
Design, Development and Deployment

of an Information-Centric Networking

based solution for the

Internet-of-Things

Project CS 2016

Authors:

Andrew Aziz
Andrew.Aziz.2356@student.uu.se

Ludwing Franquiz
Ludwing.Franquiz.2071@student.uu.se

Max Wijnbladh
Max.Wijnbladh.2971@student.uu.se

Eric Wang(Yiqing)
Yiqing.Wang.6263@student.uu.se

Maria Rajabzadeh Namaghi
Maria.Rajabzadehnamaghi.5780@student.uu.se

Theodosios Malatestas
Theodosios.Malatestas.1471@student.uu.se

Johan Snider
Johan.Snider.3503@student.uu.se

Sami Kaivonen
Sami.Kaivonen.4995@student.uu.se

Adrian Amigues
Adrian.Amigues.7647@student.uu.se

Eirini Petraki
Eirini.Petraki.5059@student.uu.se

Uppsala University

January 12, 2017

Abstract

Information Centric Networking (ICN) is based on the idea that
information is independent from its location and directly addressable
and routed based on a name. Any node within the network can request
and receive the data from the nearest node that has the content in its
cache. This information-oriented internet structure is well-suited for
a large scale Internet-of-Thing application.

In this project we have deployed and built a wireless sensor network
using Content Centric Networking (CCN) relay services and developed
an Android application for users to be able to request the sensor’s data.
Additionally, we also setup a datastore that can store the information.
This architecture has advantages and disadvantages that we analyze
in this report.

1

Table of contents

1 Introduction 4
1.1 Project computer science & the GreenIoT project 5
1.2 Objectives of the project . 6

2 Background 6
2.1 ICN and CCN . 6

2.1.1 Naming . 7
2.1.2 Content storage . 7
2.1.3 Forward information base 7
2.1.4 Pending interest tables 8

2.2 Software used . 8
2.2.1 CCN-lite . 9
2.2.2 MongoDB . 9
2.2.3 Contiki . 9
2.2.4 MQTT . 10

2.3 Related work . 10
2.4 Examples of IoT for smart cities 11

2.4.1 SmartCity Santander, Spain 11
2.4.2 Bristol, UK The programmable city 11

3 System architecture 12

4 ICN-IoT implementation 15
4.1 UML implementation diagram 15
4.2 Directory Service (DS) . 17
4.3 Routing . 20
4.4 Sensors . 22
4.5 Naming . 23
4.6 Sensor markup language . 25
4.7 Border routers . 27

5 Datastore implementation 28
5.1 Storing of CCN sensor data 28
5.2 CCN-MQTT gateway . 29

6 Machine learning for prediction 30
6.1 Introduction to Time-series 30
6.2 Weakly and strictly stationarity 31

2

6.3 AR, MA, ARMA and ARIMA model 31
6.4 General approach for ARIMA 32
6.5 AutoCorrelation Function (ACF) and Partial Correlation Func-

tion (PACF) . 33
6.6 Implementation . 34

7 Named function networking 37

8 Android application 38
8.1 Application idea . 38

8.1.1 Caveat . 38
8.2 Design process . 38
8.3 Development process . 40
8.4 App functionalities . 41
8.5 Predictions in the application 44
8.6 Conclusion and future work 44

9 Testbed 45
9.1 Limitations of the system . 48

10 Conclusion 51

11 Future work 52
11.1 Datastore . 52
11.2 Sensors improvements . 52
11.3 DS running on multiple relays 53

References 54

1 Introduction

Information-Centric Networking (ICN) is a networking paradigm which pro-
motes a data-centric network perspective over a traditional host-centric IP
network perspective[1]. Instead of basing communication on named hosts,
ICN bases communication on named data. Centering communication around
data allows that data to become independent from its location, application,
storage and means of transportation [1].

Internet-of-things (IoT) is an emerging technology trend which has already
made a noticeable impact in the Information and Communication Technology
(ICT) area. The Internet-of-things has given rise to new technology and busi-
ness opportunities in applications such as smart cities, industry automation
and big data [2]. To go further in depth, IoT is about connected physical
things communicating with each other and this communication generates
data which can be collected and analyzed. Several cities such as Bristol, UK
and Santander, Spain have already made impressive technological advances
integrating internet of things into the daily lives of citizens [3][4]. Santander,
which has been dubbed one of Europe’s first smart cities, has thousands
of sensors deployed in its city which give citizens information about every-
thing from available parking spaces to trash collection. Additionally, Bristol,
which has taken on the moniker ”The programmable city” uses a fleet of
1,500 sensors mounted to lamp posts in order to analyze traffic patterns to
minimize traffic congestion. Both of these cities are examples of how IoT
technology can affect change in city landscapes and give rise to new cutting
edge applications.

ICN has been researched in several different protocol applications such as
Named-Data Networking (NDN), Network of Information (NetInf) and Content-
Centric Networking (CCN)[5]. In this project we have focused on Content-
Centric Networking (CCN). CCN is a protocol that routes and delivers named
pieces of data at the packet level of the network. This allows the network to
cache data on any CCN relay and this is how the data is made independent
from the location [6]. In other words, once data enters the CCN network
it can be cached on any CCN relay, which means that any CCN relay can
respond to request for data if the CCN relay has that data in its cache.

For this project, we have taken advantage of these ICN caching and naming
designs and applied them to the IoT sensor domain, essentially by directly
mapping sensor readings to a CCN name space. In this way we have built
a functional ICN-IoT network infrastructure. Furthermore, we have devel-

4

oped an Android application that uses this ICN-IoT network infrastructure
to display sensor data which is requested and transported using the ICN
networking.

The ICN development comes with several challenges to be aware of, such as
naming data, handling data streams, handling mutable data entities, name-
based routing, and searching for data in the network [5]. During the course
of the project, we met all of these challenges and through research, testing,
and discussion, found solutions that worked in the scope of this project. This
report focuses on the design choices and trade-offs that were made.

1.1 Project computer science & the GreenIoT project

The development of the system which this report covers is developed by
students taking the project computer science course at Uppsala University
[7]. The course gives student the opportunity to get insights on how a big
development project is run from planning to realization with a industrial
partner as a customer [7].

This year’s project is carried out in the context of the GreenIoT project,
which is funded by the Swedish Innovation Agency Vinnova. The project is
a collaboration between Uppsala University, Royal Institute of Technology,
SICS, Uppsala Kommun, Ericsson, IBM, SenseAir, Upwis, and 4Dialog [8].
In our project, we have had contact with Uppsala University, SICS, and
Ericsson.

The GreenIoT project aims to develop an environmental sensor system and a
platform that enables both public sector and private actors to develop appli-
cations for sustainable urban development, based on open data from sensors.
Currently, the GreenIoT project and the Uppsala Kommun are deploying a
testbed of sensors along Kungsgatan to measure air quality. When opera-
tional, the measurements will give the municipality a better foundation for
understanding air quality in Uppsala and hopefully lead to improved urban
development[9]. Another key commitment of the GreenIoT project is to make
the collected sensor data available to the public as open data to encourage
third party development[9]. The idea is that by making the air quality read-
ings available, industries in the private sector will use this information to
create applications that will serve the public.

5

1.2 Objectives of the project

The overall goals of the project was to:

1. Experiment with the deployment of an ICN-IoT network infrastructure.

2. Develop and use sensor software which integrates sensors into the ICN
network.

3. Develop an Android application that requests sensor data through the
network and makes use of the sensor data.

The purpose of experimenting with ICN in the area of IoT is to identify
the challenges of combining these two different technologies such as naming
the data, handling data streams, handling mutable data entities, name-based
routing, and searching for data in the network. Performance and scalability
testing has not been in the scope of this project, however we have tried out
some small scalability tests which will be described in the testbed section
(section 9) of the report.

2 Background

2.1 ICN and CCN

The project is based on Information-Centric Networking (ICN) where the
communication is based on named data [1]. In ICN, devices communicate
with each other by providing or requesting named data which is independent
of its location. As the data is independent from its’ location, it means that all
the nodes in the network can provide any piece of named data [1]. Therefore
it is possible to cache data on any node in the network. Each node in a ICN
network is called a relay. The intent of ICN is to replace host-centric IP
networking in the future.

For our project we used an implementation of ICN called Content-Centric
Networking (CCN). CCN is a protocol that routes and delivers named pieces
of data at the packet level of the network. This allows the network to cache
data on any CCN relay and this is how the data is made independent from
the location [6]. In other words, once data enters the CCN network it can be
cached on any CCN relay, which means that any CCN relay can respond to
request for data if the CCN relay has that data in its cache.

6

2.1.1 Naming

Just like common IP routers, ICN uses prefix matching to forward inter-
est messages and to respond with content objects in a network. The main
difference is that in ICN’s case, prefix matching doesn’t use IP addresses,
but the names of the data that is being requested. To illustrate, in a tradi-
tional IP network, a request could be made for a web page by a URL that
would contain an IP address and optionally a page name, say for example:
100.92.168.72/bob car.html. This request is made to a specific IP for a spe-
cific HTML page, and the response will contain information pertaining to
Bob’s car. In ICN, on the other hand, the equivalent request would be made
by sending a request for: /car/bob. This is a request for a named piece
of data called: /car/bob and the request can be responded to by any node
in the ICN network that has the data: /car/bob. And that response will
contain information pertaining to Bob’s car.

In order to maintain the operation of an ICN network, three specific data
structures are used:

1. Content Storage (CS)

2. Forwarding Information Bases (FIB)

3. Pending Interest Tables (PIT)

2.1.2 Content storage

Every relay has its own content storage, which acts a content object cache
for that relay. The goal of the CS is to store data objects so that if they
are requested again they can be sent back immediately. If the content object
is not in the relay’s cache, the request is forwarded to another relay in the
network using the Forwarding Information Bases and an entry is made in the
Pending Interest Tables to denote that the relay is waiting for that content
object. When the content object is received, it is sent back to wherever the
original request came from and a copy of the data object is stored in the
CS.

2.1.3 Forward information base

The role of the FIB is to keep track of the information that the relay will
use to forward named data requests to other relays in the network. In CCN-

7

lite, each relay can have multiple connections to other relays in the network.
These connections are referred to as faces [10]. For example, if relay A has a
connection to relay B it can be said that relay A has a face to relay B. Fur-
thermore, if relay A knows that it can ask relay B about a certain name prefix,
for example ”GreenIoT”, we can build a forwarding rule that says if relay A
receives a request for data objects starting with ”GreenIoT” it can forward
those requests, along its corresponding face, to relay B. These forwarding
rules are all stored in the Forwarding Information Base data structure in the
CCN-lite relay and these rules make up the network connections in the ICN
network.

2.1.4 Pending interest tables

The role of the PIT is to store what interests have already been requested by
that relay and where that request came from. Whenever a request is made
for a prefix, this request traverses through the network, each time storing
an entry in each relays’ PIT. When the request finally reaches a relay where
the data exists, a response object is created and sent back along the path of
relays that forwarded the request, to the relay that originally requested the
data.

