
Financial Surveillance Using Big Data
Project CS 2017

Uppsala University

Fatimah Ilona Asa Sabsono
Daniel Edin

Filippos Petros Lanaras
Emanuel Lind

Martin Matus Saavedra
Michael Wijaya Saputra

Rahul Sridhar Setty
Satya Vrat Shukla
Ludvig Strömberg

January 12, 2018

1

Abstract

Modern stock market trading is now a number of automation techniques and generates
extremely large amounts of data that need to be processed and analyzed concurrently.
There is an urgent need in providing market surveillance which can handle this data
in a systematic and timely manner without incurring heavy cost. A cloud based
approach to read and parse the data is the next step in development. In this project,
we have utilized Apache Spark to create an application that processes the data and
have provided the tools required for running pattern detection so as to find out
suspected cases of fraud. Also, point out anomalies in the data generated by Scila
with the help of machine learning techniques.

2

Acknowledgements

All of us collectively as a team would first of all like to thank Uppsala University and
Scila AB for providing us with a unique opportunity to work on a real, industrial
project. In a fast developing field like financial technology(fintech), being able to on
real, legitimate problems and figure out solutions for them, was a learning period that
we greatly benefited from. Financial technology is an important field that continues
to grow at an exponential rate and so does its impact on the wider world. Hence the
need for carrying out market surveillance in this interconnected world only grows. To
have been able to look at the difficulties that arise in doing so in a scaled up manner
and exploring new technologies and a more cloud based approach for the same, was
an invaluable chance for all of us.

One of the most fulfilling part of doing this project was being able to work with all the
various members of our team. We come from a wide range of backgrounds, but right
from the beginning we adopted an approach of open and clear communication that
allowed us to approach our task in a systematic manner. We utilized the methodology
of scrum to divide the project in simple, yet effective chunks which we then managed
to complete in a timely manner.

We would be remiss to not mention the support provided by our project course
coordinator, Edith Ngai, and the course assistants, Amendra Shrestha and Xiuming
Liu, for their invaluable efforts in securing for us the support we needed from the
University in providing the workstations and the rooms which worked as our office.
Having a proper work environment, and the break room, allowed us to approach our
work in a professional and timely manner.

Fredrik Lyden, Gustav Tano, and everyone at our industrial partner, Scila AB, were
always ready to take time out of their busy workdays to clear our doubts, whether by
coming down to Uppsala for demos, or by interfacing over emails and skype. Their
almost ready availability allowed us to proceed with the tasks per our plan and for
that, we would like to thank them.

We would also like to thank Mikael Lundgren for coming at the beginning of our
project and giving a lecture on project management, the importance of agile working
methodology, and maintaining a daily scrum schedule.

3

Contents

1 Introduction 10
1.1 Finance Surveillance . 10
1.2 Big Data . 10
1.3 Project CS and Scila AB . 11
1.4 Project Goals . 11

2 Background 12
2.1 Financial Market Surveillance . 12

2.1.1 Why is it necessary . 12
2.1.2 How it Happens . 12

2.2 What are the techniques of market manipulation 12
2.2.1 Momentum Ignition or Layering 12
2.2.2 Quote Manipulation . 13
2.2.3 Spoofing . 13

2.3 Anomalies . 14
2.4 Big data processing . 14
2.5 Software used . 14

2.5.1 Spark . 14
2.5.2 Spark MLlib . 15
2.5.3 Hadoop Distributed File System (HDFS) 15
2.5.4 Spring framework . 16
2.5.5 R Programming Language . 16
2.5.6 Docker . 16
2.5.7 Git version control . 16
2.5.8 OpenStack Helion and Horizon 17
2.5.9 Checkstyle plugin . 17
2.5.10 Circle CI . 17
2.5.11 Tableau . 18
2.5.12 MATLAB . 18

3 System architecture 19
3.1 Hardware architecture . 19
3.2 Software architecture . 20
3.3 System overview and operations . 21

4 Parsing Implementation 22
4.1 Data . 23

4

4.1.1 Data Structure . 24
4.2 Optimization . 24

4.2.1 Internal Dataset storage . 25
4.3 Benchmark . 26

5 Spoofing Detection Implementation 29
5.1 Filters . 29

5.1.1 Data . 29
5.1.2 SQL . 29
5.1.3 Parameters . 29

5.2 Result and output . 31
5.2.1 JSON . 31
5.2.2 CSV . 32

5.3 Benchmark . 32

6 Machine Learning Implementation 37
6.1 Data transformation in Spark . 37

6.1.1 StringIndexer . 38
6.1.2 One-hot Encoding . 38
6.1.3 VectorAssembler . 39
6.1.4 StandardScaler . 40
6.1.5 Principal Component Analysis 40
6.1.6 VectorSlicer . 41
6.1.7 Normalizer . 42

6.2 Classifying market participant in Trade Dataset 42
6.2.1 Introduction to classification 42
6.2.2 Classifier . 43
6.2.3 Classification workflow . 47
6.2.4 Result . 49

6.3 Clustering . 53
6.3.1 K-means . 53
6.3.2 Bisecting K-means . 54
6.3.3 Gaussian Mixture Model . 55
6.3.4 Anomaly detection . 56
6.3.5 Implementation . 57
6.3.6 Experiments . 58
6.3.7 Result . 58

6.4 Forecasting stock closing price . 62

5

6.4.1 Introduction to Time series 62
6.4.2 Components of Time series . 63
6.4.3 ARIMA Model . 64
6.4.4 Stationarity . 64
6.4.5 Integrated (I) . 65
6.4.6 Auto-Regressive (AR) Model 67
6.4.7 Moving Average (MA) Model 67
6.4.8 General Steps in ARIMA Model 68
6.4.9 Implementation . 69

6.5 Deep Learning 4 Java . 74
6.5.1 What is DL4J? . 74
6.5.2 Data requirements for DL4J 74
6.5.3 Transforming our data from Spark to DL4J 75
6.5.4 DL4J Neural Network . 77

7 Conclusions 78

8 Future work 79

Appendices 86

Appendix A Installation Guide 86
A.1 Overview . 86
A.2 Setting up the cluster . 86

A.2.1 User . 87
A.2.2 Java . 87
A.2.3 Spark . 87
A.2.4 HDFS . 89
A.2.5 System parameters . 91
A.2.6 Prepare HDFS for Spark history server 91
A.2.7 Upload data into HDFS . 91
A.2.8 Starting the cluster . 92
A.2.9 Executing the application . 92

A.3 Docker . 92
A.3.1 Docker image . 92

Appendix B Troubleshooting 94
B.1 HDFS Troubleshooting . 94

B.1.1 General . 94

6

B.1.2 Take it online . 94
B.1.3 Take it offline . 94
B.1.4 Report . 94
B.1.5 Format . 95
B.1.6 Missing nodes . 95

B.2 Spark Troubleshooting . 95
B.2.1 Turn on cluster . 95
B.2.2 Turn off cluster . 96
B.2.3 Turn online specific node . 96
B.2.4 Turn offline specific node . 96
B.2.5 Turn online history server . 96
B.2.6 Take history server offline . 97
B.2.7 Master will not start . 97
B.2.8 No entries in history server . 97
B.2.9 Networking . 97

Appendix C Usage instructions 98
C.1 General usage . 98
C.2 Spoofing . 99
C.3 ARIMA . 99
C.4 Unsupervised Learning . 100
C.5 Classification . 101
C.6 Generated Report for Tableau . 102

7

List of Figures

1 Hardware Architecture . 20
2 System overview . 21
3 Example of the raw single line JSON data. 23
4 The query select count(*) is done on non cached datasets of 1.4 GB

in 1300 files covering 15 days of test data. Small partition parsing is
denoted as Approach 1. Big partition parsing is denoted as Approach
2. Incremental parsing is denoted as Approach 3. 27

5 The query select count(*) is done on cached datasets of 1.4 GB in
1300 files covering 15 days of test data. Small partition parsing is
denoted as Approach 1. Big partition parsing is denoted as Approach
2. Incremental parsing is denoted as Approach 3. Does not include
the time taken to cache the dataset 28

6 spoofTime usage [filtering] . 30
7 Performance of the spoofing algorithm including writing results to disk

from non cached datasets parsed from JSON text files of 1.4 GB in
1300 files covering 15 days of test data. On a 4 core machine (Intel i7
7800) with Spark in local mode. 33

8 Performance of the spoofing algorithm including writing results to disk
from non cached datasets parsed from JSON text files of 1.4 GB in
1300 files covering 15 days of test data. On a 4 core machine (Intel i7
7800) with Spark in local mode. 34

9 Performance of the spoofing algorithm including writing results to disk
from cached datasets parsed from Parquet files of 1.4 GB in 1300 files
covering 15 days of test data. On a 4 core machine (Intel i7 7800) with
Spark in local mode. 35

10 Performance of the spoofing algorithm including writing results to disk
from non cached datasets parsed from Parquet files of 1.4 GB in 1300
files covering 15 days of test data. On a 4 core machine (Intel i7 7800)
with Spark in local mode. 36

11 General implementation of spark transformer 37
12 Result of String Indexer . 38
13 Result of One-hot Encoding . 39
14 Result of VectorAssembler . 39
15 Result of Standard Scaler . 40
16 Result of PCA . 41
17 Result of Vector Slicer . 41

8

18 Transformed dataset . 43
19 Normalized features vector . 43
20 Logistic Regression . 44
21 Multi-Layer Perceptron . 45
22 Linear Support Vector Machine combined with One-versus-Rest . . . 46
23 Random Forest . 47
24 Classification workflow . 48
25 Example of three clusters . 53
26 Covariance Type . 56
27 Outliers in Clusters . 57
28 Result of K-Means . 60
29 Result of K-Means Distance Calculation 60
30 Result of Gaussian Mixture Model . 61
31 Result of Gaussian Mixture Model for Ambiguous Data 62
32 Passenger Data . 63
33 White noise . 65
34 Time series after 1st order differencing 66
35 ACF and PACF plots . 69
36 Stock data . 70
37 Flowchart for Arima forecast . 71
38 SPYE130 stock . 72
39 SPYE130 stock accuracy . 73
40 Flowchart depicting the general DL4J transformation. 76

9

1 Introduction

1.1 Finance Surveillance

The ever increasing interconnected nature of global stock markets has not just
contributed to an unprecedented growth of capital, it has also led to a faster flow
of market participants from one market to another, as per changing market forces.
[46] Worldwide, many billions of transactions take place on a daily basis and there is
an ever-increasing need to track and identify rogue actors who connive to carry out
fraudulent activities. There are more participants present in the markets than any
time earlier, and consequently, larger the chances for fraud to exist. The need for
proper surveillance has therefore never been greater. [51]

Along the way, trading in modern stock markets has now grown to incorporate a large
amount of automation, which must lead to an explosion in the number of datasets
being generated. These datasets require concurrent processing and analysis in a
systematic manner so as to ensure all the various regulations across different markets
are followed while ensuring that not too heavy cost is incurred.

