Financial Surveillance Using Big Data

Project CS, Uppsala University

Final Presentation 2018/01/11 Uppsala

Members of Project CS 2017

Asa

Daniel

Emanuel

Ludvig

Martin

Michael

Philip

Rahul

Satya

Topics

- Background
- Apache Spark
- Environment
- Parsing
- Spoofing
- Machine Learning
- Demo
- Conclusions and Future Works

Background

MO' DATA MO' PROBLEMS

- Scila currently offers a solution focused on surveilling data in real time
- From stream processing to batch processing
- Apache Spark is designed to make this process more efficient

Proof of Concept with Apache Spark

Can we use Apache Spark to process and present the data produced by Scila?

Can we provide tools to run pattern detection and help visualize the data?

Major components

- Parsing the data and implementing functionality for querying it
- A Proof of Concept spoofing detection algorithm
- Machine Learning techniques for anomaly detection

Apache Spark

What is Apache Spark?

The world's largest open source project in data processing.

The API allows for easy execution of streaming, machine learning or SQL workloads.

In-memory cluster computing where the key is its ability to iterate multiple transformations in memory before writing back to disk.

Spark is **not** a file distribution framework. Spark is designed to work together with HDFS, not replace Hadoop entirely.

Written in Scala, API also supports Java and Python

How we use data in Spark

Spark Dataset (Available since Apache Spark 1.6)

Offers high-level domain specific language operations (e.g. select, join, sum, count)

Datasets leverage Sparks fast in-memory encoding

Environments

Cluster

- OpenStack
 - a. 6 Workers
 - b. 1 Master
 - c. 1 Proxy server
 - d. 1 SSH server
- Private network
- Public access
 - a. Proxy server
 - b. SSH server

Hadoop Distributed File System (HDFS)

What?

• Java based file system that provides scalable and reliable data storage

Why?

- Scalable
- Fault tolerant
- Distributed Storage system
- Good for clusters

Other tools

- Docker
 - Worker image
 - Private network
 - Enables DNS support
 - Mount data-folder at some mounting point
- Spring
 - Loading beans through xml files.
 - No need recompile parameter change
 - Easy swap of implementations classes
 - Specify different profiles for different environments

System overview

The provided data

- Historical financial transaction data
- Scila Message Types
- Structure of the input data
 - Each line:
 - Size in bytes
 - JSON header
 - JSON message

Parsing the data

There are two main steps to go from the text file to SQL queries:

- Extract both JSON objects
- Apply Spark's JSON reader
 - Encode data
- Total memory consumption: 5.4 GB
 - Disk size packed: 2.7 GB
 - Disk size unpacked: 12.9 GB

Parsing the data

• Three approaches to construct the datasets from the input data and query them.

Parsing benchmarks

SQL query used: Select count(*) from order_events Data: 1.4 GB data, 4 million rows

What is spoofing

- "Spoofing" is a practice of using orders that are not intended to be executed, to manipulate prices.
- Defined differently in different markets.We have gone by the definition provided in the specifications and EU regulators for european markets.

Market Mirage Stock-price manipulators try to fake out rival trading systems to capture quick profits through a technique known as 'spoofing.' Here's how it works:

Spoofing detection

Multi stage filtering

- 1. From the data, analyze each trade.
- 2. Next step involves getting the suspected spoof orders.
- 3. Orders that are over a specified value.
- 4. Orders that were canceled by the same person as the trade.

Spoof time interval

Machine Learning

Spark MLlib Utilization

- Attempted outliers detection using unsupervised learning.
- Forecasting stock closing price using time series algorithm.
- Classifying market participant based on historical trade data using supervised learning.

Supervised Learning

The experiment

- Performance comparison between classifiers
- The effect of normalization
- Different size of dataset
- The effect of hyper-parameter tuning
- Different attributes
- Different type of market participant level

The Most Interesting Result

- Normalized attributes: price, volume, tradeHour, tradeMinute, tradeSecond
- Label: various level of market participant
- Data size: 1 day (11301 instances up to 22602 instances)

Result

ſ	Class	Unique labels	Logistic Regression	SVM	Random Forest	MLP	
	askEndUserRef	38	3.88%	3.34%	9.57%	6.02%	
	askUser	19	9.99%	5.99%	12.88%	10.58%	
	askMember	7	30.98%	24.03%	31.45%	30.98%	
	bidEndUserRef	38	3.46%	3.31%	7.07%	6.56%	
	bidUser	19	7.57%	6.23%	11.15%	10.17%	
\triangleleft	bidMember	7	31.96%	27.25%	32.62%	32.29%	>
	allEndUserRef	38	3.19%	3.19%	7.10%	3.85%	
	allUser	19	9.53%	5.85%	11.04%	9.31%	
	allMember	7	31.12%	24.06%	31.11%	31.15%	

Unsupervised Learning

Unsupervised

Unsupervised Learning Algorithm:

- K-Means
- Gaussian Mixture Models

How to determine data as outliers?