For every new node that the interest is forwarded to, an entry in the re-
lays PIT is created to keep track of what content objects have already been
requested and where each request came from. If an additional request for
the same content objects arrives at the relay, the relay will add that request
to the already created PIT entry for that content object, so that when the
named data object arrives at the relay, the relay knows it needs to send two
response objects, one for each request it received. After which the entry for
that content object is removed from the PIT, and the content object is added
to the content storage.

2.2 Software used

In this section we will briefly describe the software we have used during the
project.

8

2.2.1 CCN-lite

CCN-lite is a lightweight and functionally inter-operable implementation of
the Content Centric Networking protocol CCNx of XEROX PARC [11],
which has been developed and is maintained by the Computer Networks
group at the Mathematics and Computer Science Dept of the University
of Basel. CCN-lite was developed in part because PARCs’ CCNx router
software was too complex. CCN-lite is instead a smaller alternative for edu-
cational and experimentation purposes [12].

In the context of our project, CCN-lite covered all the CCN functionality that
we needed. CCN-lite includes CCN data structures such as PIT and FIB,
matching of publishers’ public key to fight cache poisoning, nonce and/or
hop limit tracking to avoid loops as a minimal safeguard and encoding of
messages to the CCN format [12].

2.2.2 MongoDB

MongoDB is an open source NoSQL datastore. NoSQL is a collective name
for the increasingly popular ways to build a datastore that violates the rules of
traditional relational datastores. MongoDB is a document datastore, where
a document in this case is not a PDF or a Word document, that consists of
JSON documents. A JSON document, in turn, is a collection of pairs of keys
and values. Below is an example of a document for a book [13].

1 {

2 title: "JSON Title",

3 author: "Ludwing Franquiz",

4 published: "2016-10-04"

5 }

Listing 1: Example JSON

2.2.3 Contiki

Contiki is an open source RTOS developed by Adam Dunkels et al. at the
Swedish Institute of Computer Science. The operating system is written in
C and uses an event-driven kernel. Contiki was developed for the Internet of

9

Things and offers official support for Texas Instruments MSP430 and Atmel
AVR [14].

2.2.4 MQTT

MQ Telemetry Transport (MQTT) is a lightweight publish-subscribe broker
on top of TCP/IP. MQTT is widely used and has implementations in C, Java,
Javascript and Python. The lightweight broker is responsible for receiving
messages and distributing these to all subscribers. Every interested client
subscribes to a topic which refers to a specific data. In our project, each
topic represents a data stream of sensor values produced by a sensor.

2.3 Related work

The internet of things (IoT) has become a vivid research topic over the last
few years. It provides new possibilities, and shapes the future of mobile de-
vices. Unfortunately, the novelty of the GreenIoT project where we built
our work, does not allow for an extensive comparison with other research
ideas, because such related approaches are rather limited and only partially
intersect with our approach. Perera et al. [15] discuss the the concept of
sensing as a service, and its correlation with the IoT in technological, eco-
nomical and social perspectives. Zanella et al. [16] provide a comprehensive
survey of the enabling technologies, protocols, and architecture for an urban
IoT. This work presents the technical aspects and best-practice guidelines
adopted in the Padova Smart City project.

Content Centric Networking (CCN) is a content-based network architecture.
Instead of relying on a host based protocol CCN allows for access and re-
trieval of content by name, irregardless of where the data is physically stored.
Oh et al. [17] propose an Content Centric Networking in tactical and emer-
gency MANETs by extending a basic CCN architecture to support disrup-
tive networks. Kim et al. [18] addresses broadcast storming during content
dissemination, as well as the increasing content announcement overhead in
MANETs using a topology aware CCN variation.

10

2.4 Examples of IoT for smart cities

2.4.1 SmartCity Santander, Spain

As mentioned in the introduction, Santander in Spain is one of the most
prominent examples of incorporating IoT into a city. Starting in 2011, with 11
million Euros in funding, Santander started to design and deploy a sensor fleet
to help drivers find available parking spaces. Since then they have deployed
approximately 3,000 sensors in the city for a number of different projects.
Around 2,000 of these sensors are used for environmental monitoring in the
city center and collect data for temperature, CO, noise, and light. Santander
also has about 60 sensors for monitoring traffic volumes, road occupancy,
vehicle speed and queue length. As well as 50 moisture temperature and
humidity sensors for monitoring and optimizing irrigation in the city. All of
these sensor readings are made available for the public via an online portal
and an iPhone and Android mobile app.

2.4.2 Bristol, UK The programmable city

Bristol, UK is also a noteworthy example of incorporating IoT into a city.
Their aim is a little different than in Santander. In Bristol, their focus is
on opening up the cities data sets to the public and businesses to encourage
development and experimentation with IoT devices. They currently have a
”City Experimentation as a Service” beta which allows researchers and com-
panies to run experiments with the sensors deployed in the city. Additionally,
they are planning to roll out a fleet of IoT sensors as well as provide public
WiFi for their harbor.

11

3 System architecture

Figure 1: System architecture

Figure 1 is a bird’s eye view of our project and the bridge to the GreenIoT
project. The whole project is divided into two systems, the one to the right in
figure 1 is developed by us and the one to right is developed by the GreenIoT
project team. The project has two type of sensors, CCN and MQTT sen-
sors, and in this project users retrieve sensor data through the CCN network
which consists of CCN relays, which are the routers in the CCN network,
the directory service and a CCN-MQTT gateway. Relays are responsible for
forwarding interests, keeping track of all the interests in the PIT, storing con-
tent objects for potential reuse and creating content objects when interests
are sent.

The CCN network also hosts a directory service (DS) which function is to
keep track of the sensors and the routing between relays. The DS has all
the information about the relays, border routers and sensors within the net-
work. By possessing this information, the DS is able to administrate the
network.

12

The CCN-MQTT gateway is the bridge between the sensor data produced
by the GreenIoT project and our project. The gateway is able to produce a
bidirectional stream of sensor data to both sides of the system architecture
in figure 1. A MQTT subscription is implemented to get sensor data from
the GreenIoT sensors and a MQTT publisher is implemented to publish the
data produced by the CCN sensors and make it available for the users in the
MQTT domain.

The Border Routers devices are the sensor gateways that connect the sensors
to a computer running a CCN relay by creating routes from the CCN relays
to the sensors, using the sensors’ IPv6 addresses. On every computer running
a border router a register service is running, which is responsible for register
and unregister the sensors in the network. The sensors produce values at
constant intervals and their values are requested by the relays. Whenever
their values are stored in the relays, they do not have to be requested again,
since they will be stored in the relays’ content storage.

In the GreenIoT project the data sensed by the sensors is stored in the IoT
datastore. The IoT datastore serves as long-term storage for all raw and
processed sensor data. The goal from the beginning of the project was to
use the same datastore for the CCN domain. However we decided to create
a separate CCN datastore for our project, since we wanted to have working
system without being dependent on that the GreenIoT system is up and
running.

The CCN datastore is a non-relational MongoDB datastore which is used for
storing historical data. The function of the datastore is for us to have the
possibility of requesting old sensor values and display them in the Android
application. Another function of the datastore is the possibility it gives the
GreenIoT project to request historical sensor data. This has been done by
implementing a RESTful API which makes the historical data available for
the the GreenIoT project.

The datastore also allows us to practice machine learning to predict future
sensor values in the Android application. The prediction function is imple-
mented as a named function which means that it is triggered and creates
the content object for the predicted values only when a specific interest is
sent.

The CCN users use the Android application in order to make use of the
sensor data within the network. We decided upon a monitoring application
which displays the temperature, humidity and light at lunch places in the
university.

13

In order for the application to be part of the CCN network, the application
communicates with a CCN relay that runs as a service on the phone. The
relay is a separate Android application package which runs in the background
and the purpose of which is to transmit the applications’ request to the CCN-
network through a gateway and to return the content objects.

On application startup, the CCN users first needs to set the ip of a computer
running a relay in the CCN network, this in order to create a connection
between the relay running on the application and the relays in our CCN
network. The clients will then through the relay running as a service send
an interest to receive the list of active sensors. The list if gathered by the
directory service by remotely querying the datastore for all sensor entries with
the a-flag set to True. These sensors can be used to get current sensor values
and also historical and predicted values which will be described thoroughly
in section 9.

Historical data can be requested by the users using a different prefix than for
current sensor values. The interest is propagated further to the relay running
on the computer where the datastore is running. When the interest reaches
the datastore relay a named function is triggered, which provides access to
functions that perform operations using multiple data objects, which can
produce passive content once it is needed [19]. A content object is then
created with all the sensed values during the previous 24 hours. This content
object is then sent back the same way that it came from, finally reaching the
clients.

Predicted data can be requested by the users using a named function similar
to the historical named function presented above. The interest is propagated
to the computer running the datastore using the same path as for historical
data. The prediction named function is triggered, and a content object with
predicted values for the coming day in that specific requested location is
created and propagated back to the user.

When a specific historical value is requested it is forwarded to the other relays
in the CCN network as well as the relay running on the datastore computer.
If it reaches the datastore relay a named function will be triggered which will
query the datastore for the specific requested value, create a content object
with the requested value and send it back the same way it came from. If it
reaches another relay having the value before the datastore relay the named
function will not be triggered and the relay which already has the value will
be the one responding the interest with the content object.

14

4 ICN-IoT implementation

4.1 UML implementation diagram

Figure 2: UML implementation diagram

In figure 2 the rectangles represent the entities of the system and the arrows
with the corresponding labels represent the functionalities when the entities
interact with each other. The blue rectangles are the main entities (ex.
Android Phone) and the yellow rectangles included in the blue ones are the
key entities (services) that are running in the main ones (ex. Android Relay,
Android Application).

The Android Device includes two different entities, the Android Application,
containing the UI that users interact with and the Android CCN relay which
is responsible for sending Interest Messages and receiving Content Objects
to the main CCN relays. Whenever a user requests a value, the Application
communicates with the relay to send an Interest Message. In the same way
when the relay receives a Content Object it parses the information and shows
them in a human readable format to the user through the Application.

15

The datastore is requesting data from the CCN relay in constant intervals
and stores them. This information will be served to the user in case the infor-
mation from the sensors is not available and also for archiving reasons.

The MQTT Broker is the bridge between the GreenIoT project and our
project and allows us to subscribe to the data produced by the GreenIoT
sensors and to publish the data produced by the CCN sensors and make it
available for the users in the MQTT domain.

The Border routers acts as ”middle man” between the sensors and the CCN
relay. They are looking for sensors in their range, which they store and
inform the relay about their existence. They also receive Interest Messages
from the relay which they forward to the sensors through the routes they
have created and also receive Content Objects from the sensors which they
forward back to the CCN relay.

