the script.

netinf nrs.sh This file is the main setup/install and run script. Please use
this to install all the required components on the machine to ensure
maximum compatibility. More details about this script can found seen
in 8.2.2

9.2.4 NetInf NRS modules

The main code modules are located in the ”src” directory of the main folder.
Each file has comments inside which can be generated into documentation
please see subsection 9.2.5

Erlang-application file Erlang applications require a definition file in or-
der for the Erlang virtual machine to be able to understand which
modules need to be preloaded and what configurations if any need to
be supplied to the application.

• netinf nrs.app.src - This file gets read by the Erlang virtual ma-
chine at compile time. Developers can set various options for the
default settings in the ”env” section of the file.

Supervisors Erlang uses supervisors to organize which process must stay
alive for a application to function as intended, below is a brief descrip-
tion of all the supervisors required in the NetInf NRS application

• nn sup - This is the main supervisor which starts the persistent
processes mainly: sub, msg id, and client supervisors as well as
the storage, discovery(deprecated), logger, stats and the udp han-
dler.

• nn sub supervisor - This is the sub supervisor. It is responsible
for starting the following non-persistent processes: event handler,
message handler, content handler, http forwarder, udp forwarder
and finally the content transfer handler.

• nn client supervisor - This is the client supervisor. It is respon-
sible for starting the http client stream handler.

93

• nn msgid sup - This is the message id supervisor. It is responsible
for starting the modules associated with message id storage.

Convergence-Layers As stated in section 5.4.7 the application was de-
signed to be modular, the idea of convergence-layers allowed the appli-
cation to group three distinct modules together to create the convergence-
layer in Erlang.

• nn http handler - This module contains code to process and send/re-
ceive http requests from the outside world(using the cowboy li-
brary). It is the first part of the HTTP convergence layer.

• nn http forwarder - This module contains code to send and re-
ceive http requests to other NRS’ when a search has failed in the
NRS system. Note, this feature(HTTP forwarding) is only used
when the system has been started with the static peers configu-
ration. See 5.4.4 for more details.

• nn http formatting - This module is responsible for taking a HTTP
message and converting it to the internal representation of the
NetInf Message and vice versa. It interacts with the message handler
passing converted messages back and forth. The message handler
that has been spawned with HTTP as the convergence layer uses
this module.

• nn udp handler - This module contains code to send/receive Net-
Inf UDP messages. It is spawned by the sub supervisor and serves
as the entry and exit point of the system for the UDP convergence
layer.

• nn udp forwarder - This module contains code to convert and for-
ward messages from another convergence layer into UDP specific
messages and then passes them to the UDP handler to send out
of the system.

• nn udp formatting - This module contains code to convert UDP
NetInf messages and extract information into a NetInf Message
for use in the message handler. The message handler that has
been spawned with UDP as the convergence layer uses this mod-
ule.

• nn message handler - This module is responsible for accepting
messages from a convergence layer handler. It is spawned with
the specific convergence layer name so that the module can redi-
rect requests to the appropriate formatter. The handler also for-

94

wards messages to the event handler for further processing in the
system.

Database behaviour & Storage interface This application contains a
custom behaviour to allow developers to quickly create wrappers for
databases as well as functionality to change the database at run-time.
The following modules are involved:

• nn database - This is the custom behaviour implemented for cre-
ating database wrappers. Each new database wrapper must im-
plement this behaviour. Erlang will then warn the developer if
there are missing key functions in the implementation of the new
database wrapper. The section PNP Database Wrapper 5.4.9 has
more information.

• nn storage - This is the interface between the database wrapper
and the content caching. This module is responsible for facilitat-
ing requests from the event handler.

Databases The NetInf NRS application has support for various plug and
play database wrappers. As long as the developer adheres to the re-
quired input and output of the database behaviour this application
can be extended to work with any database.

• nn database list - This module implements the callback functions
defined in the nn database. It is also a quick database consisting
of a persistent Erlang list data structure. The module also has
a timer which causes the list structure to be saved to disk every
hour. This can be controlled in the configs/list.config file under
the appropriate variable.

• nn database riak - This module implements the callback func-
tions defined in nn database, it is a wrapper for talking to a Riak
process (Riak is a standalone database).

Content-Caching The NetInf NRS also includes a method of caching bi-
nary objects sent into the system via NetInf messages, the following
are the two modules involved in this functionality.

