
User Guide

Overview 2

Prerequisite 2
Ericsson Forge SSH key 2
GNU ARM Embedded Toolchain 2

Installation 4
Download and installation 4

CCN-Lite 4
Texas Instruments SensorTag - CC2650 6

Installing Contiki - Contiki CCNLite 6
Updating Sensor Firmware 6
Flashing Tool For SensorTag 6
Flashing the Sensor 7

Border router device - Zolertia RE-MOTE 8
Download/Installation 8
Flashing the border router device 8

Android 9
Download and setup Android Studio for Ubuntu 9
Setup the project 10
Relay service 10

Mongo Database 11

Usage 12
Database 12
DS 12
CCN-Lite 12
Border router 13
Android 13

References 13

Overview
This system was tested on the following equipment:

● PC with ubuntu 14.04
● Border router device (Zolertia RE-MOTE)
● Texas Instruments SensorTag CC2650
● Android Phone

Prerequisite

Ericsson Forge SSH key
Some of the project's git repositories are located in Ericsson forge and therefore a ssh-key is
required for downloading these git repositories. If there is not an existing ssh-key on the
computer it can be created by entering the following command to gnome-terminal.

$ssh-keygen -t rsa -b 4096 -C "your_email@example.com"

The following options are presented when entering the previous command. If security is not
a concern then every question can be left black and proceed by only hitting enter for every
question.

Enter a file in which to save the key (/Users/USERNAME/.ssh/id_rsa): [Press enter]
Enter passphrase (empty for no passphrase): [Press enter]
Enter same passphrase again: [Press enter]

Next the public key needs to be copied to the Forges key log. Open the public key file with
following command and copy everything with ctrl+a, ctrl+c.

$sudo gedit ~/.ssh/id_rsa.pub

Go to Ericsson Forge and under the Username account settings there is option to add ssh
key (Username -> My Account -> +Add Keys). Paste the copied content of the public key file
and save the key.

GNU ARM Embedded Toolchain
Contiki and sparrow border router used in this project uses ARM compiler. GNU ARM
Embedded Toolchain can be downloaded from:
https://launchpad.net/gcc-arm-embedded/+download
This project has been tested by using GNU ARM Embedded Toolchain version 5.4.1. To
install ARM, all that needs to be done is to download the linux tarball and set an environment
variable to the installation folder. In this example the tarball is extracted to ~/projectCS/
-folder. To setup an environment variable open the hidden userprofile file:

$sudo gedit ~/.profile

https://launchpad.net/gcc-arm-embedded/+download

Next the path to the ARM compiler needs to be added to the environment variable. It is done
by adding the following lines to the end of the profile file and saving the file. Note: Be careful
with this step, it is possible to wipe the whole path empty and lock the user out of the
account.

#ARM Compiler

export PATH=$PATH:"/home/USERNAME/

 projectCS/gcc-arm-none-eabi-5_4-2016q3/bin"

After modifying the profile file a restart is needed for the changes to take effect.

Installation
Installation includes Content centric network environment which is used instead of regular
TCP/IP network, Mongo database for storing data, Border router device for making a
wireless connection to nearby sensors, SensorTag -sensor for producing sensor values and
Android application for displaying the data.

Download and installation
In this user guide everything is downloaded and installed in one working directory called
“projectCS” under the Ubuntu 14.04 operating system home directory. Directory can be
created through the gnome-terminal with command:

$mkdir ~/projectCS

CCN-Lite
This project uses heavily modified version of CCN-lite Project. Modified version adds auto
connection between relays, support for database and sensor directory service and other
functionalities to the CCN-lite software.

CCN-lite requires OpenSSL to run. Installing OpenSSL is done with the following command:

$sudo apt-get install libssl-dev

To start, the project git needs to be cloned to the computer. Note that in the git clone
-command the “YOURUSERNAME” needs to be changed to an existing BitBucket username.