The Sensors are collecting measurements from the environment and transmit
these values in a CCN format whenever they are requested through the border
routers. They are also signaling their IP when they are online , so the border
routers can locate them.

The CCN relays are the main entities of the system. They are running on
PCs and are responsible for handling all the traffic in the Network. They
contain two key sub-entities, the DS and the Registry Service.

The Registry Service is a sub-entity of the CCN relay and is responsible for
requesting the border routers for their sensors list and forward this informa-
tion to the DS.

The DS entity administrates the network by keeping track of the sensors and
the routing between the relays. By receiving the sensor list from the register
service the DS is responsible for updating the list of active sensors in the
datastore. The DS also is responsible for configuring the forwarding rules of
the relays in the network.

The CCN network also hosts a directory service (DS) which function is to
keep track of the sensors and the routing between relays. The DS has all
the information about the relays, border routers and sensors within the net-
work. By possessing this information, the DS is able to administrate the
network.

16

4.2 Directory Service (DS)

In order to organize and configure the collection of sensors, the sensor data
and the forwarding planes of the relays in the network, we implemented a
controller drawing upon concepts from Software Defined Networking (SDN)
[20]. By separating the forwarding and control plane of our network ar-
chitecture, we’re able to configure and optimize the data forwarding in the
network without having to configure each relay separately. The DS has com-
plete knowledge about each relay, border router and sensor in the network
and is able to make forwarding decisions based on this information. The DS
is also responsible for retrieving a list of available sensors from the datastore
and propagating this to each Android client that wants to request sensor
data.

Startup
When the DS is started, it reads all global variables from the init.cfg file in
the /config folder, such as the IP address to the sensor datastore and several
other parameters. After a connection is successfully made to the datastore,
it opens an UDP socket on port 9999 to listen to incoming packets in a while
loop.

Relay and link registration/de-registration
Once a relay boots up, it sends a JSON packet with its status - On. When
the DS receives this packet, it adds the corresponding IP of the relay to
its dictionary NETWORK, where each key represents the IP of a relay in
the network. Furthermore, whenever a relay in the network creates a face
towards another relay, a JSON packet with the IP of the new face is sent to
the DS as well. The DS then adds this IP as a value in the list belonging to
the key (IP) of the relay which created the face. The structure looks like the
following:

NETWORK:

[RELAY_IP] : {PEER1, PEER2, PEER3, ...}

[130.238.15.242] : {130.238.15.241}

[130.238.15.241] : {130.238.15.242}}

Additionally, before a relay goes offline in the network it sends a JSON packet
to the DS with the status - Off. Once this packet is received, the DS removes
the key corresponding to that IP from the NETWORK graph, and removes
all entries with this IP from each relays list of faces. By doing this, the
DS is able to keep a graph of each relay in the network and how they’re
connected each other. This allows us to manage the forwarding plane of

17

our CCN network from one centralized entity. This implementation is de-
pendent on the relays being shut down in a controller manner, see section 9.1.

Register Service (RS)
The register service is a program that runs on every computer that has a
border router. These programs work in conjunction with the DS to publish
the list of active sensors to the clients. The purpose of this software is
to detect new sensors that connect to the border router and to send their
information to the DS via UDP message. The RS reads all connected IPv6
sensor addresses from its local border router and registers those sensors to
the DS. The RS has its own configuration file that includes the IP address of
the closest relay, path to the border routers IPv6 list and, most importantly,
the name of the place where the border router is located. When a sensor
is connected to a border router the RS calculates the MAC address of the
sensor from the IPv6 address and creates a route from the relay to the sensor
and requests sensor information from the sensor. After receiving the sensor
information, the RS sends an interest message to the sensor containing the
border router location. This interest message acts as a control message.
When the sensor receives the interest message, it parses the location name out
of the prefix and rebuilds its naming prefix using that location name.

When the sensor goes offline or out of the border routers range, the RS sends
a deactivation message to the DS which then sets the sensor state to inactive.
To clarify, the sensor isn’t completely removed from the DS, it is just set to
inactive.

Sensor registration
The register service (RS) sends information about one, or multiple, new sen-
sor(s) to the DS, by sending a JSON object. The DS parses this JSON object
to see what the MAC addresses of the sensors are, as well as to get the pre-
fix of the content that the sensors produce. If no sensor with the indicated
MAC-address exists in the sensor table, an insertion is made. In the case
that the sensor was previously registered, the status of the sensor is set to
active or inactive depending on the type of message.

Since the border router and a relay run on the same machine concurrently,
the DS knows that new sensor information coming from a relay is actually
coming from the RS running where the border router is. When the DS re-
ceives new sensor information it adds that information as one of the keys in
the NETWORK graph.

18

Forwarding plane
Once a new sensor is added to the datastore, the DS proceeds to update the
forwarding table of each relay in the network with the prefix of the content
that the sensor produces. It does this by running the following shortest-path
algorithm on the each relay in the network graph:

def find_path(graph, start, end, path=[]):

path = path + [start]

if start == end:

return path

if not graph.has_key(start):

return None

for node in graph[start]:

if node not in path:

newpath = find_path(graph, node, end, path)

if newpath: return newpath

return None

The following function will return a list, where the first entry is the start
(relay to be updated), and the following entries are the nodes that need to
be visited (relays) to be able to reach end (border router). The IP of the
relay following start (next) is extracted, and a UDP packet is sent to the
start relay, with a command to update its forwarding table with a path to
the prefix through the face corresponding to next. Once this is done for all
relays in the network, each relay knows the shortest path to reach every pre-
fix. In order to be able to reach old content that is no longer available in the
sensor or relay caches, each relay also receives an entry in their forwarding
tables which indicate which path to take to reach the datastore of sensor
data, in accordance with the algorithm above. When a relay propagates an
interest through any of its faces, it also sends a duplicate interest through
the face leading to the data store.

This forwarding mechanism is limited to work only in a small-scale network
with few sensors and relays, see 9.1

Sensor lists
When a CCN interest packet is received by the DS with the prefix sds/sensor,
it retrieves sensor information from the datastore, and builds a JSON object
of all of the active sensors (see 9.1). The resulting JSON is parsed to extract

19

the necessary information that the Android client needs to request data, such
as the prefix of the content, the time the sensor came online, what kind of
data it produces, and how often it produces new data. This is formatted as
a CCN content packet and sent back to the client. Since each forwarding
table of the relays in the network contains a path to the content indicated
by the prefix that belong to a sensor, as well as a path to the datastore, the
Android client is able to retrieve all content being produced in the network
with those prefixes.

4.3 Routing

As previously stated, we have used CCN-lite as the foundation of our Content
Centric Network. The existing CCN-lite repository that we have used dur-
ing the project covers all the basic Content Centric Networking operations
e.g. sending and receiving interest messages and content objects. However,
automated forwarding rules between relays were not included in the basic
repository. Furthermore, we implemented a new cache eviction algorithm
using the first in, first out (FIFO) method, where the oldest content object
in the cache is removed if the cache gets full. In the current implementation,
the cache size (N content objects) is decided when the relay is setup.

Each relay is auto configured when introduced into the network. On startup,
each relay sends a broadcast packet to all direct neighbors. This packet is
formatted into an CCN-lite interest object with the prefix /ccnx:/discover
which is received by all neighbors. To reach all neighbors, we open a socket
to the CCN relay default port 9695 and send the interest using UDP to the
broadcasting address of the local network ”255.255.255.255”. When a relay
receives an interest with this prefix, it takes the senders IP address and cre-
ates a face towards the sender if and only if there is no prior established
connection. The relay then constructs a CCN-lite content object with the
prefix /ccnx:/discovered and sends it back to the broadcaster who then cre-
ates a face back to each active relays that replies to the initial broadcast
interest using the same technique described above. This back and forth mes-
sage is used to automatically create routes between the relays in the network.
As previously mentioned, the relays send a JSON packet to the DS with the
status ”inactive” whenever it goes offline. The DS is then tasked to remove
all faces connected to the relay that sent the message. This means that only
the DS is fully responsible of de-registering inactive relays. However, one
issue is that this message is not sent if the relay crashes or the computer

20

running the relay shuts down. One solution to this problem is to create a
heartbeat system, where the DS sends packets to all active relays. All relays
that do not respond to this packet are treated as inactive and removed by
the DS from the network.

Another major step of our implementation of the relays is auto populating
the FIB tables. Our algorithm is divided into several steps depicted in the
following figure:

Figure 3: Auto populating FIB table algorithm.

Using the algorithm presented above, the relays are able to auto populate

21

their FIB tables every time an interest with a new prefix is propagated in
the network.

The combination of broadcast messaging and FIB auto population creates a
foundation for a robust CCN network where multiple nodes can be inserted
into the network without any extra configuration.

4.4 Sensors

The sensors we are using in this project are the Texas Instruments CC2560
with the Debugger DevPack XDS110. The sensors are running Contiki OS
and are able to implement CCN functionalities. The sensors are able to
communicate with neighboring devices wirelessly using 6lowPAN protocol
[21] over 802.15.4 [21]. The sensors are also using RPL protocol [22]. The
DevPack XDS110 has a microUSB port which is used to flash the sensors and
provide power to them when they are connected to a computer. The core
CCN source code for the sensor was provided by SICS and we have done
some modifications on it, in order to adapt it to our system. The commit
id of the code is included in the references section [23]. The ccn-lite version
we used is Release 0.3.0 - July 2015 from University of Basel [24]. Although
the TI CC265O Devices can use a variety of sensors not all of them are
available in Contiki OS. The ones that have drivers currently working for
Contiki are:

• Temperature

• Humidity

• Light

• Gyroscope

• Pressure

Because of the sensors limited memory, they are able to cache only a small
amount of content objects, 15 in our case. The sleep interval of the sensors is
easily configurable and can be set to any value that serves the projects design.
For this project we are using only 3 sensors which can sense temperature,
humidity and light. The sensor is able to receive CCN interest messages from
nearby border routers and configure its prefix according to that. Since the
border router knows its own location and the sensor can configure its own
prefix based on that location, the prefix is given to the sensor by the bor-
der router and then that information is reported to the DS. The sensor, on

22

startup, produces a content object with the prefix /p/12345678/regist .
12345678 represents the last 8 characters of its MAC address, since the
buffer was not big enough to fit all 12 characters. This initial content ob-
ject contains information about the sensor model-type and the current sensor
measurements. Since the sensor should always be able to contain a Content
Object with its own information, this initial content object is produced once
every 15 loops, so there is always one cached and available to be requested.
The location - and the prefix - of the sensor can be changed by the border
router. The text contained in every Interest Message is parsed into a string
which is searched to see if it contains the word ”regist”. The word ”reg-
ist” indicates that this is a registration message so the border router either
requests the sensor information or wants to register the sensor to a new lo-
cation. In case after the word ”regist” more text follows, this text represents
the actual new location that the sensor will have to use. For example by re-
ceiving the prefix /p/12345678/regist/myroom , the sensor knows that
myroom is the new location that it should create content objects for. The
registration now has been done and the prefixes from now on will have the
following format: /p/myroom/12345678/seq no. The sequence number
starts from 1 in every new registration. The location can change again by
sending again a registration message containing a new location. The sleep in-
terval is currently set at 10 seconds. Every 10 seconds, the sensor is triggered
to produce new values. When all 3 values have been produced, the sensor
creates a CCN content object by calling the corresponding function. The 10
seconds interval is configurable and can change easily. If an interest mes-
sage arrives while the TI CC2650 is sleeping, it will wake the device up and
look into its cache about the requested content object. This process is not
affecting the timer which will create the next content object 10 seconds after
the last creation happened. Depending on the prefix that has been set, the
object will be cached in the sensor in the following format: seq no - sen-
sor interval - Light value - Temperature value - Humidity value .
The sensor does not contain a clock that keeps track of the actual date and
time so it is not possible to include time in the content objects. Although
by including the content object creation interval and the sequence number
in the content object, the rest of the systems are able to keep track of the
real time by correlating these values with their working clocks.