Distance threshold

Weight probability

How to determine number of clusters ? is Elbow method

Unsupervised Experiment - K Means

Threshold = 0.9

Average distance of each cluster

Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
2.8637	7.0018	295.0512	5.7225	3.912

Distance of potential outliers for each clusters

Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
88.1736	12.2218	428.9979	79.812	92.296
75.1058	11.8306	356.2108	79.1606	90.6174
75.0593	11.3948	347.68	77.8769	90.3598
69.3013	11.125	347.6308	74.7163	89.3841
69.2294	10.7322	346.2992	74.2232	87.7603

Unsupervised Experiment – Gaussian Mixture Models

Threshold = 0.5

Weight probability for potential member clusters

Data Point	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
1	0.0011	0.9968	0	0.0021	0
2	0.0012	0.9964	0	0.0024	0
3	0.0009	0.997	0	0.0021	0
4	0.001	0.9966	0	0.0024	0
5	0.0009	0.9971	0	0.0021	0

Data Point	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
1	0.4138	0	0.1283	0.4495	0.0084
2	0.4166	0	0.1293	0.4457	0.0084
3	0.0012	0.4061	0.2033	0.3887	0.0008
4	0.1744	0.4061	0.0006	0.4176	0.0012
5	0.0012	0.4061	0.2033	0.3887	0.0008

Weight probability for ambiguous cluster members

Time Series Model

Sample Dataset used for prediction

Date	Stock	Closing Price
2017-07-27	GOOGE590	146200000
2017-07-09	GOOGQ590	123500000
2017-07-07	GOOGQ600	129900000
2017-06-23	SCILASEK	16700000
2017-07-12	ERICSEK	66700000
2017-06-16	AAPLUSD	96910000

ARIMA model

- ARIMA model stands for AutoRegressive Integrated Moving Average model
- Three stages of ARIMA :
 - Integrated (I)
 - Auto-Regressive (AR)
 - Moving Average (MA)
- It is usually notated with ARIMA(p, d, q) where p, d and q are the orders of each of AR, I and MA part
- **Final Goal** : Each of the three stages is an effort to make the final residuals display no pattern at all i.e the model should have extracted most information from the data

Working of ARIMA model

Stock time series dataset

Identify the order for Integration stage (Differencing)

Stationary series

Working (contd.)

Identifying parameters for AR/MA i.e **p** and **q** orders

Model : $Y_t = c + \phi_1 Y_{t-1} + \cdots + \phi_p Y_{t-p} + \theta_1 e_{t-1} + \cdots + \theta_q e_{t-q} + e_t$

Auto-Regression

n Moving Average

Example : AR(1) can be represented as $Y_{t=c+\phi_1Y_{t-1}+e_t}$

ARIMA(2,1,1)

Accuracy of ARIMA model

Below is the accuracy for stock "SPYE130"

	ME	RMSE	MAE	MPE	MAPE	MASE
Train	-0.086	0.983	0.820	-0.385	2.881	0.554
Test	0.181	1.047	0.907	0.514	3.151	0.613

ME - Mean Error

RMSE - Root Mean Squared Error

- MAE Mean absolute error
- MPE Mean percentage error
- MAPE Mean absolute percentage error
- MASE Mean absolute scaled error

Conclusions & Future Works

Conclusions

- Spark is good for frequent task/queries because it is using in-memory when it runs.
- Whole data parsing for frequent task and day-by-day parsing for less frequent task
- Spoofing algorithm meets all the requirement and could detect suspicious spoofed orders, but there is no best value for each parameter found.
- Spark MLlib has sufficient API for supervised learning, but not enough for unsupervised learning and even none for time series.

Future Works

- Explore latest technology such as Apache Flink for streaming and or batch processing.
- Implement spoofing algorithm in streaming approach using Spark API.
- Implement DBSCAN in Spark for Java to use as anomalies detection model.
- Implement Support Vector Machine that could handle multiclass problem and use different kernel.
- Integrate Spark MLlib and DL4J to be able to explore more diverse type of neural network.

Questions?

Project CS, Uppsala University