$cd ~/projectCS

$git clone https://YOURUSERNAME@bitbucket.org/

 MaxWijnbladh/ccn_lite_greeniot.git ccn-lite

Before the project can be compiled a environment variable needs to be set to the project
folder. Path is added to a hidden profile file that is personal for every user on Ubuntu
operating system. To open the profile file, run:

$sudo gedit ~/.profile

Next the path to the git repository needs to be added to the environment variable. It is done
by adding the following lines to the end of the profile file and saving the file. Note: Be careful
with this step, it is possible to wipe the whole path empty and lock the user out of the
account.

#CCN-Lite

export CCNL_HOME="/home/USERNAME/projectCS/ccn_lite_greeniot"

export PATH=$PATH:"$CCNL_HOME/bin"

After modifying the profile file a restart is needed for the changes to take effect. Now only
thing left to do is compile the ccn-lite software.

$cd ~/projectCS/ccn-lite/scr

$make clean all

Refer to the Usage part of this document for running a ccn-lite relay.

Texas Instruments SensorTag - CC2650

Installing Contiki - Contiki CCNLite
$cd ~/projectCS

$git clone ssh://gitolite@forge.ericsson.net/

 uppsalaproj2016/contiki-ccnlite.git

$cd contiki-ccnlite

$git checkout icn2016

$git submodule sync

$git submodule update --init

$cd apps/ccn-lite

$git clone ssh://gitolite@forge.ericsson.net/uppsalaproj2016/

 ccnlite-contiki.git ccn-lite

$cd ccn-lite

$git checkout icn2016

Updating Sensor Firmware

You need to download XDS Emulation Software Package

● go to 32-bit:
http://software-dl.ti.com/dsps/forms/self_cert_export.html?prod_no=ti_emupack_setu
p_6.0.407.6_linux_i386.bin&ref_url=http://software-dl.ti.com/dsps/dsps_public_sw/sd
o_ccstudio/emulation

-OR-

● go to 64-bit:
http://software-dl.ti.com/dsps/forms/self_cert_export.html?prod_no=ti_emupack_setu
p_6.0.407.6_linux_x86_64.bin&ref_url=http://software-dl.ti.com/dsps/dsps_public_sw/
sdo_ccstudio/emulation

Download it to ~/projectCS

$cd ~/projectCS

$sudo ./ti_emupack_setup_6.0.83.0_linux_i386.bin

$cd /opt/ti/ccs_base/common/uscif/xds110/

$sudo ./xdsdfu -m

$sudo ./xdsdfu -f firmware.bin -r

$sudo ./xdsdfu -m

Flashing Tool For SensorTag

● Navigate to:
http://software-dl.ti.com/dsps/forms/self_cert_export.html?prod_no=uniflash_3.4.1.00
012_linux.tar.gz&ref_url=http://software-dl.ti.com/ccs/esd/uniflash/

http://software-dl.ti.com/dsps/forms/self_cert_export.html?prod_no=uniflash_3.4.1.00012_linux.tar.gz&ref_url=http://software-dl.ti.com/ccs/esd/uniflash/
http://software-dl.ti.com/dsps/forms/self_cert_export.html?prod_no=uniflash_3.4.1.00012_linux.tar.gz&ref_url=http://software-dl.ti.com/ccs/esd/uniflash/

● Save the file to ~/projectCS
● Extract the uniflash_3.4.1.00012_linux.tar file at ~/projectCS

$cd ~/projectCS

$sudo ./uniflash_setup_3.4.0.00003.bin

Compile a .elf file for TI CC2650
● Navigate to the directory of the file you want to compile

$cd ~/projectCS/contiki/examples/icn2016-demo/

$sudo make TARGET=srf06-cc26xx

 BOARD=sensortag/cc2650 icn2016-mote.elf

● This process will create an .elf file which is the format it should have to be uploaded
in the sensor

Flashing the Sensor
● Run uniflash from the Desktop
● Go to File -> New Configuration
● On Connection Field choose: Texas Instruments XDS110 USB Debug Probe
● On Board or Device Field Choose: CC2650F128 and click OK
● Click on Erase Entire Flash
● Then click on Programs from the Dropdown list on the left
● Click Add and navigate to the location of the file
● After you select, you will be back on the previous menu, click Program to flash the

sensor

Sometimes the sensor needs to be unplugged and replugged during erasing and flashing.