• nn content handler - This module is responsible for handling the
binary octets(files) coming into the system it is also the interface
for storing and retrieving the files associated with NDOs.

95

• nn hash validation - This module validates the hash of the NDO
coming in against the one that is currently stored in the files
folder. Please note that the files folder must be present in the
system otherwise the application will crash. As stated previ-
ously, the make target ”set env folders” can be used to create
the required environment folders.

NetInf Video Streaming The NetInf NRS application supports a video
streaming protocol on top of the existing application. The main files
used in this protocol are described here. Note that the video streaming
also relies on the resources folder as well to provide the http client
interface to the user.

• nn subscribe - Responsible for subscribing to a stream, it is only
used in the NetInf video streaming.

• nn stream handler - Responsible for polling and fetching the chunks
for the users.

• nn stats - Responsible for keeping track of various statistics.

• nn ct handler - Responsible for transferring of content without
NetInf

• nn http client handler - Responsible for exposing the http client interface
to users.

• nn http ct handler - Responsible for transferring of content over
HTTP.

Logger The NetInf NRS application supports a file based logging method,
which creates a file named log.txt in the logs folder. The logger
comes with three(3) levels: verbose, warning and error. Developers
can choose which level to log at in the configuration file. By default
the log file sizes are set to 10MB and then the log file gets moved to
the old/ folder. You can increase this in the nn logger module under
the macro LOG FILE SIZE.

• nn logger - This module is responsible for opening the log file and
writing to it.

• nn logger server - This module is responsible for handling the
requests to log the event from various modules.

• nn log handler - This module contains the gen event server which
the logger modules connect to, the logger server accepts the re-
quests from the handler.

96

Message ID storage The distributed nature of the NetInf NRS and multi-
ple messages required the developers to be able to keep track of which
message is associated to a specific process id and convergence layer
handler. The message storage is a persistent table that maps this and
allows the application to forward requests to specific handlers.

• nn msgide This module contains code to store one message id to
process id mapping.

• nn msgids This module contains code to initiate to insert, lookup
and delete the message ids

• nn msgid store This module contains the interface to the nn msgids.
Developers should call this module to interact with the message
id table.

Utility & Misc The following modules are used to expose a variety of
functions through out the system.

• nn util - This module contains many useful functions that were
being used in multiple modules. It is recommended to read
through the functions here as a function may have already been
created and exposed to the developers.

• nn merging - This module contains all the functions for merging
metadata.

Integration test The NetInf NRS application required a test in order to
check if all the modules were working as intended using the black box
testing technique.

• nn integration test - This module contains the black box level
tests for the entire NetInf NRS system.

The majority of the above modules have unit tests for them in the same
folder, they are denoted with the same starting name but also have the test
as well.

Other Important Modules

netinf nrs - holds the main code for starting and stopping the application
along with all the required dependencies(Ranch, Crypto, Cowboy).

nn app - Starting point of the nn application. Initiates a HTTP listener,
starts the main supervisor and reads all the configuration settings from the
config files as well as the env from the netinf nrs.app.src file.

97

nn event handler -This module is responsible for passing messages between
the storage interface and content handler.

nn proto - This module contains the internal representation of a NetInf
message based on the draft. It also contains functions to get and set the
messages. It is used in many modules and it is part of the core NetInf NRS
architecture.

nn discovery service - This module is deprecated.

nn discovery client - This module is deprecated.

9.2.5 Generating documentation

Code documentation for the application can be generated by running the
following commands in the terminal when in the main netinf nrs folder.

rebar doc skip_deps=true

This will create a new folder ”doc” in the main netinf nrs folder. The
documentation should be read from the file named index.html

98

Chapter 10

Appendix C: NetInf Video
Streaming Draft

10.1 NetInf Video Streaming Protocol

10.1.1 Introduction

The purpose of this draft is to outline a design and protocol specification
for enabling of streaming and chunking data within the current and existing
netinf architecture.

10.1.1.1 Proposed method of retrieving chunked NDOs

The stream source will PUBLISH an NDO containing the filename as con-
tent. The object is marked as a stream in the metadata. It also contains a
locator to the stream source.

In order to access the stream, a receiver will first perform a NetInf-GET on
the above filename object in order to retrieve the locator.