4.5 Naming

Named data is the core functionality in Information Centric Networking.
Naming in CCN is hierarchical and segment based, which means data names

23

are ordered and split into different parts. Naming is implemented by labeling
each piece of data in an application, in a structured way, so that each piece
of data has a name associated with it and vice versa. Take for example the
name: /seg1/seg2/seg3. We can see that there are three parts to this
named data object and that segment one is at the highest hierarchical level
and segment three is at the lowest. Furthermore, CCN names are generally
classified into different parts. At the beginning there is a globally routable
name segment which is typically the application or project name. Next there
are application dependent name segments, which in our application includes
the sensor location and sensor id. And at the end there can be protocol
dependent name segments which are similar to parameters and can specify
information about different data chunks or different versions.

Throughout the course of the project, we used several different naming
schemes. In the beginning, when we were testing with only one sensor,
we used a naming scheme that looked like /demo/mote id/seq id. Here
/demo was the project name, /mote id was the sensor ID and the only
application dependent name segment, and seq id was the sequence number
of that data that the sensor had produced. In this naming scheme we could
specify which sensor and which piece of data we were requesting, but we did
not have the sensor location incorporated into the naming. We debated as
to whether or not the sensor location should be included in the naming. One
on hand we did not have a massive amount of sensors and the project could
have worked with us hard coding which sensor is in which location, however,
due to the specification that sensors should be automatically configured, we
decided to incorporate the sensor location into the naming hierarchy. Specif-
ically, each border router is manually configured with a location, and every
sensor that connects to that border router receives that location from the
border router and uses it in its naming prefix. Thus we came up with a nam-
ing scheme of /p/location/mote id/seq id. In this way, we are able to
organize sensors based on which border router they are connected to.

The next challenge we faced we was adding support for historic and predicted
values. In other words, we needed a way to distinguish between normal
sensor data, sensor data that was stored in the datastore and requests for
predicted data values. Idealistically, we wanted to keep the same naming
convention of /p/location/mote id/seq id and have the network be smart
enough to be able distinguish between the different requests. For example, if
a client requested older data that would most likely be found in the datastore,
that request would be routed to the datastore. If a client requested current
data, the request would be routed to a sensor and if a request was made for
future data the request would be sent to the relay responsible for computing

24

predicted values. When the Android Application requests historic values
it requests data with the naming scheme /historical/location and when it
wants predicted values it uses /prediction/location and the network knows
to route those requests directly to the datastore or the relay responsible for
computing predictions.

The application knows what to send interest to and how to distunguish be-
tween the different naming conventions by having a interest function imple-
mented where the user needs to specify what task it wants to execute. For
example if the user in the application wants to retrieve the sensed values from
the past 24 hours, the interest function will use the historical task which in-
cludes the naming convention for historical values. If the user instead wants
to retrieve a specific historical value from a certain date it will run the specific
historical task which first needs to calculate the sequence number from the
date provided by the user in order to send an interest with the correct nam-
ing convention, which for specific historical values is the same as for current
values.

4.6 Sensor markup language

All the sensor data in the project is stored using sensor markup language
(SenML) [25], which is simply JSON containing named events together with
an associated value and unit. In the JSON there is both information about
the sensor but also about the events, which in our case are new sensor read-
ings. The purpose of the sensor markup language is to make the gathering of
data from multiple devices easier. Here is an example of our implementation
of the sensor markup language:

25

1 {
2 "a": true,

3 "md": "TI CC2650 SensorTag",

4 "ver": 1,

5 "lo": "Office",

6 "bn": "00:12:4b:49:8c:82",

7 "but": 10,

8 "bt": 1481194072,

9 "bsn": "145",

10 "pf": "/p/office/4b498c82",

11 "e": [{
12 "v": 26.625,

13 "sn": 1,

14 "u": "C",

15 "t": 1481194072,

16 "n": "Temperature"

17 }, {
18 "v": 26.86,

19 "sn": 1,

20 "u": "Lux",

21 "t": 1481194072,

22 "n": "Light"

23 }, {
24 "v": 22.02,

25 "sn": 1,

26 "u": "%",

27 "t": 1481194072,

28 "n": "Humidity"

29 }]
30 }

Listing 1: Sensor markup language

What each field stands for in the JSON is described below:

• a - Indicates of the sensor is active or not.

• md - The model of the sensor.

• ver - Version.

26

• lo - Location where the sensor is placed.

• bn - MAC address.

• but - Looptime, the interval between sensor readings.

• bt - Epoch time when the sensor was initialized.

• pf - Prefix of the sensor.

• e - Contains array of events.

• sn - Sequence number for the specific reading.

• u - Unit.

• t - Epoch time when the values was sensed.

• v - value

4.7 Border routers

The Border Router devices are the sensor gateways that connect the sensors
to a computer running a CCN relay by creating routes from the CCN relays
to the sensors. The hardware is Zolertia RE-MOTE and the software they
are running is Sparrow-Border-Router provided by SICS. Sparrow border
router is a Contiki implementation in purpose of serving IoT applications
as a border router. The commit id of the code is included in the references
section[26]. More information about the sparrow border router can also be
found here [sparrowinfo]. Border Routers are connected serially to the
Computer using microUSB cables. On the border routers we have done very
little modifications to the original code.

• The first modification was a change to the interval that the border
routers uses to look for new neighbor routes. The initial time was 3600
seconds, so we reduced it to 36 seconds because we wanted to have an
almost real-time behavior when sensors go on or offline.

• The second modification was writing all the routes of neighboring sen-
sors to a text file which can be used by the system to create faces.

The border router crashes occasionally so a bash script was implemented to
re-launch it whenever it crashes. The reason the router crashes has probably
something to do with the serial connection, but we cannot state that with
certainty.

27

5 Datastore implementation

As described in the section 3 the GreenIoT project has a MongoDB datastore
which is used for storing historical data. This datastore would be sufficient
for our implementation but because we wanted to have local access to the
datastore we decided to standup and use our own MongoDB . This datastore
has a MongoDB collection called sensors. This collection is filled with an
array of MongoDB Binary JSON (BSON) objects with the SenML format
shown above.

Furthermore, we have implemented a RESTful API to make the data stored
in the sensors collection available for the GreenIoT project. This API is
implemented using the python micro framework Flask [27]. The API has
multiple routes that can be used to query the sensor data stored in the
datastore. In the current implementation, a user can query all the data
produced by all sensors, or query data produced by only one sensor or in one
location. Users with access to the API are also able to insert sensory data
into the datastore using POST-requests.

5.1 Storing of CCN sensor data

In order for us to be able to request and display historical sensor values in the
Android application we needed to store the values from the sensors as they
are produced. We developed a python program which queries the MongoDB
to detect if there are any active sensors. If the sensor is up the python
program creates a thread object for each sensor with the information needed
to calculate the sequence number and to send an interest to the sensor. When
the thread for the sensor is started we first calculate the sequence number.
This is done by taking the current time in epoch minus the time when the
sensor was initialized, which is called “bt“ in the sensor markup language
JSON. To get the current sequence number we then take difference divided
by the looptime, which is the interval for how often the sensor senses new
values. The current sequence number gives us the entire prefix we need to
peek the sensor for new values. We also update a field about the sensor in
the datastore called “bsn” which stands for the current sequence number so
that other parts in the system do not need to do the calculation as well.

After the calculation of the current sequence number we can send an interest
to the sensor for new values by using the full prefix, for example: pf: /p/of-
fice/4b498c82/23, where the number 23 is the sequence number calculated.

28

When the content object is received with sensor values for light, tempera-
ture and humidity we extract those values, create a SenML JSON object with
those values and store the SenML JSON object in the MongoDB datastore.
Before executing these functions again, the thread will sleep for the looptime
of the sensor and then calculate the new sequence number and peek for new
values again.

To account for sensors coming on and offline, there is another thread in the
python program that listens for changes to the active sensor list from the
DS. If the datastore receives a message from the DS that the sensor list
has changed. All of the threads are killed, a new query to the MongoDB
datastore is made to get the list of active sensors, and then the threads are
restarted, one for each active sensor. This is not a scalable approach since
we are killing threads that does not need to get killed and restarting threads
that may contain active sensors, a future solution would be to add a function
which compares the sensor list in the MongoDB datastore with the version
of the sensor list that the python program is sending interests to. By adding
this function we will only kill or start the threads that are necessary, instead
of killing all and then restart the ones that are still alive.

5.2 CCN-MQTT gateway

The CCN-MQTT gateway acts as a bridge between the sensor data pro-
duced by the GreenIoT project and our project. This gateway should be
able to produce a bidirectional stream of sensor data to both sides of the sys-
tem architectures. During this project, the Eclipse Paho MQTT Embedded
MQTT C/C++ Client Libraries [28] were used as a code base for the MQTT
connection.

Firstly, a MQTT subscription is implemented to get sensor data from the
GreenIoT sensors. Given a MQTT topic for each GreenIoT sensor, we use
the MQTT broker to subscribe to a set of data streams by connecting to the
correct domain address (mqtt.greeniot.it.uu.se) and ask for all data objects
with the given topic. If all data objects are of interest, the wildcard topic “#”
can be specified instead. All the data objects are in a JSON format similar to
the datastore JSON objects listed above in section 5. Each MQTT message
that is received is inserted into the cache of the CCN relay running on the
same machine as the MQTT subscriber. Furthermore the received messages
are stored in the MongoDB datastore using the MongoDB C Driver [29]. A
program using this driver is used to connect to our datastore and inserts the

29

JSON payload received from the MQTT message into a separate collection
(a MongoDB collection).