Border router device - Zolertia RE-MOTE
Border router software were delivered for this project by SICS and the final version of this
project ended up using just slightly modified version of SICSs original code.

Download/Installation
Border router software needs ARM compiler. Refer to the prerequisite section for more
information.

Sparrow git with submodules are needed to run the border router.

$cd ~/projectCS

$git clone https://github.com/sics-iot/sparrow.git

$cd sparrow/products/sparrow-border-router

$git submodule sync

$git submodule update --init

If SDS from this project is going to be used then some files are needed to be changed in
order for the Register Service to work. Modified files are located in a zip-file inside the
ccn_lite_greeniot git used in CCN-Lite section. Refer to CCN-Lite section for more
information if that part was skipped while following this user guide. Zip-file can be found
from:

$cd ~/projectCS/ccn-lite/scr/util/SDS/RegisterService/sparrow.zip

Extract sparrow.zip to projectCS folder and the files should be extracted into the right places
in the sparrow git folder. In unlikely case where this does not work follow the
README_GREENIOT -readme file from sparrow.zip to see where the files should be
extracted.

Flashing the border router device
If changes are dome into the border router code it needs to be flashed. Flashing this border
router is much more simpler than flashing the Sensor Tag device.

cd ~/projectCS/sparrow/products/sparrow-serial-radio

make TARGET=zoul-sparrow IMAGE=1

make TARGET=zoul-sparrow rescue-image

sudo make TARGET=zoul-sparrow upload-rescue-image

Note: This may need to be done for a clean clone of the git repository before extracting the files that are
part of this project.

Android

Download and setup Android Studio for Ubuntu
1. Download Android studio here: https://developer.android.com/studio/index.html
2. You can find and install guide here: https://developer.android.com/studio/install.html

a. First instal lJava > 1.8
b. Go through the first two bullets

i. Unpack the .zip, put the android-studio in the /usr/local/
directory

ii. To launch Android Studio cd to /usr/local/android-studio/bin
then type in ./studio.sh

iii. Follow the Android Studio setup wizard and you are done with the
installation

iv. You may need additional libraries, to install then execute: sudo apt-get
install lib32z1 lib32ncurses5 lib32bz2-1.0 lib32stdc++6

3. We need Android NDK to use C files in our project, here is the information to install it
along with the other libraries the project needs.

i. Go to File-> Project Structure
ii. You should see this

iii.
iv. Under the heading android NDK location click download and follow the

instructions

v.

https://developer.android.com/studio/index.html
https://developer.android.com/studio/install.html

b. Download the rest of the libraries
i. Go to Tools->Android->SDK Manager and click

ii. Make sure you have the following thing installed
iii. Under the tab SDK tools:

1. Android SDK Tools
2. Android SDK Platform-tools <version number>
3. Android SDK Build-tools <version number>

iv. Under the tab SDK platforms
1. Android 6.0 - API 23
2. Android 5.1 - API 22
3. Android 5.0 - API 21
4. Android 4.3 - API 18
5. Android 4.0 - API 15

Setup the project
1. Pull the project from the online repository:

a. cd in terminal to the AndroidStudioProjects
b. git clone

https://Aranor@bitbucket.org/Aranor/ccn-lite-android.git
2. Import project to Android Studio:

a. In Android studio: go to File->New->Import project click
b. Find the ccn-lite-android project in the AndroidStudioProjects

folder, click ok
c. There should now be a window with the project and you should be able to see

the files in the project window
3. Use ndk-build command after any change to the C files:

a. In the terminal (either in android studio or a normal terminal window):
i. Cd to app/src/main
ii. Run: ndk-build
iii. Then you can run the project

You are now ready to develop in the Android Studio environment.