1.2 Big Data

A cloud-based approach to reading and parsing the data is the next step in development
since the amount of data being generated is so immense, it is referred to as Big Data,
a colloquial term that has now transitioned into being a formal one. On a daily
basis, there is an almost inconceivable amount of data is generated. It is not just the
amount, it is the speed at which it is being generated and the varying number of
types of data; formatted, unformatted, structured, unstructured.

As markets generate more and more complex data, the importance of storing and
analyzing the complex data sets, only increases. Hence doing so by utilizing the tools
and techniques used for Big Data is the next logical approach. For implementing
market surveillance functionality, the traditional approach of utilizing large servers
does not compare favorably with big data methodology that utilizes clustering of
simple hardware that provides for easier scaling options and parallelizes the data over
the clusters.

10

1.3 Project CS and Scila AB

This report provides the documentation for a prototype application developed by
students who undertook the project computer science course at Uppsala University.
The course provides the students with an opportunity to gain experience in running
a big project, right from the planning to the completion stage, how to go about
constructing a complex distributed system and to give hands-on experience on modern
construction principles and programming methods

This year, the project was set up in coordination with Scila AB, a Stockholm
based financial technology company, and Uppsala University. Scila provides trading
surveillance products built on many years of experience from both market surveillance
and systems design. Scila Surveillance uses modern technology to give the customer a
seamless route from detection of market abuse to presentable evidence. Scila delivers
the future of modern market surveillance technology by offering trading venues,
regulators and market participants the most competitive solution available.

1.4 Project Goals

The main aim [52] of this project was to create a prototype application that read a
large amount of financial data that was produced by the Scila system and provide
cloud-based tools to that would:

• Process the data in a cloud environment

• Batch-oriented market abuse pattern detection

• Anomaly detection using Machine Learning

• Batch/ad-hoc visualizations/reports

11

2 Background

2.1 Financial Market Surveillance

2.1.1 Why is it necessary

As financial markets shift even more towards automated trading and involve such
techniques as high-frequency trading, where markets get millions of orders in minutes,
the need for surveillance in financial markets has only grown. Moreover, markets
worldwide are heavily interlinked and there is a constant flow of capital through the
various markets which allows for trading to occur every hour of every day. To account
for the rapid speeds with which transactions are placed, canceled, and updated, and
ensure that they are in line with the various regulations and rules in all the markets,
strict financial surveillance is extremely important.

2.1.2 How it Happens

There are various methods of market surveillance that have been used to ensure fair
trading practices. Most models of surveillance depended upon statistical analysis as
one of the major tools of data surveillance. But now as trading is moved onto an
algorithmic approach, so has the need for defining surveillance in those terms.

2.2 What are the techniques of market manipulation

Traders intent on carrying out fraudulent activities in financial markets rely on a
number of methods to profit from the system. Besides the ever constant presence of
insider trading, certain techniques have been identified for their unique approach and
so we have discussed them in slight detail below. However, since our major focus was
on Spoofing, we devoted more space for it further onwards.

2.2.1 Momentum Ignition or Layering

Momentum ignition or Layering is a strategy where a trader initiates a series of orders
and trades, in order to cause a rapid price change of the instrument either upwards
or downwards and so, induce others to trade at prices which have been artificially

12

altered. The main purpose of this strategy is to create an artificial presence of demand
or supply in the market and then make a profit from the resulting movement in
price.

2.2.2 Quote Manipulation

Quote manipulation is a strategy usually employed by high-frequency traders(HFTs),
who utilize advanced technological communication systems and infrastructure in order
to abuse and manipulate the market. This is done in order affect the prices of-of
orders placed in dark pools by manipulating prices in the visible markets. Non-bona
fide orders are entered on visible marketplaces which change the best bid price and/or
the best ask price in order to affect the price calculation at which a trade will occur
with a dark order. This activity (which may be combined with abusive liquidity
detection) results in a trade with a dark order at an improved price, following which
orders are removed from the visible marketplaces.

2.2.3 Spoofing

Spoofing is a fraudulent trading practice where limit orders are placed with an intent
to not execute them, in order to manipulate prices. There are various strategies
related to the exact execution of this practice, some of which are related to the
opening or closing of regular market hours. that involve distorting disseminated
market imbalance indicators through the entry of non-bona fide orders, checking
for the presence of an iceberg1 order, affecting a calculated opening price and/or
aggressive trading activity near the open or close for an improper purpose.

Spoofing has only fairly recently been defined as an unfair trading practice, and
consequently, it is done differently in different markets. One of the first cases of
spoofing to be charged involved Navinder Singh Sarao, a British trader, was charged
in April 2015 for contributing to the ’Flash Crash’ of may 2010.[72].

1An iceberg order is a large single order that has been divided into smaller lots, usually through
the use of an automated program, for the purpose of hiding the actual order quantity.

13

2.3 Anomalies

Many times, there exist certain deviations in the trading data, when it is taken as a
whole. These deviations from normal trading patterns or behavior might not be illegal
presently, but they do count as bending of the rules. When the data is analyzed via
such techniques like machine learning, these anomalies can be detected and identified.
More about anomaly detection is given under the machine learning section.

2.4 Big data processing

Big data is a well-known term that has been around for two decades in every field and
aspect of life. Big data itself is described as a large amount of data with high-variety
of information and high-velocity of growth, that it is so complex that it needs a new
way to be processed [36]. Batch processing and stream processing is some example of
big data processing.

A batch processing is used to process numbers of jobs simultaneously by putting the
jobs together in a batch form. The number of jobs in a batch is called the batch
size and the maximum value for the batch size is dependent on the machine [26]. In
general, batch processing is used to compute large and complex tasks and is mainly
focusing on throughput rather than the latency of individual components of the
computation. Therefore the latency is measured in minutes or larger units [47]. This
project use batch processing with the purpose of making an application that could
analyze historical data.

2.5 Software used

This project used several software and tools, as described in this section below.

2.5.1 Spark

Apache Spark is a technology which is providing a fast and general-purpose cluster
computing system[62]. It has support for high-level APIs such as Java, Scala, and
R. Moreover, it has provided numerous tools for users to use like Spark SQL, MLlib,
GraphX and Spark Streaming[62].

14

2.5.2 Spark MLlib

Spark MLlib is a machine learning library which is provided by Apache Spark with the
goal to make machine learning become scalable and easy. Spark MLlib has provided
supported tools for machine learning such as[61]:

• Machine learning algorithms: classification, regression, clustering, and collabora-
tive filtering

• Featurization: feature extraction transformation, dimensionality reduction, and
selection

• Pipelines: tools for constructing, evaluating, and tuning machine learning pipelines

• Persistence: saving and load algorithms, models, and pipelines

• Utilities: linear algebra, statistics, data handling, etc.

Spark MLlib has support for some programming language such as scala, java, python,
and R. In spark ver 2.x, users could use RDD-based or data frames for processing
data. However, in the near future, Spark will not support RDD based on processing
data. The reason for Spark to be using data frames is because it provides a more
user-friendly API than RDD. Spark MLlib has some benefits such as SQL or data
from queries, spark data sources, tungsten and catalyst optimizations, and uniform
APIs across languages[61]. Moreover, data frames could facilitate practical ML
pipelines and feature transformations which are very useful for machine learning.
Spark MLlib uses Breeze linear algebra package which depends on netlib-java for
optimized numerical processing.

2.5.3 Hadoop Distributed File System (HDFS)

Hadoop Distributed File System (HDFS) is made to run on commodity hardware
and has many similarities with other current distributed file systems but there are
important differences such as that HDFS is highly fault-tolerant, provides high
throughput and is designed to be deployed on low-cost hardware. HDFS works well
with programs using large datasets. [5]

15

2.5.4 Spring framework

Spring framework is an open source project which provides a stack of technologies
and foundational support for different application architecture. It is divided into
modules that can be picked at every level of application architecture [53]. We decide
to use Spring because its flexibility of configuration without the need of changing
source code.

2.5.5 R Programming Language

R is a language and environment for statistical computing and graphics that provides
a range of statistical and graphical techniques [15]. It is highly extensible via packages
and easy to implement. This project use one of the available packages that are
through Comprehensive R Archive Network (CRAN).