Secondly, a MQTT publisher is also implemented to publish the data pro-
duced by the CCN sensors. Similar to the storage of CCN sensor data, the
MQTT publisher needs to trigger a publish message each time the sensor
produces data, therefore we have implemented the MQTT publisher in the
same python program described in section 5.1. The python library paho-mqtt
[30] is used to establish a connection to the same broker as above and publish
the data produced by the CCN sensors. The CCN prefix produced by the
sensor is used as the topic for each published data. Using the CCN prefixes
as topics, the wildcard can be placed to receive all published data for one
sensor or for one location using the following topics:

Topic to receive all data from a sensor: /p/location/macid/#

Topic to receive all data for a location: /p/location/#

6 Machine learning for prediction

One of the functionalities in the Android application is that users can ask
for predicted data values. When the Android application makes a request
for prediction values, the request is made and the results are presented on a
graph for the user. Using machine learning we can calculated likely future
values based on previous sensor values.

6.1 Introduction to Time-series

A time series is a series of observations of a random variable indexed by time.
A general model for a time series can be written as:

St = g(t) + ϕt

where g(t) is the deterministic function of time and the residual term ϕt is
the stochastic noise. It’s a typical signal and noise pattern.

By studying and analysis of the time series we can understand the mechanism
that generates the data and moreover we can make a prediction of the data
in the future.

30

6.2 Weakly and strictly stationarity

Before we continue to next section, the concept of stationarity needs to be
introduced. A strictly stationary process[31] means that the statics property
of the data such as mean, variance and autocorrelation stay the same at
any time internal. In order for prediction to make sense we need at least
weakly stationary[31] which means either mean, variance or covariance stay
the same during any period. One can verify this theoretically or can observe
the patterns by the graph.

6.3 AR, MA, ARMA and ARIMA model

Prediction models exploit data patterns that exists in the data series and
build a mathematical model upon those patterns. Modeling of time series
data can have many different forms. Two widely used linear time series mod-
els are Autogressive(AR) and Moving Average(MA). In AR(p) model[32], the
next value in the series is a linear combination of the past values of underlying
random variable itself plus some random error term.

yt = %+ α1yt−1 + ...+ αnyt−n + εt
where yt is the value of random variable and alphan is model parameter.
For estimating parameters of AR process the Yule-Walker equations[33] are
used.

However instead of past values of series, MA(q) models[34] is using past error
and the model is given by :

yt = δ + a1εt−1 + ...+ anεt−n + βt
where βt is model parameter assumed to follow normal distribution. The
MA model is actually a linear regression of the current value against the
random shocks of prior observations. The mainly difference between the
AR model and and MA model is the correlation over time. In the MA
model, noise disappears quickly, however, the correlation declines gradually
in AR model [35] [36].These two models explain different aspects of stochastic
dependence. AR model encapsulates a quality that the future depends on
the past whereas MA model combine randomness to the series from past[37].
Naturally AR(p) and MA(q) can be combined together to describe time series
known as ARMA(p,q) model. The model is given by:

yt = ν + α1yt−1 + ...+ αnyt−n + δ + a1εt−1 + ...+ anεt−n + βt

31

In real-life application not always times series are stationary where the model
is assumed but it can be made stationary by differention. Including differen-
tion ARMA(p,q) model becoming ARIMA model(p,d,q) where coefficient d
stands for order of differention.

ARIMA model is generalized model for discrete time prediction. It can elimi-
nate residual, remov trend which makes it fits our data better, Moreover, it’s
easy to implement with imperative programming language e.g. Python.

6.4 General approach for ARIMA

There is a step by step approach to analyze and predict time series data
using ARIMA model.

• Step 1: First the time series data should be visualized in order
to find any seasonality or random behavior.

• Step 2: The time series data should be stationarized. As long
as the time series is not stationary, a time series model cannot be built.
In cases where the data is not stationary, the time series should be
stationarized by either detrending, differencing or transformation etc.

There are some solutions to make a time series data stationary. Here,
“Detrending” and “Differencing” are explained:

– Detrending: In this technique, the trend component from the time
series is simply removed. For example, if the equation of a time
series is:

x(t) = (mean+ trend× t) + error

The “trend” can be removed before building a model for the time
series.

– Differencing : In this technique, the differences of the time series
equation are modeled to stationarize the time series data. This
differencing is called as the Integration part in AR(I)MA.

• Step 3: Optimal parameters should be found for the ARIMA
model. As it has been mentioned earlier, there are three parameters
(p, d, q) that should be optimized. In fact, it should be determined
whether the model is AR or MA. In addition, the order of AR or MA
should also be indicated. They can be found using ACF and Partial-
ACF plots. These plots are explained later.

32

(a) ACF (b) PACF

Figure 4: ACF and PACF graphs for AR model

• Step 4: The ARIMA model can be built by the indicated pa-
rameters. However, sometimes the parameters should be investigated
more.

• Step 5: Predicted data can be obtained by the ARIMA model.

[35].

6.5 AutoCorrelation Function (ACF) and Partial Cor-
relation Function (PACF)

The plot of ACF is a plot of total correlation between different lag functions.
For example, if x(t) is a random variable, the correlation of x(t) with x(t -
1) , x(t - 2) and so on are plotted.

There is no correlation between x(t) and x(t - n - 1) in a moving average
series of lag n. So, the total correlation chart cuts off at nth lag. So the lag
for a MA series can be found.

On the other hand, if it is an AR time series data, the correlation will grad-
ually go down without any cut off value. In this case, PACF can be plotted
to find out the partial correlation of each lag. The chart will cut off after
the degree of AR series. Following are the examples which will clarify how
to used ACF and PACF charts.

In the figure 4, the ACF graph shows that since the correlation will gradually
go down without any cut off value, it is an AR model. The PACF graph shows
a cut off after second lag which means it is an AR(2) process.

33

In the figure 5 , the ACF graph has a cut off after the second lag that shows
it is a MA(2) time series [35].

(a) ACF (b) PACF

Figure 5: ACF and PACF graphs for MA model

6.6 Implementation

In this project, the ARIMA model is implemented in two languages: R and
Python. R is a programming language and software environment for statis-
tical computing and graphics supported by the R Foundation for Statistical
Computing. The ARIMA model that is used in the project is the python
version. However, in our design we needed to implement the prediction script
as a named function, but every time this function is invoked we need to find
optimal parameters by using ACF and PACF plots which is not feasible. So
if we use the default parameter settings which are (2,1,2), the prediction will
fail and the result will converge. This is the an obstacle we can not overcome
for now and also is a limitation for this project.

Below is the humidity data we collected from sensor deloyed in moebius with
time in x-axis and humdity percentage in y-axis.

34

Figure 6: Humidity data from sensor deployed in moebius

As we can see from the figure, the values has a downwards trend and thus
is not a stationary series. Therefore it is non-predictable. The number of
samples is large which made it difficult to see the labels of axis so we partial
zoomed in of the figure. And if we run the prediction with default parameters,
the result is biased from the reality as we can observe from figure 8(we have
to use year as x-axis which is limited by the plotting tool).

Figure 7: Partial zoomed version of figure 5

35

Figure 8: Prediction plot for first 90 humidity data from datastore using
ARMA model

However, if we feed the prediction script a nice stationary series as input we
will have a reasonable nice plot:

Figure 9: Prediction plot for a random stationary series

36

7 Named function networking

In order for the Android Application to receive the predicted and historical
data values we have implemented named function networking. Instead of pro-
viding access to just data, named functions provides access to functions that
perform operations using multiple data objects, which can produce passive
content once it is needed [19]. For our project, we decided to implement this
functionality in a python program. On program startup, the named function
program sends a packet to the local relay. This packet is formatted into a
CCN-lite interest object with the prefix /nfn which is received by the local
relay. To reach the local relay from the python program, we open a socket
to the CCN relay default port 9695 and send the interest using UDP to the
local network. When the local relay receives an interest with this prefix, it
takes the senders IP address and creates a face towards the sender if and only
if there is no prior established connection. Whenever the local relay receives
a package the program extracts the prefix to determine if the prefix matches
a function in the program or not.

For example, for the prediction we use the prefix: prediction/location ,
so whenever the local relay receives a package with that prefix we start the
named function for prediction. This function executes the ARIMA prediction
model with the data from the specified location stored in the sensor datastore.
When the predicted values have been generated they are sent back to the
client in a content object. The execution time for the predicting values is
fast enough which prevents the interest for timing out.

For the historical data, the same methodology is used as with predicted
values except the prefix is different. The named function program listens to
the relay’s socket for prefixes that look like: historical/location . Then
by taking the looptime of the specific sensor the named function calculates
how many values we should query from the datastore in order to receive the
values from the past 24 hours.

In our system we the have ability to request a specific historical value, for
example a value that was sensed in the office with the prefix and sequence
number: /p/office/4b498c82/23 . When our local relay receives an in-
terest for a specific value and does not have it in its cache it will trigger
a function by having the prefix and sequence number query the mongoDB
datastore for it and send it back as a content object.

37

8 Android application

8.1 Application idea

The goal for developing an Android application was to use the CCN network
to display IoT data to the users in a useful way. We decided to make an
app that uses sensors placed at different locations in Polacksbacken, and
we focused on app ideas that could be useful to students at the university.
We tried to find some problem or difficulty that students have that could
possibly be made easier. The TI sensors used in this project have sensors for
microhpone, temperature, humidity, light, pressure a gyroscope. We came
up with the idea to try to help students find the least crowded lunch room at
Polacksbacken. We theorized that we could use the sensor values, primarily
the microphone to monitor sound data, to estimate how busy the different
lunch rooms were. The general consensus what that the idea had the most
promise and we felt that this app concept fulfilled the goal using the CCN
network to display sensor data to users in a useful way.

8.1.1 Caveat

About a month into the app development, we discovered that we would prob-
ably not be able to use the microphone on the sensor because the microphone
driver was not implemented for the Contiki operating system. In other words,
we didn’t have the software for our program to get the microphone values
from the sensor hardware.

We thought that we might be able to use a combination of temperature,
humidity, pressure, and light to determine the least crowed lunch room, but
we had not tested the sensors in any of these places and it was unsure if these
values would give a useful indication.

8.2 Design process

After agreeing on this app concept, we went through a design process. One
obvious task was to design a way to communicate sensor values in a user
friendly way. We were certain that just showing the value in an integer
format wouldn’t be best. We discussed using colors, integers from one to
five, or some form of intuitive graphic art. We came to the final decision of

38

using five different smiley faces. We mocked up a few different layouts using
the smileys, and also a few using colors to see how they would compare. We
made one design layout using the names of the location and a single bar of
color. We made a layout that had a map of Polacksbacken with different
smileys over the locations of the lunch rooms. And we made a layout using
the location names and the smileys next to the names. We presented the
different designs in a meeting with Ericsson and SICS and they gave us the
feedback that the layout with just the location names with the smileys next
to them was best.

We also designed a graph layout to display more detailed data when the user
clicks on the lunch room location.