Relay service
In order for the application to work normally, you need to have the service relay running on
the phone as well.

Mongo Database
Mongo Database was used for storing data from the sensors and from the GreenIoT
network.

First the MongoDB public GPG Key is imported for the system:

$sudo apt-key adv --keyserver hkp://keyserver.ubuntu

 .com:80 --recv 7F0CEB10

Then a list file is created for the Ubuntu 14.04 with the following command:

$echo "deb http://repo.mongodb.org/apt/ubuntu trusty/mongodb-org/3.0

 multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-3.0.list

Finally the local packages are reloaded and MongoDB packages are installed with the
following commands

$sudo apt-get update

$sudo apt-get install -y mongodb-org

To open the database for all remote connections mongod.conf need to be modified. In this
user guide the config file is opened by using Ubuntu default text editor, gedit , by the
following command:

$sudo gedit /etc/mongod.conf

The following section of the config file need to be edited as shown here:

#network interfaces

net:

 port: 27017

 bindIp: 0.0.0.0

To add a MongoDB support for the python scripts that are used to update and control the
database, the following commands are needed:

$sudo apt-get install python-pip

$sudo pip install pymongo

Usage

Database
To start MongoDB on the database computer write the following command into the terminal:

$sudo service mongod start
To open the mongodb interface,write the following command into the terminal:

$mongo

Two python programs (sensordata.py and nfn.py) run on the database machine. These can
be found in the py/server folder within the src folder:

$cd $CCNL_HOME/src/py/server

Both files have a config file that can be found in the same folder. However, these do not
need to be altered as long as the mongodb database is installed and running on the same
machine as the python programs.

DS
Directory service is a python script that was downloaded with our CCN-Lite repository. In this
project it is called Sensor Directory Service (SDS) and it can be found from the ccn-lite
folder:

$cd $CCNL_HOME/src/util/SDS

DS need to be configured before it can be used properly. The only part for a normal user that
need be changed is the database ip part. The configure file can be found under the config
-folder and this user guide uses gedit to open it:

$gedit config/config.ini

Next DS is ran by python command:

$python SDS.py

Notes:
(1) SDS.py needs to be already running before starting any CCN relays for it to be able to create a map
of the network.
(2) Part of the DS runs on the same machine as the border router is running. Further information see
Border router section.

CCN-Lite
The relays in our network need to be started from the src folder.

$cd $CCNL_HOME/src/

The CCN-Lite tutorial and documentation provided by the University of Basel has a thorough
explanation of all the CCN-Lite functionality [1]. The testbed used in this project can be
created by simple running a script:

$cd $CCNL_HOME/src/util/scripts

$./start_demo

Border router
After connecting the border router device through an USB cable to the computer the border
router software can be compiled.

$cd ~/projectCS/sparrow/products/sparrow-border-router

$make connect-full

After the border router has started up, the following commands can be used to see if there is
any neighbours connected to the device and if there is any route existing to the neighbour
through the border router device:

nbr

routes

Part of the DS is ran on the same computer where a border router is running. To start the
config file need to be prepared. Config file includes description for every value for user to
modify and it is found from register services config folder:

$cd $CCNL_HOME/src/util/SDS/RegisterService

$gedit config/re_config.ini

After defining location and the other values for the configure file, the register service is ran.

$python RegisteryService.py

Android
In order for the Android application to work, the relay service needs to be running in the
background and its gateway need to be pointing an ip within the CCN network.

References
[1] CCN-lite and NFN Tutorial
https://github.com/cn-uofbasel/ccn-lite/blob/master/tutorial/tutorial.md

https://github.com/cn-uofbasel/ccn-lite/blob/master/tutorial/tutorial.md