2.5.6 Docker

The Docker company that is controlling the container movement and the only container
platform provider to address every application across the hybrid cloud [28]. A container
itself is a lightweight, stand-alone, executable package of a piece of software that
includes everything needed to run it: code, runtime, system tools, system libraries,
settings. It is similar to a virtual machine in term of resource isolation and allocation,
but functioning differently. Virtual machine virtualizes the hardware, while container
virtualizes the operating system hence it’s more portable and efficient [27].

2.5.7 Git version control

A system that records changes to a file or several files over time is called version
control [18]. Then you can revert back to your older versions of your applications.
Git is a version control software that works in these ways [19]:

• Git thinks about the data as a stream of a snapshot. Git basically takes a
picture of what all your files look like at that moment and stores a reference to
that snapshot for each time we commit.

• Operation mostly done locally because the project’s history is available on local
disk.

16

• Everything in Git is check-summed before it is stored and is then referred to by
that checksum.

• Nearly all actions in Git only add data to the Git database and we can experiment
without the danger of severely screwing things up.

• There are 3 different states where the files can reside in: committed, modified,
and staged. We have a flexibility of which part will be stored.

2.5.8 OpenStack Helion and Horizon

OpenStack is a cloud operating system that controls large pools of computing, storage,
and networking resources throughout a datacenter, [13] managed through a dashboard
that gives administrators control while empowering their users to provision resources
through a web interface. OpenStack Helion is the newest version of it and we use
it through the canonical implementation of OpenStack’s Dashboard. It provides a
web-based user interface to OpenStack services. [14]

2.5.9 Checkstyle plugin

Checkstyle is a development tool to help programmers write Java code that adheres
to a coding standard. It automates the process of checking Java code, makes it ideal
for projects that want to enforce a coding standard. Checkstyle is highly configurable
and can be made to support almost any coding standard [8]. We made our own
configuration with the base of Google Java Style [9] and use the Maven Checkstyle
plugin [16] to integrate that into the project.

2.5.10 Circle CI

CircleCI is a modern continuous integration and continuous delivery (CI/CD) platform
that automates build, test, and deployment of software [11]. It can be used in the
cloud or run it privately on our own server. It runs for every code change in our
Github repository to triggers a build and automated tests in their cloud. CircleCI
then sends a notification of success or failure after the build and tests complete.

17

2.5.11 Tableau

Tableau is a data visualization and analytics software with several features, such
as interactive dashboard to uncover insight easier, connect to many different data
sources, plot the data into a map, share and present the result to others [54]. It is
quite easy to use and currently has several types of product for different environments.
This project uses Tableau Desktop installed on our workstation.

2.5.12 MATLAB

MATLAB platform is a platform optimized for solving engineering and scientific
problems. The matrix-based MATLAB language is the world’s most natural way to
express computational mathematics with built-in graphics to make it easy to visualize
and gain insights from data [39].

18

3 System architecture

3.1 Hardware architecture

In this project, we have used OpenStack as our cloud computer to build our own
server. OpenStack is a cloud operating system which provides storage, network and a
large pool of computer resources throughout a datacenter [44]. OpenStack resources
can be managed by a dashboard which provides a web interface. We built nine
computers in this project, seven of the computers have the disk storage of 220GB,
RAM 32 GB, and 8 VCPUs and the other two computers have disk storage of 80 GB,
RAM 8GB, and 4 VCPUs.

We used the two computers with lower specifications for two different purposes, one
of the computers we used as an ssh-server, this computer had the capability to receive
data from SCILA AB company. Later on, this data will be moved to another computer
where the data will be processed. The other computer we used to communicate with
our local computer and the cluster, we call this computer as proxy-server. The reason
we needed this computer was that because a firewall separates our local network from
the open stack network. With the proxy-server, we can send our data and program
to this computer and we can run our program with Spark and HDFS.

The other seven computers we built with the purpose to run Apache Spark and HDFS.
In this project, we used one of them as our master and other computers as workers.
The purpose of the master is to control all of the workers and provide a graphical
interface where the user can see that status of the HDFS and Apache Spark.

19

Figure 1: Hardware Architecture

3.2 Software architecture

In this project, we used the two different technologies Apache Spark and Hadoop
Distributed File System. We run both of them separately without using Hadoop
YARN (Yet Another Resource Negotiator) to unite them.

Apache Spark is used for computing resources and the HDFS is used for our data
storage in the cloud. When we are running our program we need to initialize a
SparkContext, this allows our code to run parallelized automatically in the cluster[75].
It will help to make the computing process faster than running computing process
on a single computer. Moreover, Spark will run in parallel to read or write from the
HDFS. We have also made use of several libraries which are provided by Apache
Spark, such as Spark SQL and Spark MLLib(machine learning library).

20

3.3 System overview and operations

This project consists of 3 major components and 1 optional component. The 3 major
components are parsing TX files, implementing spoofing detection algorithm, and
machine learning utilization. The optional component is data visualization using
Tableau or QlikView which is not completed because of the limitation of time and the
lack of flexibility to integrated either both option to our prototype. For the optional
component, we made a module to generate a report based on specification document.
The major components are explained in the next sections.

Other than the mentioned components, there are also several elements that make
the whole system running. We use the TX files from Scila as the main data source
and then we have optional optimization for saving the parsed data, either store
it in parquet files or store it temporarily through caching it. There are several
configurations that could be used, depends on which module that we want to run,
which is stored in XML files. All elements mentioned is shown in figure 2.

Figure 2: System overview

21

4 Parsing Implementation

The process of parsing is to analyze a stream of symbols data. The easiest way to
understand what parsing data means is to see it as an interpretation of one type of
data into some other type of data. The interpretation usually separates and classifies
data. Being able to parse is crucial when there is a need to transfer data from program
to program. Data will be parsed whenever there is some kind of communication
between entities.

In this project it is necessary to read the financial transactional data files used in Scilas
software environment into Apache Spark while maintaining the same structure. A key
objective is avoiding to pre-process the data files in some stage prior to processing
it in Apache Spark. The need for this requirement is due to the project having a
criteria of being able to process extremely large quantities of data. Pre-processing
the data would demand a majority of the computational power aswell as requiring
additional disk storage.

However, it is not possible to import the data files directly without doing any internal
processing. All transformation of the data is managed by the Apache Spark Java
API.

The process of transforming the raw data consists of the following steps:

1. Unpack Gzip

2. Separate JSON strings

3. Identify what transaction message types each JSON is

4. Rename column names

5. Encode into Java Bean class based dataset

The end goal of the parsing is to create data structures that are usable in later stages
of the program, namely to the Spoofing algorithm and the machine learning models.
The data is encoded by Apache Spark to improve performance [64].

22

4.1 Data

0000000331{

"5":["100"],

"1":"1",

"7":"Hg",

"3":"Hg-100",

"6":1493033323937,

"10":231,

"12":1493033323914 }

{ "2":"100",

"3":1493033323937,

"28":730,

"4":"1000029",

"5":"SWB",

"6":"SWB2",

"7":810000000,

"8":"O-100-16",

"9":96200000,

"10":1493033323937,

"11":10208,

"12":true,

"13":"CANCEL",

"14":"USER",

"20":"AAPL USD",

"30":"/Algo/Alpha1/VWAP/ExecVenueX",

"31":"" }

Figure 3: Example of the raw single line JSON data.

A financial instrument is a virtual or real document that describes a monetary contract
between parties [30].

The data is divided into one file for each financial instrument during a day and is
structured in a calendar hierarchy of folders with years, months and days. Each file
consists of different types of financial transaction data for a certain instrument in a
chronological order. Most of the files in our test data are compressed with Gzip and
are decompressed during runtime.

Each line in each data file has the structure of two JSON objects with their combined
size prepended, as seen in Figure 3. The first JSON object is a header that specifies
some internal data and the second JSON objects type of financial transaction message.
It is in the second JSON object where data like orders and trade data resides. Apache
Spark’s JSON reader either supports a single JSON objects over multiple lines or a
single line set-up to be able to read it [12].

23

Therefore these two JSON objects has to separated before applying Apache Spark’s
JSON reader on the data. Which leads to the need for the program to read each
JSON object twice. Once with a custom JSON parser and secondly with the built in
Apache Spark reader that converts the JSON into a dataset. To keep track of which
header points to which message type, a unique parse ID is inserted into these JSON
objects during the separation.

4.1.1 Data Structure

A financial instrument is a virtual or real document that describes a monetary contract
between parties [30].

The data is divided into one file for each financial instrument during a day structured
in a calendar hierarchy of folders with years, months and days. Each file consists
of different types of financial data for a certain instrument in a chronological order.
Most of the files in our test data are compressed with Gzip and are decompressed at
runtime.

The transformation from the JSON string into a dataset is done in three steps. The
specification for the message type contains multiple optional fields in the JSON
objects. The data is also filled out to include these optional fields The columns are
renamed into their real meaning to improve usability.

The last stage is to provide the schema for the data which allows it to encode it to
a strongly typed dataset. To be able to use encoded datasets they need to have a
specified schema for their structure that the data provide [64]. Due to this, each
message type is filtered out and then encoded into individual datasets for the message
types. The schema is defined at runtime with a Java class [64].

4.2 Optimization

The big selling point of Apache Spark and what is advertised mostly is how efficient
Apache Spark is with in-memory computations [38]. Even though Apache Spark has
a big focus on in-memory computation the system will spill to the disk if the size of
the memory is not sufficient, allowing it to run well on any sized data [56].

In contrast to the traditional map-reduce approach Apache Spark tries to do with
its in-memory computational pipeline is to minimize writes to disk between dataset

24

transformations [38]. This unlocks the possibility to iteratively perform multiple
transformations on a single dataset without the need to write the data before the
last stage.