Next we started gathering information related to Android design. We found
documentation for the best practices for mobile and specifically Android
development collected in a guide published on the Android developers website
titled Material Design [38]. We found that one of the newest ways to design
applications for Android was using CardViews which are containers used to
display a small amount of information. The idea behind using CardViews
is to keep the look and feel of the design consistent and clean in the app
. Therefore, we decided to use a CardView to represent each lunch room
in the app. Further in to using Cardviews, we implemented an expandable
dropdown functionality to display more detailed information when the user
clicks on the location, like the sensor reading values.

Further into the development process, we decided that we wanted to build a
data analysis component into the project. This addition would provide the
Android application with predicted values for sensor data. The idea behind
this was that users would be able to use the app not only to see which lunch
room was lest crowed at the current moment, but to also give an indication
of what would happen in the immediate future based on past patterns. We
incorporated this addition into the design of the graph in the dropdown
of the CardView [figure]. We designed showing real values in dark blue,
the predicted values in light blue and having a legend indicating that the
colors were for past and predicated data.In this way we came to the final
design.

39

Figure 10: unoise application

8.3 Development process

We started off by reading and understanding the ccn-lite library we were
going to use. There was and existing implementation of ccn-lite for android
in their online repository [39] that we managed to run. This application was
meant to act as a ccn-lite relay running through Bluetooth whose logs would
be shown on the screen. We had little use of it but it got us on the right
tracks on how to use a C library in an android application.

The next step for us was to import this project into Android Studio in or-
der to have a better development environment. This proved difficult as the
ccn-lite android project had been developed without it and had an outdated
structure. To do that we had to first understand how the project was built
and how the Java parts of the application worked with the C library. The
project uses Android Native Development Kit (NDK) and Java Native Inter-
face (JNI) [40], used respectively to permit building C files into an Android
Java project and to provide access to their functions in the Java classes. The
part that caused us the most trouble related to that was the fact that An-

40

droid Studio uses Gradle [41] to automate its building process. This caused
automatic importation of the project into android studio to fail and a lot
of manual configuration had to be made in order for the project to be built
from the IDE.

After that we wanted to use and adapt the library to our needs, which were
the ability to send interests and receive content packets. These functionalities
had not been ported to android in the ccn-lite project yet, so we had to un-
derstand them thoroughly and before we could adapt them to the use in the
android application. We created new files in the library whose names spec-
ified that they were used for the application (e.g. ccn-lite-peek-android.c).
The communication behavior is as follows: A Java class called ”Android-
PeekTask” has the responsibility to call the JNI ”androidPeek” function in
a separate thread to not block the UI while waiting for an answer. This
JNI function then calls the native C function ccnLiteAndroidPeek that will
create the Interest and send it the the phone’s local IP address. Finally the
response from received content packet is stripped and returned to the An-
droidPeekTask through the same path and handled in the Application.

The specification required us to not only have one application running all
the CCN functions but a separation of the tasks, on one hand the main
application with a user interface making requests for data, and one the other
a service running on the phone that would act as a relay transmitting the
application’s requests to our CCN network. Therefore we developed those
deliverables in parallel, the application sends all its requests to the local IP
address (127.0.0.1), those are then received by the service-relay that identifies
them as CCN requests and transmits them via wifi to a defined gateway, an
IP address that serves as an access point to the remote CCN network that
we ran locally. The same path is followed backwards for the reception of the
awaited content packets.

8.4 App functionalities

There are some functionalities for this android application that are described
below:

• Refresh Option: The main purpose was to be able to quickly tell
which place was the best one to go to, so at every refresh of the data
the places are ordered from less to most noisy, with a big colored smiley
face representing the level sound.

• Showing the values of the sensors: By selecting a location, a list

41

of all the sensors and their values is then displayed. The sensor values
including ”light”, ”temperature” and ”humidity” are shown in figure
11.

• Prediction Graph: A prediction line graph that shows the estimated
levels of light at the selected location for the next few hours. When a
user clicks on one card related to a place, the graph shown in figure 11.
The horizontal axis is time and the vertical axis is the value of a sensor.
The historical data is shown by dark blue line and the prediction data
is shown by bright blue dashed line in a filled drawing.

Figure 11: Sensor Values and Prediction Graph

• Historical Graph: A few of the historical data is shown simultane-
ously in the prediction line graph shown in figure 11.

• Customizing Photos: The places which are shown to users have

42

default photos that can be customized by the users, as shown in figure
12. Users can either take a photo or select one from the gallery and
set it for a specific place. They can also delete a selected photo. The
paths of photos are stored in a datastore in the android application.

Figure 12: facility of customizing the location photos

• Network Settings: The application also has an option menu where
network setting can be modified. The suite can be changed from
ccnx2015 to ndn2013, the auto refreshing of the sensors can be tog-
gled, and the relay service can be bypassed by choosing to request data
directly from an IP address. This facility is shown in figure 13.

43

Figure 13: Network Settings

8.5 Predictions in the application

When a user clicks on any place, two requests for old data and predicted
data will be sent to the server. Server predicts future data based on the
ARIMA method that is described in the Prediction part. When the data
is sent back, one graph includes some past values and predicted values are
distinctly showed for the user.

8.6 Conclusion and future work

The Android application was a difficult part of the project in the way that
we had a lot of trouble deciding what its purpose would be and how it would

44

look. The feedback we got about it along the project was constructive but
kept pulling us in different directions, adding to the problem that we couldn’t
get noise data from the sensors.

In the end the application keeps the user interface of the original idea, finding
quiet lunch places, and is operational for noise data. At the same time, we
have added a lot of crude sensor information when a card is expanded in order
to monitor which sensors the applications knows of and what data is gotten
from them, as well as showing a prediction graph for groups of sensors.

Given more time we would have liked to focus on testing to see if a combi-
nation of other measures (temperature, pressure, humidity, etc.) would have
allowed us to carry on with our lunch place idea without the use of noise.
We would have also implemented more options for the advanced user to have
more control and information about the sensors.

9 Testbed

In this section, the interaction between each part of the system will be pre-
sented more in depth. For this purpose, a small demo network has been
created and presented below:

Figure 14: Final system architecture in our demo network.

45

The demo network above has been used during the testing stages of the
project, it consists of two clients (Android devices) running our application,
seven CCN Relays, a Directory Service (DS), a MongoDB datastore, two
border routers with two sensors each. Each border router represents a loca-
tion, in the demo network we have two locations: office and confroom. These
locations are used in the naming scheme discussed in this report.

When each border router boots up, it searches for sensors in its radius. When
it locates them, it creates routes to all of them using their IPv6 address. This
process is repeated every 36 seconds. After the creation of the routes, the
border routers transfer the Interest messages from the relays to the sensors
and the Content Objects from the Sensors to the relays. Furthermore, the
registration service running on the border router machine contacts the SDS
Machine via UDP everytime a new sensor is located or a sensor is removed.
This information is used by the SDS to update the status of the sensors in
the datastore.

On startup the sensors set the channel and the 802.15.4 prefix that the sensors
will use when transmitting according to their configuration file. Their IPv6
is automatically configured from the MAC address. The timeout is set to x
seconds and when it expires (device wakes up) the main function requests
values from the sensors. After the sensor values are produced, they are
added to a content object and saved in the cache. When an interest message
is received (tcpip event) the sensor checks its cache to see if it has the content
object being requested. If it does it sends the content object back as a reply.
At this stage, there is a connection between the border routers and their
respective sensors.

The Datastore Machine is in charge of updating the MongoDB collection
with real time sensor values. These values are requested directly from the
sensors using the prefix /p/location/mac id/seqno where location is the sen-
sor location given by the border router, mac id is the last eight characters in
the mac address of the sensor and seqno is the latest sequence number. The
latter is calculated using the current epoch time subtracted with the initial
epoch time when the sensor was first introduced into the system divided with
the sensors looptime.

On the other end of the testbed, relay A is the bridge between the clients
and all the other parts of the system. Therefore, the clients send interests
to relay A who in turn responds with content objects back to the clients. A
client can query five different types of data:

Active sensor request

46

On startup, the clients send an interest with the prefix /sds/sensors and
receives a list of active sensors. The list is generated by the DS machine by
remotely querying the datastore for all sensor entries with the a-flag set to
True. These sensors can be used to get sensor values using the other types of
requests presented below. One limitation that we have in our current design
is that if all sensor in a location goes down, the Android client is unable to
request historical data for that location since the historical graph is showed
for each sensor and if the sensor is down, the app will not show that sensor
(see section 8).

Historical data

Historical data can be requested using the prefix /nfn/his/location, where
location is the area around a single border router (either office or conference
room). The interest is propagated further to the relay running on the data-
store Machine, through Relay B. When the interest reaches the datastore
relay, a named function is triggered. A content object is then constructed
with all data points gathered during the previous 24 hours. This content
object is then sent back the same way that it came from, finally reaching
the clients. Furthermore, the content object is saved in the cache of all the
relays between the clients and the datastore machine (relay A and B in this
case) for future use.

Prediction data

The clients are also able to request prediction data using a named function
similar to the historical named function presented above. Clients create
an interest with the prefix nfn/pre/location to get the predicted humidity
values for the coming day in that location. The interest is propagated to
the datastore Machine using the same path as above. The prediction named
function is triggered, and a content object with predicted values for the
coming day in that specific location is created and propagated back to the
client. We chose to ignore the temperature and light values for the prediction
since these values are pretty constant, and will not result in a good prediction.
All relays on the path save the predicted values in the cache for future use.
The combination of historical data and prediction data is used in the graph
shown in the application.

Latest sensor value

Queries for the latest values can be made for a single sensor as well. This is
done by sending interests with the following prefix /p/location/mac id/seqno.This
interest is sent to:

47

1. The sensor with the given mac id. This interest is propagated through
the whole demo network from the client to one of the border routers.
The content object is gathered from the cache of the sensor and sent
back through the same relays as it was propagated through. This sensor
value is saved in all the relays cache.

2. The datastore where a named function is triggered. The datastore is
queried for that specific sensor, and the entry with sequence number
seqno is returned in a content object.

The first reply received by the client is used and the other is discarded. The
second content object is discarded since the PIT entry for that prefix will be
removed when the first reply is received.

Specific sensor value

Querying a specific sensor value in time is similar to querying the latest
sensor value, the prefix used in this case is also /p/location/mac id/seqno.
The difference is that a request for a specific sensor value is only sent to the
datastore, since the sensor do not store old values.

Performance Evaluation

We have not done any scalability and performance benchmark tests due to
lack of time. However we have had the system up and running with the setup
described above for at least a weekend.

The network is able to handle requests from both clients in the testbed and
receive all the different types of data described above. The response time is
pretty much instant for all types of requests.

One issue that we have encountered is that the border routers tend to crash if
a new sensor is introduced into the system, due to serial connection problems,
other than that, the system is stable.

9.1 Limitations of the system

Application: Our starting point for the project was to build an application
to analyze noise in public areas. For this we used the TI CC2650 SensorTag.
It provides several different readings that are made available through RTOS
(native OS) by Texas Instruments. Since we were using Contiki OS, we
were not able to use the full potential of the device; more specifically, the
microphone which was one of the main sensors that we were interested in.