In the next step the client can get the chunks. This is done by replacing the
hash algorithm in the NDO-name with demo and sending a NetInf-Get to
the source. The stream provider will then return an NDO with the octets of
the most recent chunk and the chunk number in the metadata. This implies
that the regular hash validation has been disabled.

99

For further chunks, the receiver will increment the chunk number and ap-
pend it to the locator.

If a stream is published with the name

ni:///sha-256;WkOCMB2aEQHrARjTldfhRE5OgZkZmCHzokcoVMnfp2Y

You can get latest chunk by fetching

ni:///demo;WkOCMB2aEQHrARjTldfhRE5OgZkZmCHzokcoVMnfp2Y

To get first chunk, append a 1 to the end of the hash

ni:///demo;WkOCMB2aEQHrARjTldfhRE5OgZkZmCHzokcoVMnfp2Y1

To get the 32th chunk, append 32 to the end of the hash

ni:///demo;WkOCMB2aEQHrARjTldfhRE5OgZkZmCHzokcoVMnfp2Y32

If the receiver also acts as a cache, it will send a PUBLISH with the filename
object and a locator pointing to itself to the NRS. Figure 10.1 shows the
flow of the actions.

10.1.1.2 Testing criteria

For a simple test setup, in addition to the NetInf node, a receiving and
a publishing client is required. A more sophisticated test could involve
multiple receivers, to demonstrate the caching.

A use case for testing is one where the source of the content is a pre-encoded
video file of a particular size.

The example below assumes a video file of the size 700 megabytes.

A client (Publisher) will have a default chunk size which is used to chunk
up the source file. For this example, 1 megabyte chunks will be used.

Thus, it can be calculated that the publisher will create 700 chunks of the
size 1 megabyte, numbered 1-700.

A second client (receiver) knowing the name of the video file will then send
a Get request to the NetInf node (to keep things simple, it is assumed that
the object’s name is already known).

100

Figure 10.1: Streaming Sequence Diagram

101

The client will now start generating consecutive GET requests with the se-
quence numbers constantly increasing and expect to receive the appropriate
chunk.

As well as poll the NRS for new locators, to get better load balance between
nodes contributing to the stream.

This process occures until the GET requests generate a 404 because the
unique sequence number has increased past the last published chunk number.

10.1.1.3 Extra notes

Chunk size is going to be a configurable option in the publishing client.

102

Chapter 11

Appendix D: License

Copyright 2012- 2013. Ericsson, Uppsala University

Licensed under the Apache License, Version 2.0 (the ”License”); you may
not use this file except in compliance with the License. You may obtain a
copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software dis-
tributed under the License is distributed on an ”AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or im-
plied. See the License for the specific language governing permissions and
limitations under the License.

Uppsala University. Project CS course, Fall 2012

Projekt DV/Project CS, is a course in which the students develop software
for distributed systems. The aim of the course is to give insights into how a
big project is run (from planning to realization), how to construct a complex
distributed system and to give hands-on experience on modern construction
principles and programming methods.

103

References

[1] Alexa - the web information company. Retrieved January 16th, 2013,
from http://www.alexa.com/.

[2] Erlang programming language. Retrieved January 15th, 2013, from
http://www.erlang.org/.

[3] The fp7 4ward project. Retrieved January 8th, 2013, from
http://www.4ward-project.eu/.

[4] Google guice (n.d.). Retrieved January 15, 2013, from
http://code.google.com/p/google-guice/.

[5] Javascript — mdn. Retrieved January 15, 2013, from
https://developer.mozilla.org/en-US/docs/JavaScript.

[6] Sail. Retrieved January 17th, 2013, from http://www.sail-project.eu/.

[7] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman.
A survey of information-centric networking. IEEE Communications
Magazine, 2012.

[8] E. Bauer M. Becker F. Beister N. Dertmann-R. Hrestic M. Kionka
M. Mohr M. Mühe D. Murali F. Steffen S. Stey E. Unruh Q. Wang
C. Dannewitz, M. Herlich and S Weber. Opennetinf documentation
design and implementation. Technical report, University of Paderborn,
September 2011.

[9] S. Farrell D. Kutscher and E. Davies. The netinf protocol. Handed to
us by Ericsson, 2012.

[10] Ivan Dubrov. Covertool. Retrieved January 15th, 2013, from
https://github.com/idubrov/covertool.