4.2.1 Internal Dataset storage

Since the data files are already divided into a calendar hierarchy there are a number of
different possibilities in which order to parse all of the files. Either keeping the same
structure or combining some or all levels. The initial implementation of the spoofing
algorithm and machine learning models were to process data from multiple days
which did not point out the need to parse the data other than in a big chunk.

But since the current spoofing algorithm analyzes the data strictly from a specific
day there are two different hierarchy levels configurable for the parsing. One parses
all the files in a big chunk and holds each message type in datasets that span across
the whole range of the given dates. The other parsing is very similar to how the
folder structure for the files look like. It parses each message type into datasets but
partition them day-by-day.

The advantage of storing the data in a day-by-day basis is that it is possible to cache
each dataset for the spoofing algorithm more efficiently. Allowing the program to
cache each day and thereafter delete the dataset from the cache as they are finished
being processed. Compared to the other way where all the data is cached before any
additional work is done on the data.

As seen in Figure 4 extracting a day’s data from the big partitioned datasets struggles
a lot when the data is not cached. But as seen in Figure 5 the difference is runtime is
massively reduced when Apache Spark can operate on cached data.

As mentioned in 4.1.1 the data is encoded with Java classes into strongly typed
datasets to have the possibility to use powerful lambda functions and utilize typed
fields [65]. Normally found in the older Resilient Distributed Dataset (RDD) data
structure that Apache Spark have had since its initial version [65]. The choice fell
on the newer Dataset and DataFrame data structure interface due to improved
SQL performance compared to RDD with an optimization engine called Tungsten
[20].

Lastly during the parsing there is another optimization that is experimented with
to further improve performance of the SQL queries. All transformations in Apache
Spark are lazy [67], this means that every time some data is needed in a computation

25

it is delayed as long as possible. This is done to mitigate unnecessary processing of
data that is never used. Since there is a lot of preprocessing done with the data to
extract what is needed the laziness of Apache Spark is lost during the parsing. All
the data has to be read no matter how heavy a query on the data might be.

A workaround is to after the parsing write the parsed data back to the disk and then
re-parse it directly to each message type to be able to properly leverage the Apache
Spark’s lazy evaluation. If the same data is used for multiple executions this can
improve both parsing and queries on the data by a huge margin. This can also be
combined with a much better data format than JSON. In the program this can be
configured to do with the Parquet data format.

4.3 Benchmark

Like previously mentioned there are two different configurable ways that the program
can parse the data. But we have also explored another third option. It is very similar
to the day-by-day parsing. Instead of parsing all the data beforehand, it keeps the
same day-by-day partitioning but incrementally parses one day’s data and then to
the required queries on it before parsing the rest of the data.

The benchmarks in Figure 4 and 5 ran on a local machine with a 4 cored hyper
threaded CPU (total of 8 threads) [29].

Even though caching the datasets speeds up the query it is interesting to see that the
query gained speed when using the 4 hyper threaded threads when operating on non
cached datasets as seen in Figure 4 compared to in Figure 5 where it only slightly
helped or even gave worse performance on the same amount of threads.

26

Figure 4: The query select count(*) is done on non cached datasets
of 1.4 GB in 1300 files covering 15 days of test data. Small partition
parsing is denoted as Approach 1. Big partition parsing is denoted
as Approach 2. Incremental parsing is denoted as Approach 3.

27

Figure 5: The query select count(*) is done on cached datasets of
1.4 GB in 1300 files covering 15 days of test data. Small partition
parsing is denoted as Approach 1. Big partition parsing is denoted
as Approach 2. Incremental parsing is denoted as Approach 3. Does
not include the time taken to cache the dataset

28

5 Spoofing Detection Implementation

To detect the presence of a suspected spoofing order within the order table, we needed
to build a mechanism that would allow us to filter out the legitimate orders. We
created multiple filters that use SQL queries to set the different parameters which
allow us to shortlist the suspected spoofing orders from within the given data.

5.1 Filters

We use filters to narrow down the potentially spoofed orders from the datasets
containing trades and orders, which we get via the parsing system. The first step
involves applying a filter to find all the confirmed trades. Confirmed trades are those
trades which were executed during continuous trading and of type auto-matched.
Auto-matched means that bid side orders and ask side orders are matched continuously
into trades by a trade engine, and when the match occurs, the result is known as a
trade. Then three separate filters are run on the same dataset so as to finally get a
fully filtered dataset.

The filters are limited to query and output results for one day at a time.

5.1.1 Data

Selecting the range of data to filter is done by using different date intervals. The
dates are user-specified and can be found in dates.xml.

5.1.2 SQL

All the queries were done using SQL. The SQL queries could be written in either
regular SQL or Spark SQL. We found no significant difference in how they were
parsed by Apache Spark after testing them, the only benefit was that Spark SQL was
easier to use and provided better readability.

5.1.3 Parameters

The parameters we have chosen to implement were the ones suggested in the specifi-
cation that was provided by Scila AB. We had no real guidelines when it comes to

29

the values to use for our parameters when running our tests. The values we chose
were the ones that we found were the most optimal for the provided data. Different
parameters used when filtering is also user-specified using Java beans. These values
can be modified in spoof.xml.

• minSpoofValue The value of an order is volume and price multiplied. These
values are then divided by 1,000,000 as otherwise they get too large to process
properly. The first iteration of this parameter was to have the minSpoofValue
as the minimum value of a spoofing order, meaning orders get filtered if they
are below the value of this parameter. This parameter was pre-defined and
hard-coded and did not give good results as the prices and volumes vary in
different markets.

For the second iteration, we changed the parameter, making it percentage based.
The percentage would then be compared with the calculated difference in value
between the average value before an order within a time interval and the actual
value of that order. These changes were done to make the filter follow the
market prices and order books in which the orders are in.

• spoofTime The time, before the trade, that spoofing orders are looked for. This
parameter is the first one to be used as it seems to be filtering out a larger part
of the input data. This lets the other filters with heavier computations work on
smaller subsets of the original data and therefore increasing the performance of
the program.

Figure 6: spoofTime usage [filtering]

• participantLevel The level of the participant. The levels are defined in a hierarchy
where ‘member’ is the top level, ‘user’ the second and ‘endUserRef’ the third.

30

The default value for this parameter is ‘endUserRef’, as this is the most common
level where spoofing occurs.

• spoofCancelPerc This value is compared with the total amount a user has
canceled. The order is kept if the total amount the user has canceled is greater
than or equal to this parameter. A user either cancels an order completely or
reduces its volume by spoofCancelPerc or above, therefore making an implicit
cancel. This happens within the specified spoofTime.

• minPriceDifference The minPriceDifference parameter is used to check whether
a user made an implicit cancel or an implicit insert. The parameter is the
minimum difference in percentage between a current, previous or trade price.
An implicit cancel happens if the previous price is near the traded price and
the current price is not near the trade price. An implicit insert happens if it
was not an implicit cancel and the current price is near the trade price.

5.2 Result and output

The final output is filtered datasets with suspected spoofed orders for each day. These
are written into either a JSON or CSV file. The output folder has the same folder
structure as the input data. The output folder contains a year folder with months
and days in that specific order. Inside every day folder is a file with the date of the
specific dataset.

5.2.1 JSON

Example of an alert containing an order suspicious of spoofing. The JSON follows
the structure of a scila alert message:

[{

"11":"GOOGE595",

"12":"SWB",

"13":"SWB3",

"14":"1000038",

"1":"",

"2":"",

"3":"",

"4":"",

31

"5":"",

"6":"",

"7":"",

"8":1504502354944,

"9":500,

"10":"112"

}]

5.2.2 CSV

An alternative output is creating CSV files containing all suspicious spoofed orders.
The reason why this output method was kept is that because it keeps all information
about the orders and even our own made columns containing parameter values.

5.3 Benchmark

Very similar to how the parsing performance results as seen in Figure 4 and 5 the
spoofing algorithm follows the same structure. The performance with cached datasets
are much improved.

Even though the Parquet file format is faster it is not notibly faster. Cached
performance is both helping and declining the performance.

32

Figure 7: Performance of the spoofing algorithm including writing
results to disk from non cached datasets parsed from JSON text files
of 1.4 GB in 1300 files covering 15 days of test data. On a 4 core
machine (Intel i7 7800) with Spark in local mode.

33

Figure 8: Performance of the spoofing algorithm including writing
results to disk from non cached datasets parsed from JSON text files
of 1.4 GB in 1300 files covering 15 days of test data. On a 4 core
machine (Intel i7 7800) with Spark in local mode.

34

Figure 9: Performance of the spoofing algorithm including writing
results to disk from cached datasets parsed from Parquet files of 1.4
GB in 1300 files covering 15 days of test data. On a 4 core machine
(Intel i7 7800) with Spark in local mode.

35

Figure 10: Performance of the spoofing algorithm including writing
results to disk from non cached datasets parsed from Parquet files
of 1.4 GB in 1300 files covering 15 days of test data. On a 4 core
machine (Intel i7 7800) with Spark in local mode.

36

6 Machine Learning Implementation

The main idea of using machine learning for this project is to detect anomalies in
a collection of available parsed datasets, in addition to that we also tried different
approaches of utilizing machine learning. We came up with 3 different problems
that could be solved using different machine learning techniques within the tools and
limitation that we had. Those problems are anomalies detection using unsupervised
learning (clustering), classifying market participant based on historical trade data
using supervised learning (classification), and forecasting stock closing price using a
time series algorithm. Each one of them is explained in this section.

6.1 Data transformation in Spark

Spark has supported many kinds of data transformers for machine learning. We have
used some of the features transformers such as String indexer, one-hot encoder, PCA,
standard scaler, vector assembler. We have used feature selectors like vector slicer.
Parsed data is in the form of Spark Dataframes and it needs to be transformed into
a feature vector and a label (optional). The label and selected feature is defined in
each approach of machine learning. The common steps that we used to transform
the data are shown in the figure.