48

This forced us to change the initial application to use only the available
sensor readings; that is, light, temperature, humidity, etc.

Network: One limitation we faced in relation to networking is that a con-
tent object which is already cached will be considered valid even if a new
content object with the same name has been created ”further away” in the
network. For example, relay 1 has a content object with the prefix /p/of-
fice/12345678/6, where 6 represents the sequence number. In the case that
the sensor reboots or re-registers in the office before that content object is
evicted from the cache, relay 1 will reply with the old content object in an
incoming interest, when it should have propagated the interest to relay 2
which is connected to the border router - sensors.

Discovery function described in section 4.2 uses IP broadcasting for discov-
ering all the direct neighbors. This enables the discovery function to find all
the direct neighbors but limits the function to only that network segment
making it not possible to use two or more different networks while relying
only to the discovery function.

Network underlay: The network we’re using is dependent on having an
underlying running IP network that allows relays to be able to connect to
each other. We’ve tried to make the network as independent of IP as possible,
with a few exceptions. Exceptions include the connections between the DS
and relays and the connections between the Registry Service and the DS,
where standard UDP sockets are used.

The realization of this system would have been possible using only Ethernet
as the underlying protocol. This would have forced us to use alternative
means of contacting the DS, as well as updating the FIB tables of the relays.
We experimented with a technique which allowed the relay running on the
DS machine to advertise it’s location to its immediate neighbors, which in
turn then did the same thing to its neighbors, and so on. This proved to be
too complicated to get up and running correctly in the time we had though
and the idea was scrapped. We did use a variation of this mechanism though,
for allowing the clients to be able to send interests to the DS through our
network. Once the relays is registered in the DS, it gets an update from it
telling it which face to send interests with the prefix /sds. The DS calculates
this path using the same algorithm as the one used to populate the FIB
tables to be able to reach the border-routers.

Sensors: Regarding the sensors and the fact that they have very limited
resources (e.g., buffer-size), we had to be conservative on their use. Due
to these buffer-size limitations we used the shortest possible prefixes. This

49

affected the interest messages when receiving but also content objects when
producing. Initially we wanted to create and transmit content objects in
SenML format from the sensor, which would simplify the process for neigh-
boring systems but due to limited buffer size that was impossible. The sensor
memory is also limited to 15 content objects, which depending on the pro-
duction interval can represent values from a few minutes up to several hours,
but not values from previous days or weeks. The CC2650 sensors running
Contiki OS can not use Texas Instruments libraries made for TIs’ native OS
(RTOS), since they are only made for TIs’ Cloud Composer Development
Environment. The wireless transmission range for the sensors is about 100
meters. In Contiki OS we can not use IPv6 and RIME stack simultaneously.
This limits the developer to use only one of these two protocols at a time.
The memory allocation on the sensor is being done statically by explicitly
declaring the size of the arrays that will be used. These arrays represent
buffer spaces or other values that need to be allocated. C language built-
ins such as malloc do not work on the sensor and specific malloc commands
for Contiki OS are fairly complicated to use. Therefore, dynamic memory
allocation in the sensor becomes rather complicated. However, because the
buffer space is explicit and the structure and size of the content objects allows
static allocation, the above limitation does not constitute a problem.

Border Router: While performing tests we noticed that multiple border
routers can interfere with each other and function abnormally. For this reason
each border router is located outside every other routers’ radius. Border
Routers can crash unexpectedly for no obvious reason, which affects the
systems’ integrity.

DS: The DS works as an controller in our system, making all forwarding
decisions in the network. Unfortunately, the routing mechanism used is not
the most scalable one, although is sufficient to handle the size of the network
we’ve implemented. As more and more sensors and border routers are added
to the network, the FIB tables of the relays quickly grows large, possibly
resulting in crashes once it becomes to big. Something that would have been
very interesting to implement in our system is a more advanced and scalable
routing protocol, such as Dynamically Controlled Routing (DCR). Although,
due to limitations set by the group and product owner during the startup
meeting of this project, we decided to put our focus on getting a functional
network up and running rather than devoting time on the development of an
scalable routing algorithm.

The DS is only running at one machine in the network, which means that
if this machine would go down all control of the forwarding plane would be

50

lost. To solve this, redundancy would need to be implemented by running a
backup DS instance in another part of the network which would take over if
the primary one would go down.

The behavior of the DS is dependent on a relay being shut down in a con-
trolled manner. In the case that the relay crashes, or the computer that
is running it is shut down, the entry remains in the DS and the network
will treat it as if it was online. To handle this, a heartbeat system needs
to be implemented. This could be done by sending control-messages to each
registered relay in the network at regular intervals and awaiting a response
for a specified duration of time. In the case that the relay doesn’t respond,
it would be treated as if it had sent the Status - Off message and be re-
moved from the network. Due to time constraints during the project, this
mechanism has not been implemented.

DS maps the network by receiving broadcast message from every relay that
boots up in the network and registers the IP address for that relay. This
means that only the relays that are in the same local network can reach the
DS. To get the mapping work on every kind of network topology a proper
routing protocol should be implemented. While running out of time it was
decided to be left for the future work.

Another limitation in this project is the process of updating the Android
client with the available sensors in the system. The current implementation
builds a JSON object containing the complete list of all active sensors which
have data that can be collected. A more scalable approach would be to
allow the client to only receive a subset of sensors, such as for a specific
location.

Prediction: We implemented the prediction script as a named function, but
every time this function is invoked we need to find optimal parameters by
using ACF and PACF plots which is not feasible. So If we use the default
parameter setting which is (2,1,2), the prediction will fail and the result will
converge. This is an obstacle we can not overcome for now and a limitation
for this project.

10 Conclusion

Our implementation of an ICN network works to the extent of our expec-
tations connecting physical sensors, android applications, a datastore and a
second similar network architecture made by the GreenIoT project based on

51

the MQTT protocol. All the different parts of the system we built are able to
communicate with each other using almost exclusively interests and content
packets.

Our main points of interest at this stage regarding the network are the re-
maining dependence on IP, and its scalability. It is still dependent on IP for
some tasks and we think it is possible to further improve it in that regard.
Regarding the network’s scalability, a sequence of tests would help plan how
it would react under a heavier load of traffic and in a wider network.

Our implementation is split into multiple repos that can all be found on
Bitbucket [42][43][44][45].

11 Future work

11.1 Datastore

Handling large amount of readings for several sensors over several days is a
challenging task. We addressed those challenges to the best of our abilities,
but we cannot yet claim that we can handle big-data. A future improvement
to that would be to use a distributed datastore system.

11.2 Sensors improvements

One improvement that could be done on the sensors would be to store pend-
ing requests for the future. Since the sequence number represents time, a
user could be able to request a specific value for a time in the future. The
sensor would store the request and reply to it whenever it has the requested
value. This improvement would add extra complexity and should be handled
carefully since the sensor can store only a limited amount of requests since
the resources are very limited. A second improvement would be to include
microphone values in the system whenever the drivers are available for Con-
tiki OS. CCN Lite implementation uses various encodings, but the main two
are ndn2013 and ccnx2015. Ideally we wanted to use ccnx2015 but there
were unexpected error coming up in the sensors that we could not solve in
time, so we had to use ndn2013. However, this limitation did not affect the
systems’ functionality. So as future work we could include solving this issue.
Every time the sensor receives a CCN interest message it has to check in its
cache whether or not it contains that content object. We have noticed that

52

multiple checks in the cache can force the sensor to crash. Since we know the
current sequence number of the content objects and the number of content
objects can be cached so we can calculate if the content object is in the cache
before we check the cache.

11.3 DS running on multiple relays

One possible improvement of the system would be to run multiple DS simul-
taneously on multiple relays. This way the system would not be dependent
on one single relay - one single point of failure. However, this solution would
introduce significant complexity to the system since the now distributed DS
should be identical on relays, which would probably require locks and ac-
knowledgments. This process of having distributed DS might make infor-
mation more easily accessible but the system would have to update all DS
before every modification, so we can not assume that the performance would
be improved. Of course for a large scale system distributed DS would be
necessary.

53

References

[1] Information-Centric Networking Research Group. https://irtf.org/
icnrg/. Retrieved: 2016-09-27.

[2] Daniel Burrus. The Internet of Things Is Far Bigger Than Anyone Re-
alizes. https://www.wired.com/insights/2014/11/the-internet-
of-things-bigger/. Retrieved: 2016-09-27.

[3] Bristol is Open. http://www.bristolisopen.com/. Retrieved: 2016-
12-12.

[4] SmartSantander. http://www.smartsantander.eu/. Retrieved: 2016-
12-12.

[5] Adeel M. Malik. Design, Development and Deployment of an Information-
Centric Networking based solution for the Internet-of-Things. http://
www.it.uu.se/edu/course/homepage/projektDV/ht16/specification.

pdf/. Retrieved: 2016-09-27.
[6] parc. content-centric networking. https : / / www . parc . com / work /

focus-area/content-centric-networking/. Retrieved: 2016-09-27.
[7] Project CS 2016/2017 (30 credits). http://www.uu.se/en/admissions/

master/selma/Kurser/?kKod=1DT054&typ=1/. Retrieved: 2016-12-
12.

[8] SICS. GREENIOT: AN ENERGY-EFFICIENT IOT PLATFORM FOR
OPEN DATA AND SUSTAINABLE DEVELOPMENT. https : / /

www.sics.se/projects/greeniot- an- energy- efficient- iot-

platform-for-open-data-and-sustainable-development/. Re-
trieved: 2016-09-27.

[9] Uppsala Kommun. Tio miljoner kronor till innovationsdriven stadsutveck-
ling. https : / / www . uppsala . se / organisation - och - styrning /

nyheter- och- pressmeddelanden/tio- miljoner- kronor- till-

innovationsdriven-stadsutveckling/. Retrieved: 2016-09-27.
[10] CCN-lite Github Project. https://github.com/cn-uofbasel/ccn-

lite. Retrieved: 2016-12-12.
[11] CCN-lite. http://www.ccn-lite.net/. Retrieved: 2016-10-04.
[12] ccn-lite github. https : / / github . com / cn - uofbasel / ccn - lite/.

Retrieved: 2016-10-04.
[13] How does MongoDB work? https://www.mongodb.com/what-is-

mongodb/. Retrieved: 2016-10-04.
[14] What is Contiki? http://www.contiki-os.org/. Retrieved: 2016-10-

04.