104

[11] Loc Hoguin. Erlang cowboy. Retrieved January 15th, 2013, from
https://github.com/extend/cowboy.

[12] Martin Logan, Eric Merritt, and Richard Carlsson.
Erlang and OTP in Action. Manning, November 2010.

[13] Android Developers (n.d.). Android developers. Retrieved January 8th,
2013, from http://developer.android.com.

[14] H. Otaola and M. Sosa. Using multiple transport networks in netinf
enabled android devices. Master’s thesis, KTH, School of Information
and Communication Technology (ICT), Sweden, 2012.

[15] Kostas Pentikousis, Prosper Chemouil, Kathleen Nichols, George
Pavlou, and Dan Massey. Information-centric networking [guest edi-
torial]. IEEE Communications Magazine, 50(7):22–25, 2012.

[16] C. Dannewitz B. Ohlman A. Keranen P. Hallam-Baker S. Farrell,
D. Kutscher. Naming things with hashes draft-farrell-decade-ni-10.
Handed to us by Ericsson, 2012.

[17] Basho Technologies. Riak. Retrieved January 15th, 2013, from
http://docs.basho.com/riak/latest/downloads/.

[18] Paul J. Davis YAMASHINA Hio.

105

	Glossary
	Introduction
	Background
	NetInf enabled applications
	A NetInf based web browser for Android
	An Erlang implementation of NetInf

	Preliminaries
	Information-centric Networking
	Network of Information
	OpenNetInf

	Development Languages
	Java-Android
	Erlang
	Javascript

	Goals and Scope
	Frontend
	NetInf Enabled Browser

	Backend
	Goals
	Scope

	Product Description
	Frontend
	Elephant Web Browser
	NetInfService

	Backend
	Erlang NetInf Name Resolution Service
	NetInf Video Streaming Client/Protocol
	First Implementation
	Modified NetInf Streaming
	Pure NetInf Streaming
	Streaming Frontend

	System Architecture
	Architecture Overview
	NetInfService
	Configuration
	RESTful API
	Publish

	Retrieve
	Search
	ResolutionController
	NameResolutionService
	LocalResolutionService

	SearchController
	UrlSearchService

	TransferDispatcher
	BluetoothProvider
	BluetoothServer

	Elephant
	Configuration
	Control Flow
	RESTful API Access

	Erlang NetInf NRS
	Architecture layers
	NetInf Messaging
	Named Data Objects
	Internal NetInf Messaging
	Publish
	Publish Message Workflow
	Get
	Get Message Workflow
	Search
	Search Message Workflow

	Dependencies
	Configurations
	Meaning of the config values

	Using config files
	Extracting the config parameters
	Convergence Layers
	HTTP
	UDP

	Notes on other CL
	Plug N' Play Database Wrapper
	Setup of Database Module

	Chunked data streaming
	Content dispatcher
	Stream handler
	HTTP client handling
	HTML5 interfaces
	Difference between implementations
	Advantages and disadvantages

	Evaluation and testing
	Frontend
	Test Setup
	Hardware
	Limitations
	Results
	Discussion

	Backend
	Video streaming protocol evaluation
	Pure video streaming evaluation setup
	Modified video streaming evaluation setup
	Results
	Discussion
	Notes on Interoperability

	Conclusions and Future Work
	Conclusions
	Future Work
	Elephant and NetInfService
	Dynamic Content
	Search
	Delete Functionality
	NetInfService
	Database and Bluetooth convergence layer

	NetInf NRS
	Precaching
	Access Control
	Interoperability
	Handle large file

	Security
	NRS required folder creation
	Polling Logic

	General

	Appendix A: Installation instructions
	Frontend
	Configuring Eclipse with Android
	Installing and debugging the application

	Backend
	Dependencies
	Script
	Riak Database
	Running the NetInf NRS

	Appendix B: Maintenance instructions
	Frontend
	Default Application Settings
	Elephant Web Browser
	NetInfService

	Development Environment
	Eclipse Project Structure
	Elephant Packages
	NetInfService Packages

	Javadoc

	Backend
	Default Application Settings
	Development Environment
	Code and folder structure
	NetInf NRS modules
	Generating documentation

	Appendix C: NetInf Video Streaming Draft
	NetInf Video Streaming Protocol
	Introduction
	Proposed method of retrieving chunked NDOs
	Testing criteria
	Extra notes

	Appendix D: License