Figure 11: General implementation of spark transformer

37

6.1.1 StringIndexer

StringIndexer encodes a string column of labels into a column of label indices[66].
The indices are from 0 up to the amount of unique labels, starting from 0 for the
most frequent label. The unseen labels will be put at the end of indices. It was used
for all categorical values and precedes the process of one-hot encoding.

Figure 12: Result of String Indexer

6.1.2 One-hot Encoding

One-hot Encoding maps a column of label indices to a column of binary vectors, with
at most a single one-value[66]. It is suitable for categorical values that do not have
the ordinal relationship among them [7]. It was used for all categorical attributes
with more than 1 unique value.

38

Figure 13: Result of One-hot Encoding

6.1.3 VectorAssembler

VectorAssembler is a transformer that combines a given list of columns into a single
vector column[66]. It is useful for combining raw features and features generated
by different feature transformers into a single feature vector. It accepts all numeric
types, boolean types, and vector type. In each row, the values of the input columns
will be concatenated into a vector in the specified order.

Figure 14: Result of VectorAssembler

39

6.1.4 StandardScaler

StandardScaler is an estimator which can be fit to a dataset of vector rows to produce
a dataset to have unit standard deviation and/or zero mean features by computing
summary statistics[66]. It has two parameters withStd and withMean. The withStd
parameter is set to true by default and it has a function for scales data to units
standard deviation. The withMean parameter is set false by defaults and it has a
function to build a dense output while users have sparse input data. The result of
this method show in 15

Figure 15: Result of Standard Scaler

6.1.5 Principal Component Analysis

Principal component analysis(PCA) is a statistical method that uses an orthogonal
transformation to convert a set of observations of possibly correlated variables into
a set of values of the linearly uncorrelated variable called principal component[66].
The main function of PCA is to project a vector from high dimensionality to lower
dimensionality. In our project, we have done a projection of 5 dimensional to 3
dimensional of principal components. The result of this method shown in figure
16.

40

Figure 16: Result of PCA

6.1.6 VectorSlicer

VectorSlicer is a transformer function that takes a feature vector and outputs a new
feature with a sub-array of the original features[66]. Vector slicer accepts a vector
with indices which specified by users. The outputs of vector slicer will be a new vector
column with values from specified indices. Vector slicer could accept two types of
input. The two types of inputs are

• Integer indices which represent the number of index vectors which we want to
retrieve, setIndices().

• String indices which represent the names of features into the vector, setNames().
This type requires vector column have an attribute group. It will result in order
features with the order given by users while they choose which sub-array of a
vector to choose.

The result of this method can be seen in figure 17.

Figure 17: Result of Vector Slicer

41

6.1.7 Normalizer

Normalizer transforms a dataset of Vector rows by normalizing each Vector to have
unit norm [66]. It uses p− norm with a default value of 2 which could be changed
into an integer with value more than 1 until infinity. This parameter will define what
kind of normalization that will be used. There are Manhattan norm (p− norm = 1),
Euclidean norm (p− norm = 2), and infinity norm (p− norm > 2). Figure 19 shows
the result of normalized vector using p − norm = 2. This normalization can help
standardize your input data and improve the behavior of learning algorithms.

6.2 Classifying market participant in Trade Dataset

6.2.1 Introduction to classification

Classification is one sub-category in supervised learning, where the purpose is identi-
fying the class of a new instance based on a training set of data containing instances
whose class membership is known and the label is a discrete value [74] [71]. This
project uses classification method in order to determine which trade belongs to whom
based on selected attributes.

This is one of the approaches that we did to explore what we could do with Spark MLlib
and it was suggested by Scila. This particular scenario is a multi-class classification
problem based on available data. There are 38 unique labels for the end user, 7 unique
labels for the member, and 19 unique labels for the user, either when participant side
is taken into consideration or not. The dataset will look like figure 18 with the label
as the target value (market participant level) and features column is the selected
attribute, both is defined by user in ml-beans.xml. Before the dataset being used by
the classifier, it was normalized first as seen in figure 19

42

Figure 18: Transformed dataset

Figure 19: Normalized features vector

6.2.2 Classifier

There are 4 different classifiers that we used in this project which are logistic regression,
multilayer perceptron, linear support vector machine combined with one-versus-rest,
and random forest. Those classifiers were chosen based on their availability and
characteristic in Spark MLlib. Each of them has their own characteristic and was
easily implemented using available Java API.

• Logistic regression classifier is a statistical model that uses probability to predict
a binary outcome. It could also be used for multi-class classification by using
multinomial logistic regression. Spark MLlib provide the multinomial logistic
regression by implementing softmax function with equation 1 to measure the

43

probability of the outcome classes k ∈ 1, 2, ...,K [57]. The equation below is
a derivation from binary logistic regression as a log-linear model, where X is
features and β is regression coefficients corresponding to its outcome [73].

P (Y = k|X, βk, β0k) =
eβk·X+β0k∑K−1

k′=0 e
βk′ ·X+β0k′

(1)

Logistic regression is usually fast to converge and Spark MLlib uses multinomial
response model with the elastic-net penalty to control that it is not overfitting.
The algorithm makes sure that all the data points will belong to one of the
classes because it uses probability to determine their class.

Figure 20: Logistic Regression

• Multilayer perceptron (MLP) is one of the artificial neural network architectures
that has more than one single layer. It is a network inspired by the biological
neural network. It comprises different layers with different amount of nodes in
it 21. Those layers are called input layer, hidden layer, and output layer. The
input layer is a layer which receives input from outside the network and the
number of nodes is based on the amount of element in features vector. The
output layer is a layer which passes along the result from within network to
outside and the number of nodes is based on the number of available class. The

44

hidden layer consists of one or more layers fully connected among themselves,
input layer, and output layer. Based on this article [48], the number of nodes
in hidden layer is equal to sum of number of inputs and outputs multiplied by
2 and divided by 3.

Figure 21: Multi-Layer Perceptron

In general, an artificial neural network has common properties of parallelism,
able to generalize within a limit, adaptive to be trained again, and is fault-
tolerance. Spark MLlib made this neural network based on feed-forward artificial
neural network and employs back-propagation for learning the model. The
nodes in hidden layer use sigmoid (logistic) function and the nodes in output
layer use softmax function for the activation function.

• Linear Support Vector Classifier (LSVC) and One-versus-Rest are combined to
make a Support Vector Machine (SVM) that could handle a multiclass problem.
Spark only provided LSVM which could only work for binary classification,
but it could be combined with One-versus-Rest. It means that each time the
classifier learn, it would take one class and classify that against the rest of
the classes as visualized in figure 22. The blue lines are a hyperplane made

45

from the highest margin between support vector from different classes. When
those LSVC are combined, there is an undecided area which doesn’t belong to
any class. The common optimization for this is by using continuous values of
SVM decision functions [1], so whichever class has a decision function with the
highest value is the class for that data point. It is represented by the black
thick line that separate those 3 classes in the figure 22 below.

Figure 22: Linear Support Vector Machine combined with One-versus-Rest

• Random Forest classifier works by randomly sampling subsets of the training
dataset, fitting a model to this subset, and aggregating the predictions from
each tree [60]. It combines many decision trees in order to reduce the risk of
overfitting and injects randomness into the training process so that each decision
tree is a bit different. The randomness was injected through subsampling the
original dataset on each iteration to get a different training set (bootstrapping)
and then different random subset of features in each tree node. Prediction for a
new instance is through majority vote where each tree’s prediction (represented
by a thick-bordered circle) is counted as a vote for one class and the label is
the class that has the most votes.

46

Figure 23: Random Forest

Random forests handle categorical features, extends to the multiclass classifica-
tion setting, do not require feature scaling, and are able to capture non-linearities
and feature interactions.

6.2.3 Classification workflow

The workflow that was implemented in this project is shown in the figure 24. The
dataset already split into a training dataset and a testing dataset by ratio 7:3
respectively. The training dataset is the dataset used when training the classifier to
understand the pattern in the data. The testing dataset is a dataset used for testing
the trained model. The general flow would be:

• Build classifier based on user selection.

• Do hyper-parameter tuning if stated true or directly train the classifier, this
step uses the training dataset.

• Use the trained model to predict the testing dataset.

47

• Evaluate the model performance using multiclass metric.

Figure 24: Classification workflow

Hyper-parameter tuning is a process of achieving the best trained model by adjusting
the value for each parameter of the classifier. A combination of parameter’s value
will run the whole classification workflow inside the hyper-parameter tuning process
and it iterates for as much as available different combinations. It has 3 part in Spark
MLlib:

• Estimator is a pipeline or algorithm to tune.

• ParamMap is sets of parameter combination which could be called as parameter
grid.

• Evaluator is a metric to measure the performance of trained model.

Each classifier has different parameter that could be tuned, thus result in different
set of parameters for them. Logistic Regression has parameter of regularization,
maximum number of iteration, elastic net, boolean condition of fit an intercept term,
boolean condition of training data standardization, and depth for treeAggregate
of number of partitions in Spark. Linear Support Vector Classifier has the same
parameters as Logistic Regression except elastic net. Random Forest has parameters

48

of maximum depth of a tree, number of tree, random seed for bootstraping and
choosing subsets, and minimum information gain. Multilayer Perceptron only has
parameters of random seed and maximum number of iteration.

Multiclass metric is an evaluator performance of a model that was used for any multi-
class problem which entail a measurement for each class separately. The components
that are included in this metric is described below.

• Confusion Matrix is an error matrix that shows performance of the algorithm
for each class.