54

https://irtf.org/icnrg/
https://irtf.org/icnrg/
https://www.wired.com/insights/2014/11/the-internet-of-things-bigger/
https://www.wired.com/insights/2014/11/the-internet-of-things-bigger/
http://www.bristolisopen.com/
http://www.smartsantander.eu/
http://www.it.uu.se/edu/course/homepage/projektDV/ht16/specification.pdf/
http://www.it.uu.se/edu/course/homepage/projektDV/ht16/specification.pdf/
http://www.it.uu.se/edu/course/homepage/projektDV/ht16/specification.pdf/
https://www.parc.com/work/focus-area/content-centric-networking/
https://www.parc.com/work/focus-area/content-centric-networking/
http://www.uu.se/en/admissions/master/selma/Kurser/?kKod=1DT054&typ=1/
http://www.uu.se/en/admissions/master/selma/Kurser/?kKod=1DT054&typ=1/
https://www.sics.se/projects/greeniot-an-energy-efficient-iot-platform-for-open-data-and-sustainable-development/
https://www.sics.se/projects/greeniot-an-energy-efficient-iot-platform-for-open-data-and-sustainable-development/
https://www.sics.se/projects/greeniot-an-energy-efficient-iot-platform-for-open-data-and-sustainable-development/
https://www.uppsala.se/organisation-och-styrning/nyheter-och-pressmeddelanden/tio-miljoner-kronor-till-innovationsdriven-stadsutveckling/
https://www.uppsala.se/organisation-och-styrning/nyheter-och-pressmeddelanden/tio-miljoner-kronor-till-innovationsdriven-stadsutveckling/
https://www.uppsala.se/organisation-och-styrning/nyheter-och-pressmeddelanden/tio-miljoner-kronor-till-innovationsdriven-stadsutveckling/
https://github.com/cn-uofbasel/ccn-lite
https://github.com/cn-uofbasel/ccn-lite
http://www.ccn-lite.net/
https://github.com/cn-uofbasel/ccn-lite/
https://www.mongodb.com/what-is-mongodb/
https://www.mongodb.com/what-is-mongodb/
http://www.contiki-os.org/

[15] Charith Perera et al. Sensing as a service model for smart cities sup-
ported by Internet of Things. 2014. doi: 10.1002/ett.2704. url:
http://dx.doi.org/10.1002/ett.2704.

[16] A. Zanella et al. Internet of Things for Smart Cities. Feb. 2014. doi:
10.1109/JIOT.2014.2306328.

[17] Soon Y Oh, Davide Lau, and Mario Gerla. Content centric networking
in tactical and emergency manets. IEEE, 2010.

[18] Jaebeom Kim, Daewook Shin, and Young-Bae Ko. TOP-CCN: topology
aware content centric networking for mobile ad hoc networks. IEEE,
2013.

[19] named-function. Named functions. http://www.named- function.

net/. Retrieved: 2016-09-27.
[20] Open Networking Foundation. Software-Defined Networking (SDN) Def-

inition. https://www.opennetworking.org/sdn-resources/sdn-
definition/. Retrieved: 2016-09-27.

[21] Alan Ott. Wireless Networking with IEEE 802.15.4 and 6LoWPAN.
http://elinux.org/images/7/71/Wireless_Networking_with_

IEEE_802.15.4_and_6LoWPAN.pdf. 2012.
[22] Tsvetko Tsvetkov. RPL: IPv6 Routing Protocol for Low Power and

Lossy Networks. https://www.net.in.tum.de/fileadmin/TUM/NET/
NET-2011-07-1/NET-2011-07-1_09.pdf. 2011.

[23] Contiki CNNLite. 40bc35a9faf34fcf661a4074f6bb0bcbbbdb6e80.
[24] University of Basel. CCN-Lite Release 0.3.0. https://github.com/

cn-uofbasel/ccn-lite/releases/tag/0.3.0. 2015.
[25] Pawe l Rozynek. What is SenML? http://blog.rapifire.com/2015/

12/21/introduction-to-senml/. Retrieved: 2016-09-27.
[26] SICS. sparrow. 26779a02d76aca02f96ef6d9f45f0cd73eb83c4b.
[27] Flask. http://flask.pocoo.org/. Retrieved: 2016-12-12.
[28] Eclipe Paho MQTT Embedded MQTT C/C++ Client Libraries. https:

//eclipse.org/paho/clients/c/embedded/. Retrieved: 2016-10-14.
[29] MongoDB C Driver. http://mongoc.org/. Retrieved: 2016-10-14.
[30] Paho MQTT Python Library. https://pypi.python.org/pypi/

paho-mqtt/. Retrieved: 2016-12-12.
[31] G. P. Nason. stationarity. https://pdfs.semanticscholar.org/

0f08/bcca67b3db328edfa5d3f48331dc71d8789e.pdf.
[32] Autoregressive Models. https://onlinecourses.science.psu.edu/

stat501/node/358. Retrieved: 2016-11-29.
[33] Gidon Eshel. parameterequation. http://www-stat.wharton.upenn.

edu/~steele/Courses/956/Resource/YWSourceFiles/YW-Eshel.

pdf.

55

http://dx.doi.org/10.1002/ett.2704
http://dx.doi.org/10.1002/ett.2704
http://dx.doi.org/10.1109/JIOT.2014.2306328
http://www.named-function.net/
http://www.named-function.net/
https://www.opennetworking.org/sdn-resources/sdn-definition/
https://www.opennetworking.org/sdn-resources/sdn-definition/
http://elinux.org/images/7/71/Wireless_Networking_with_IEEE_802.15.4_and_6LoWPAN.pdf
http://elinux.org/images/7/71/Wireless_Networking_with_IEEE_802.15.4_and_6LoWPAN.pdf
https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2011-07-1/NET-2011-07-1_09.pdf
https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2011-07-1/NET-2011-07-1_09.pdf
https://github.com/cn-uofbasel/ccn-lite/releases/tag/0.3.0
https://github.com/cn-uofbasel/ccn-lite/releases/tag/0.3.0
http://blog.rapifire.com/2015/12/21/introduction-to-senml/
http://blog.rapifire.com/2015/12/21/introduction-to-senml/
http://flask.pocoo.org/
https://eclipse.org/paho/clients/c/embedded/
https://eclipse.org/paho/clients/c/embedded/
http://mongoc.org/
https://pypi.python.org/pypi/paho-mqtt/
https://pypi.python.org/pypi/paho-mqtt/
https://pdfs.semanticscholar.org/0f08/bcca67b3db328edfa5d3f48331dc71d8789e.pdf
https://pdfs.semanticscholar.org/0f08/bcca67b3db328edfa5d3f48331dc71d8789e.pdf
https://onlinecourses.science.psu.edu/stat501/node/358
https://onlinecourses.science.psu.edu/stat501/node/358
http://www-stat.wharton.upenn.edu/~steele/Courses/956/Resource/YWSourceFiles/YW-Eshel.pdf
http://www-stat.wharton.upenn.edu/~steele/Courses/956/Resource/YWSourceFiles/YW-Eshel.pdf
http://www-stat.wharton.upenn.edu/~steele/Courses/956/Resource/YWSourceFiles/YW-Eshel.pdf

[34] Moving Average Models. https://onlinecourses.science.psu.edu/
stat510/node/48. Retrieved: 2016-11-29.

[35] A Complete Tutorial on Time Series Modeling in R. https://www.
analyticsvidhya.com/blog/2015/12/complete-tutorial-time-

series-modeling/. Retrieved: 2016-11-29.
[36] Souhaib Ben Taieb Gianluca Bontempi and Yann-Ael Le Borgne. Ma-

chine Learning Strategies for Time Series Forecasting.
[37] Ratnadip Adhikari. an introductory study on Time Series modeling and

forecasting.
[38] Material Design. https://developer.android.com/design/material/

index.html. Retrieved: 2016-12-15.
[39] CCN-lite Android Project. https://github.com/cn-uofbasel/ccn-

lite/tree/master/src/android. Retrieved: 2016-12-16.
[40] NDK and JNI. https://developer.android.com/ndk/guides/

concepts.html. Retrieved: 2016-12-14.
[41] Gradle. https://developer.android.com/studio/build/index.

html. Retrieved: 2016-12-18.
[42] Basic CCN App Repository. https://bitbucket.org/MaxWijnbladh/

saviorapp. Retrieved: 2017-01-11.
[43] UNoise CCN App Repository. https://bitbucket.org/Aranor/ccn-

lite-android. Retrieved: 2017-01-11.
[44] CCN Lite Implementation Repository. https : / / bitbucket . org /

MaxWijnbladh/ccn_lite_greeniot. Retrieved: 2017-01-11.
[45] CCN Sensor code Repository. https://bitbucket.org/theodosismalatestas/

sensorcode. Retrieved: 2017-01-11.

56

https://onlinecourses.science.psu.edu/stat510/node/48
https://onlinecourses.science.psu.edu/stat510/node/48
https://www.analyticsvidhya.com/blog/2015/12/complete-tutorial-time-series-modeling/
https://www.analyticsvidhya.com/blog/2015/12/complete-tutorial-time-series-modeling/
https://www.analyticsvidhya.com/blog/2015/12/complete-tutorial-time-series-modeling/
https://developer.android.com/design/material/index.html
https://developer.android.com/design/material/index.html
https://github.com/cn-uofbasel/ccn-lite/tree/master/src/android
https://github.com/cn-uofbasel/ccn-lite/tree/master/src/android
https://developer.android.com/ndk/guides/concepts.html
https://developer.android.com/ndk/guides/concepts.html
https://developer.android.com/studio/build/index.html
https://developer.android.com/studio/build/index.html
https://bitbucket.org/MaxWijnbladh/saviorapp
https://bitbucket.org/MaxWijnbladh/saviorapp
https://bitbucket.org/Aranor/ccn-lite-android
https://bitbucket.org/Aranor/ccn-lite-android
https://bitbucket.org/MaxWijnbladh/ccn_lite_greeniot
https://bitbucket.org/MaxWijnbladh/ccn_lite_greeniot
https://bitbucket.org/theodosismalatestas/sensorcode
https://bitbucket.org/theodosismalatestas/sensorcode

	Introduction
	Project computer science & the GreenIoT project
	Objectives of the project

	Background
	ICN and CCN
	Naming
	Content storage
	Forward information base
	Pending interest tables

	Software used
	CCN-lite
	MongoDB
	Contiki
	MQTT

	Related work
	Examples of IoT for smart cities
	SmartCity Santander, Spain
	Bristol, UK The programmable city

	System architecture
	ICN-IoT implementation
	UML implementation diagram
	Directory Service (DS)
	Routing
	Sensors
	Naming
	Sensor markup language
	Border routers

	Datastore implementation
	Storing of CCN sensor data
	CCN-MQTT gateway

	Machine learning for prediction
	Introduction to Time-series
	Weakly and strictly stationarity
	AR, MA, ARMA and ARIMA model
	General approach for ARIMA
	AutoCorrelation Function (ACF) and Partial Correlation Function (PACF)
	Implementation

	Named function networking
	Android application
	Application idea
	Caveat

	Design process
	Development process
	App functionalities
	Predictions in the application
	Conclusion and future work

	Testbed
	Limitations of the system

	Conclusion
	Future work
	Datastore
	Sensors improvements
	DS running on multiple relays

	References