• Accuracy is a percentage of how close to the true value (true value is 100) in
classifying the data for all class. It could also be defined as number of true
positives divided by sum of true positives and false positives of all class.

• Precision by label is a number of true positives divided by the total number
of elements (sum of true positive and false positive) labeled as belonging to
that particular class. It range from 1 as the best score and 0 as the worst.

• Recall by label is a number of true positives divided by the total number
of elements that actually belong to the positive class. It measures how many
correct prediction for that particular class started from 0 as the lowest and 1 as
the highest.

• F-measure by label is a measurement that consider precision and recall
through their average with 0 as the lowest and 1 as the highest possible result.

• Weighted precision is average precision of all classes.

• Weighted Recall is average recall of all classes.

• Weighted F-measure is average F-measure of all classes.

6.2.4 Result

There were a lot of experiment done with different parameter and configuration when
trying to solve this classification problem. We tried to see the difference effect for each
different parameter such as different model of classifier, difference between normalizing
attributes or not, different type of market participant level, different size of dataset,
different attributes, and the effect of hyper-parameter tuning. There are attributes
that was extracted from another attribute, for example timeOfTrade is converted
into tradeYear, tradeMonth, tradeDate, tradeHour, tradeMinute, and tradeSecond.

49

The complete list of available attribute to be used is in ml − columns.xml. All
the features used were normalized except if it’s stated otherwise as shown in table
1 where the normalization did not improve the performance significantly. Even
though normalization does not give the improvement we are looking for, we still use
normalization for all the experiments stated in this section.

Table 1: Accuracy of normalized attributes and raw attributes

Normalized Logistic Regression SVM Random Forest MLP
No 32.02% 23.29% 33.27% 32.23%
Yes 31.96% 27.25% 32.62% 32.29%

There are 4 different classifier that we used as explained in the beginning. We
run them using the dataset of 1 day with attributes of price, volume, tradeHour,
tradeMinute, tradeSecond and class of bidMember, except if it is stated otherwise in
the table. Multiclass metric gave the result as shown in table 2 and it seems that all
the classifiers gave similar result.

Table 2: The result of different classifier

Classifier Accuracy Weighted Precision Weighted Recall Weighted F-measure
Logistic Regression 31.96% 0.102156 0.319618 0.154826
SVM 27.25% 0.163225 0.27251 0.182492
Random Forest 32.62% 0.369401 0.326178 0.181582
MLP 32.29% 0.247773 0.322898 0.181582

We also tried increasing the dataset size by using a different number of days, from 1
day, 1 month and the whole data. Table 3 shows that the amount of dataset does
not really change the model’s performance. We also compared the difference between
using hyper-parameter tuning or not. Table 4 shown that hyper-parameter tuning is
not improving the performance for this dataset.

Table 3: Accuracy of different size of dataset

Date range Instances Logistic Regression SVM Random Forest MLP
1 day 11301 31.96% 27.25% 32.62% 32.29%
1 month 134376 31.44% 27.85% 31.45% 31.44%
Whole data 1195040 31.63% 29.84% 31.63% 31.63%

50

Table 4: Accuracy of hyper-parameter tuning

Hyper-parameter tuning Logistic Regression SVM Random Forest MLP
No 31.96% 27.25% 32.62% 32.29%
Yes 31.96% 31.99% 31.96% 32.05%

Other experiments was done by looking at different type of market participant as the
class as shown in table 5. It shows that the best performance is when we tried using
the Member level of market participant. The pattern is more distinguishable if we
classify them as Member without the need to look at certain side of participant.

Table 5: Accuracy of different market participant level

Class Unique labels Logistic Regression SVM Random Forest MLP
askEndUserRef 38 3.88% 3.34% 9.57% 6.02%
askUser 19 9.99% 5.99% 12.88% 10.58%
askMember 7 30.98% 24.03% 31.45% 30.98%
bidEndUserRef 38 3.46% 3.31% 7.07% 6.56%
bidUser 19 7.57% 6.23% 11.15% 10.17%
bidMember 7 31.96% 27.25% 32.62% 32.29%
allEndUserRef 38 3.19% 3.19% 7.10% 3.85%
allUser 19 9.53% 5.85% 11.04% 9.31%
allMember 7 31.12% 24.06% 31.11% 31.15%

The last experiments that we did was changing the combination of attributes as
shown in table 6 where we use 1 month dataset instead of only 1 day. It shows that
if we put other level of market participant, the model perform perfectly up until it is
too perfect (100% accuracy). It seems that the pattern between market participant
level is very distinguishable and thus affect the result. It is also possible that the
result in table 6 would be overfitting which then only applies in this particular data
that we have.

51

Table 6: Accuracy of different attribute combination

Attributes Vector length Logistic Regression SVM Random Forest MLP
price, volume 2 31.41% 22.94% 31.41% 31.41%
price, volume,
tradeDate,
tradeHour,
tradeMinute,
tradeSecond

6 31.55% 24.25% 31.57% 31.55%

price, volume,
tradeDate,
tradeHour,
tradeMinute,
tradeSecond,
bidUser

25 99.99% 98.11% 82.23% 60.80%

price, volume,
tradeDate,
tradeHour,
tradeMinute,
tradeSecond,
bidEndUserRef

44 100.00% 100.00% 66.09% 65.11%

price, volume,
tradeDate,
tradeHour,
tradeMinute,
tradeSecond,
bidEndUserRef,
bidUser

63 100.00% 31.22% 84.25% 65.50%

tradeDate,
tradeHour,
tradeMinute,
tradeSecond,
bidEndUserRef,
bidUser

61 100.00% 100.00% 92.26% 100.00%

price, volume,
bidEndUserRef,
bidUser

59 100.00% 99.84% 92.26% 75.79%

52

6.3 Clustering

Clustering is a kind of unsupervised learning and it is a good choice to use when the
data is unlabeled. The purpose clustering is to divide all data points in the data
into different clusters. The data inside of each cluster should contain similar data.
Most clustering algorithms are trained with n data points with the purpose to find
k clusters using some kind of metric for similarity between each of the data points.
The ideal cluster contains data that are both compact and isolated. Because of the
unlabeled data, one of the challenges with clustering is to set the correct value of k.
Another challenge with clustering is that most algorithms that are commonly used
are sensitive to noise[31].

Figure 25: Example of three clusters

Three different clustering algorithms that are included in Spark MLlib are K-means,
Bisecting K-means and Gaussian Mixture model.

6.3.1 K-means

The K-means algorithm is one of the most common clustering algorithms. K-means
starts with randomly creating k cluster centers called centroids. Then each data
point from the set is assigned to the centroid it is closest to. The centroids are then
recalculated and changed so that they are in the center of all other data points in the

53

cluster. Distance is calculated by squared Euclidean distance. The second and third
step are repeated until it converges to the final clustering. The goal is to minimize
the squared error distance for each data point to its cluster centroid[31].

Problems with K-means it that it often will have a runtime complexity that is at
worst exponential. The other problem is that K-means might not always find the
global optimum, it sometimes converges to a local optimum instead. The speed and
how simple the algorithm is will make up for the problems though. A variant of
K-means called K-means++ have been created to remove these problems by making
optimal initialization of the initial centroids[3].

The implementation of K-means in spark uses a variant of K-means++ called K-
means‖. The K-means‖ is parallelized and is used to select optimal initial centroids
instead of random ones like in the original K-means. The initialization algorithm starts
by randomly choosing one of the data points as a centroid. Then the other centroids
are chosen by the rest of data points. It is calculated with probability proportional
to the nearest already existing centroid and the data point. The k-means‖ also uses
an oversampling factor that is not used in the k-means++[3].

6.3.2 Bisecting K-means

An other algorithm in spark is the Bisecting K-means algorithm. It is a combination
of K-means and Hierarchical clustering. It starts with one big cluster containing
all data and then uses K-means with k set to 2 to split the cluster into two parts.
This is then repeated for each new cluster that is created until it has produced k
clusters[69].

There are two types of strategies that used in hierarchical clustering. This two types
strategies:[59]

• Agglomerative or bottom-up approach, this approach will start in its own cluster,
and pairs of with other clusters and merged as it moves to higher hierarchy.

• Divisive or top-down approach, this approach starts from one cluster, and it will
split recursively as it moves down to lower hierarchy

Bisecting K-means algorithm in spark has used divisive or top-down approach.

Bisecting K-means is a lot slower than the original K-means because needs to run
the K-Means algorithm several times before it converges. But it can often find better
clusters and is sometimes more likely to find the global optimum.

54

6.3.3 Gaussian Mixture Model

Gaussian Mixture Model (GMM) is a composite distribution where points are drawn
from one of the K gaussian sub-distributions where each of points will have own
probability or a probabilistic model that assumes all the data points are generated
from a mixture of a finite number of Gaussians distributions with unknown parameters
[59][50]. Gaussian Mixture Model is an extension of K-Means algorithm. It is similar
to Fuzzy K-means because GMM will produce probability result of each data point
for each cluster. After all, Gaussian Mixture could be categorized as a density
algorithm[71]. In this project, we use Spark MLlib as our machine learning library
and this library has support by Spark. In MLlib, Gaussian Mixture Model will use
expectation-maximation approach to induce the maximum-likelihood model[59].

Expectation-maximization is a method to find the maximum likelihood estimates in
the presence of missing or hidden data[10][4]. This method divided into two different
steps:

• E-step of expectation step is to find weights of each point and calculate the
probability of membership in each cluster of each data point.

• M-step or maximization step is for each cluster to update the location, normaliza-
tion, and shaped based on all data points, making use of the weights.

With the expectation-maximization approach, Gaussian Mixture model will not have
a hard-edged sphere like in K-Means, but it will make a smooth Gaussian model
[50]. However, this approach has the same problem like other other machine learning
approach which is miss global optimal solution, nevertheless, we can overcome this
problem by using random starting location for each running.

Gaussian mixture model has three different covariance type such as diagonal, spherical,
full which can be seen in figure 26. These three types of covariance has their own
degree of freedom in the shape of clusters. Diagonal covariance will determine a
size of the cluster along each dimension can be set independently where resulting
an ellipse constrained along with axes. Spherical covariance will make a shape of
the cluster in all dimensions are equal, this method will have a result which similar
to k-means, though it is not entirely equivalent. Full covariance is the last type of
covariance in Gaussian mixture model which more complicated and computationally
expensive. Full covariance will allow each of clusters to be modeled ellipse with
arbitrary orientation [71].

55

Figure 26: Covariance Type

In Gaussian mixture model, we will still observe overfitting problems which happens
in other machine learning algorithms. We can solve this problem by doing cross-
validation. Furthermore, there is another way we can do to avoid the overfitting by
adjusting the model likelihood using Akaike information criterion (AIC) or Bayesian
information criterion (BIC) [71]. This two methods can help us to determine a good
number of cluster for our data. We can determine a good number of clusters by using
elbow method from the result of AIC and BIC. In this project, we use MATLAB do
to AIC and BIC analysis because Spark does not support this kind of analysis.

6.3.4 Anomaly detection

When the clusters are found using some clustering algorithm, the clusters can be
used to find anomalies. The anomalies are discovered by looking at the outliers in
the data. An outlier is a data point that lies far away from other data points and
does not really belong in any cluster. There exist two different kinds of outliers. One
is the kind of outliers that can be found inside of a cluster that has a point that has
a bigger distance to the center of the cluster than most of all the other points in that
cluster. The other kind of outlier are all points of a very small cluster that is also far
away from all other clusters[76].

56

Figure 27: Outliers in Clusters

6.3.5 Implementation

In this project, we have implemented the K-means and Gaussian Mixture Model
for anomaly detection. We also collect statistics from the clusters to be able to do
analysis on the clusters.

There are several parameters in our clustering implementation that can be specified
by the user. For these parameters, we are using java beans and the parameters can
be found in ml-beans.xml and ml-models.xml. There are parameters that are used for
all clustering algorithms and other that are only used for specific algorithms.

The parameters for all clustering algorithms are a number of clusters and number
of features when using PCA. In K-means, the percentage of the data that would
be considered as anomalies in each cluster needs to be specified and in GMM the
threshold value for anomalies needs to be set.

The anomalies found using the K-means algorithm are calculated by using the squared
Euclidean distance. The distanceThreshold parameter is used to decide how much of
each cluster’s members are considered to be anomalies. For the GMM we use the
weight probability.

We use a java class UnsupervisedModel for the clustering. It can be used with all

57

clustering algorithms that are implementing the UnsupervisedLearning interface.
This means that new clustering algorithms like Bisecting K-means can be created
by implementing the interface. There are three methods that must be implemented
for all clustering algorithms. The buildModel method that is training the model, the
getClusterDataset that returns the dataset of the trained model with the information
of what cluster each data point belongs to and the showResult that will show the
statistics of the clusters.

6.3.6 Experiments

We have done experiments with five different column from the Order Dataset. There
are price, volume, hour part of timestamps, minute part of timestamps, and the
second part of timestamps. We have used these attributes because Scila suggested
us to use them. We have set some parameters for unsupervised algorithms ourselves
when doing the experiments. We chose five as the number of clusters and three for the
result of PCA. Weight probability in Gaussian mixture models has a value from 0 to
1. It means if weight probability for a data point getting closer to zero, it means that
data point does not belong to that cluster[37]. We used 0.9 for distance threshold in
K-means and 0.5 for weight probability threshold in GMM.

6.3.7 Result

In this experiment we useed the order data from 06 may 2017 and it consists of
347156 rows data for both KMeans and Gaussian mixture model algorithm.

The tables 7 and 8 show the results from the K-means experiments. For each cluster,
we can compare the distance to the centroid for the outliers with the mean distance
in that cluster. For example in cluster 1,4 and 5 we can see that the outliers have
a much higher distance than the average of that cluster while in cluster 2 there is
only a small distance. This means that the outliers in cluster 2 might actually not
be outliers. We used the same threshold for all clusters and it might be better to
use different because all clusters have different sizes and other important differences.
Moreover, we can see from figure 29, there is some data which could be categorized
as potential outliers from the SCILA data because it has spread far away from other
data.

In the table 9 and 10, it shows the result of the Gaussian mixture model algorithm.
It should return a weighted probability of each data points for each cluster. In this

58

experiment, we have set weight probability threshold at 0.5. It means that if data
points do not have weight probability with a value higher or equal than 0.5, it should
consider the data point as ambiguous data of the cluster. As we could see at table
10, some of the weighted probability has distributed equally for two or more clusters.
It means that data points would place in between two or more clusters. Moreover, It
means that data points do not have uncommon properties for one cluster and we can
categorize them as ambiguous data of the clusters. We give a flexibility to users for
determined the threshold of weight probability because it would have different value
while it needs to run with the actual data from SCILA AB. However, this weight
probability could be useful while we have more information such as the approximate
number of cluster, but, unfortunately, in this project, SCILA could not give that
information to us. However, we could use another approach to attempt to find outliers
in this data. We could determine the smallest cluster that could be an outlier cluster
and in figure 30, the dark green cluster could be an outlier cluster because it was the
smallest cluster than other clusters.

Table 7: Kmeans average distance from data points to centroid for each cluster

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
2.8637 7.0018 295.0512 5.7225 3.912

Table 8: Distance to centroid for outliers in each cluster

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
88.1736 12.2218 428.9979 79.812 92.296
75.1058 11.8306 356.2108 79.1606 90.6174
75.0593 11.3948 347.68 77.8769 90.3598
69.3013 11.125 347.6308 74.7163 89.3841
69.2294 10.7322 346.2992 74.2232 87.7603

59

Figure 28: Result of K-Means

Figure 29: Result of K-Means Distance
Calculation

60

Table 9: The Weight Probability of Gaussian Mixture Models

Data Point Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
1 0.0011 0.9968 0 0.0021 0
2 0.0012 0.9964 0 0.0024 0
3 0.0009 0.997 0 0.0021 0
4 0.001 0.9966 0 0.0024 0
5 0.0009 0.9971 0 0.0021 0

Table 10: The Weight Probability of Gaussian Mixture Models for Ambiguous Data

Data Point Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
1 0.4138 0 0.1283 0.4495 0.0084
2 0.4166 0 0.1293 0.4457 0.0084
3 0.0012 0.4061 0.2033 0.3887 0.0008
4 0.1744 0.4061 0.0006 0.4176 0.0012
5 0.0012 0.4061 0.2033 0.3887 0.0008

Figure 30: Result of Gaussian Mixture
Model

61

Figure 31: Result of Gaussian Mixture
Model for Ambiguous Data

As we can see from figure 30 and 28, there is overlap between clusters from the data
which was given by SCILA. It has made unsupervised learning become difficult to do.
An other problem is that we had limited knowledge about the data from SCILA. We
had problems to evaluate the anomalies that we found using the clustering algorithms.
Since the data that we had was random and we did not know if the data contained
anomalies or not. This way of doing clustering analysis would work better if we had
one training set with no anomaly data inside and one test set that contained some
anomalies. Then we would know that the model being trained correctly since training
a model with data that contains noise can make a model produce wrong centroids.
Moreover, we do not have any prior knowledge of how many clusters exists in this data
or knowledge about any anomalies data which would be useful for confusion matrix.
This confusion matrix would be useful to know the accuracy of our unsupervised
algorithm.

6.4 Forecasting stock closing price

6.4.1 Introduction to Time series

Time series is a collection of data-points measured over a period of time.[45] Examples
of time series can be opening/closing stock price, daily/monthly sales, yearly income,
monthly revenue etc. Time series analysis uses various statistical methods to extract
meaningful insights and characteristics from the time series data. [45] Time series
analysis can be used to determine a trend from the data and also forecast by fitting
appropriate models to it. [45] A typical time series would look like[55]:

62

Figure 32: Passenger Data

6.4.2 Components of Time series

A time series can be decomposed into four elements:

1. Trend: When there is a long-term increase/decrease in the time series data
then a trend exists.[25] The trend can be an increasing trend or a decreasing
trend.

2. Seasonality: If the time series is influenced by seasonal factors such as the
end of the month, a day of the week etc. then a seasonal pattern exists. [25]
This seasonal pattern usually exists for a fixed period.[25]

3. Cycles: A cyclic pattern consists of a long-term irregular swings of the time
series data. They usually last more than a year.[17] A cyclic pattern is usually
observed in Business and Economical data.

4. Residual: The residual or the Error component of the time series does not
contain any trend, seasonality or cycle.[25] It is a random fluctuation of data
over a period of time. [17]

63

6.4.3 ARIMA Model

The term ARIMA stands for Auto-Regressive(AR) Integrated(I) Moving Average(MA).[40]
It is a forecasting technique which predicts the future value of time series data. It is
considered as a short-term forecasting technique which requires at least 40 historical
data points in the time series.[40] It is sometimes called as Box-Jenkins method and
works best when the time series data has a stable pattern without any outliers.[40]
Arima Model is usually notated by ARIMA(p,d,q) where p,d, and q are the levels of
AR, I and MA parts.[70] The main motive of the ARIMA model is to display a white
noise or no pattern at all in the end which means the model should have extracted
all the information from the data series and do forecasting.[70] Depending upon the
time series data, the ARIMA model can be abbreviated as below:

1. When the model only contains the Auto-Regressive term, then it is abbreviated
as AR model[49]

2. When the model only contains the Moving Average term, then it is abbreviated
as MA model[49]

3. When the model does not contain the Integrated/Difference part, then it is
abbreviated as ARMA model[49]

An ARIMA(p,d,q) Model can be represented as:[24]

Yt = c+ φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p + θ1et−1 + θ2et−2 + ...+ θqet−q + et

6.4.4 Stationarity

Before moving into the details of ARIMA model, we need to know the concept of
stationarity. A stationary time series is obtained when the mean and variance is
constant over a period of time. Any time series with a trend or seasonality (non-
stationary series) should be converted to a stationary series. This is because it is easy
to predict a stationary series as its mean and variance will be same in the future also.
Example of a stationary series is a white noise which does not have any underlying
pattern.[6]

64

Figure 33: White noise

6.4.5 Integrated (I)

The first step in the ARIMA model is the Integrated part. In this part, if the time
series data is non-stationary series with trend or seasonality then it is converted to
a stationary series. Differencing is one of the common ways of converting a Non-
stationary series to a Stationary series [70] It is done by subtracting the current time
series with its lagged series.[40] Differencing can be performed as many times in the
time series data till we get a stationary series. This is called as Order of differencing.
A ”first order difference” means the Differencing is performed only once. A ”second
order differencing” means that the result of the ”first order difference” is further
differenced again.[70] Depending upon the order of Differencing, the value of ”d” in
notation ARIMA(p,d,q) is set. The formula for different order of Differencing can be
shown:[70]

1. No Differencing(d=0) :
Y 1
t = Yt

65

2. 1st order Differencing(d=1) :

Y 1
t = Yt − Yt−1

3. 2nd order Differencing(d=2) :

Y 1
t = Yt − Yt−1 − (Yt−1 − Yt−2)

As an example, consider the below sales data after 1st differencing[70]:

Figure 34: Time series after 1st order differencing

66

6.4.6 Auto-Regressive (AR) Model

Once the time series data is made stationary with the help of differencing, we need to
check whether previous period’s data values have any influence on the current period
data values.[70] For example, April’s stock market value can have an influence on
the May’s stock value. This can be done with the help of an Auto-Regressive Model.
In this model, the forecast of the variable is be done using a linear combination of
its past values.[22] An Auto-Regression Model of order p (AR(p)) can be written as:[22]

Yt = c+ φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p + et

where c is a constant, et is the white noise and

φ1, φ2, ..., φp

are the parameters of the model. The order p represents the number of lags in the
model. For example, AR(1) or ARIMA(1,0,0) model can be represented as,

Yt = c+ φ1Yt−1 + et

6.4.7 Moving Average (MA) Model

The Moving Average Model is also a Regression like model which extracts the influence
of previous period’s error term on the current period error term in a time series.[70] In
this model, the forecast of a variable is done with a simple multiple linear regression
of its past error values. A Moving Average of order q can be represented as:[23]

Yt = c+ θ1et−1 + θ2et−2 + ...+ θqet−q + et

where c is a constant, et is the white noise and

θ1, θ2, ..., θq

are the parameters of the model. The order q represents the number of lags in the
model. For example, MA(1) or ARIMA(0,0,1) model can be represented as,

Yt = c+ θ1et−1 + et

67

6.4.8 General Steps in ARIMA Model

1. Time Series visualization
Visualize the time series to check for trend, seasonality or some random behavior.

2. Stationarize the time series
If there is any trend or seasonality in the time series, we need to convert the
series to a stationary series with the help of Differencing. As mentioned earlier,
the original time series is converted to stationary series because it is easy to
predict a stationary series as its mean and variance will be same in future also.

3. Plot ACF/PACF graphs to find the optimal parameters for ARIMA
Model
Once we get a stationary series, we need to identify two things:

(a) Whether the time series is an AR or MA process?[68]

(b) What is the order of AR or MA process?[68]

The above questions can be answered with the help of an ACF(Auto-Correlation
Function) plot. ACF plot is a total correlation between different lags.[68] For
example, if the stock price at time t is x(t). Then the ACF plot shows the
correlation of x(t) with x(t-1), x(t-2) and so on. [68]

We know that Moving Average extracts the influence of previous period’s error
term on the current period error term. At lag n MA series, we will not get any
correlation between x(t) and x(t-n-1).[68] So, the ACF plot will cut off at the
n − th lag which becomes easy for us to find the order of MA series. For an
AR series, the ACF plot will gradually decline without any cut-offs. If the ACF
plot decays slowly, then the series is not stationary.

In order to find the lag for an AR series, we can use the PACF(Partial Auto-
Correlation Function) plot. If the PACF plot cut offs at lag k, then it generally
refers to AR(k) Model. If the PACF plot drops gradually, then suggests an MA
Model.[21]

68

Figure 35: ACF and PACF plots

In figure 10, we can observe that the PACF plot cuts off at 2nd lag and the
ACF plot drops gradually. This suggests that it is an AR(2) Model.

4. Build the ARIMA Model
After we have found all the parameters for the ARIMA i.e p,d and q values, we
can build the ARIMA model.

5. Forecast the future values
Once we have built the ARIMA Model, we can forecast the future values of any
time series. We can also visualize the time series with the forecasted values to
check whether the model has given good prediction or not.[68]

6.4.9 Implementation

In this project, the ARIMA Model is implemented in R programming language.
With the help of this model, we are going to predict the future stock closing
price values. Stock closing price is chosen because it reflects all the activities of
the index in a trading day.[2] The time series data which consists of a date, the
stock’s name and the closing stock price is generated from the Trade table of
Scila data. Sample time series data is shown below:

69

Date Stock closingPrice

2017-07-21 AAPLUSD 97030000

2017-05-14 AAPLUSD 96930000

2017-06-12 Cocoa3m 5900000000

2017-06-02 Cocoa3m 5780000000

2017-06-09 Cocoa3m 5710000000

2017-07-12 ERICSEK 66700000

2017-05-04 Eurodollar3m 105080000

2017-08-31 GOOGQ590 119900000

2017-06-28 GOOGQ595 126800000

2017-07-15 Gold1m 1652000000

2017-06-24 HIQ3SEK 111200000

2017-04-30 LMECopper3m 1700000

2017-06-01 LMECopper3m 1725000

2017-06-18 NatGas17 3579000

2017-05-09 PhelixDayBase 35000000

2017-07-27 SCILA2SEK 16700000

Figure 36: Stock data

The above table is a snapshot of Scila stock data for May, June and July month.
There are 39 different stocks in the Scila data. We are going to predict the
future values for each stock using ARIMA model. This data is generated with
the help of Apache Spark and ARIMA model is executed in R programming
language.

70

Figure 37: Flowchart for Arima forecast

The time series data which has been generated in Apache Spark is stored in an
intermediate CSV file and this CSV file is used as an input for the R ARIMA
script. The user has the freedom to choose the dataset to forecast such as
a month or a year. Then the user also can change the number of days for
forecasting. The data has been split based on the Stock names which will give us
39 independent time series datasets for each stock. For each independent stock
dataset, the data has been divided into training(75%) and testing dataset(25%).
It is recommended that the user choose a larger number of days to forecast with
an increase in the size of the dataset. Since we split the data into train and
test dataset, the model will not have enough days to forecast. So, the number
of days to forecast should be greater than the test dataset in order to find the
accuracy of the ARIMA model.

We can manually set the parameters i.e the orders of Auto-Regression, Integrated
and Moving Average process for each stock dataset by looking at the ACF/PACF
plots, but it is not feasible. So, we use auto.arima() function in R to fit the
ARIMA model with the training dataset. This function finds the optimal
parameters for different stock datasets. We can use the forecast() function to
forecast the future stock values for each stock. We can then find the accuracy
of the model with the test dataset. The accuracy() function in R is used to
get the accuracy of the model which produces values of different error terms
such as Mean Square Error(MSE), Root Mean Square Error(RMSE) etc. If

71

we feel that the model has not given good accuracy, then we can manually set
the parameters for ARIMA(p,d,q) model and improve the accuracy with the
help of ACF/PACF plots. Currently, the R script produces two pdf files for
visualization of forecasted data:

(a) Where the whole dataset is considered as one set and forecasted plots for
every stock are produced

(b) Where the data is split into training and testing set. This can help us to
get the accuracy of the model with the test dataset.

The figure 38 is a visualization of one of the stocks from Scila dataset with
predicted future values:

Figure 38: SPYE130 stock

The stock price (millions) is plotted against time for the stock ”SPYE130”.
We have considered two months (July and August 2017) of data for the above

72

visualization and forecasting is done for 15 days. Since it is not a large dataset,
we are forecasting for few days. The red line in the above graph represents the
original data and dotted blue line represents the predicted data by Arima model
surrounded by confidence interval 80% and 95% regions. The above graph
has an ARIMA(2,1,1) model where the parameters are automatically set by
auto.arima() function. This means that the AR(Auto-regression) part has lag 2,
the data series had to be differenced once to make the original series stationary
(Integrated part is 1) and MV(Moving Average) part has lag 1. Below is the
accuracy of the above ARIMA(2,1,1) model:

Figure 39: SPYE130 stock accuracy

The Root Mean Square Error of the stock ”SPYE130” for test data is 1.047
which is good. For ARIMA model to give even better prediction, we need to
have more data such as 4 or 5 years time duration. With more data, the model
gives good prediction and accuracy.

73

6.5 Deep Learning 4 Java

6.5.1 What is DL4J?

To further expand on the Machine Learning part of the project we decided to
investigate what different types of neural networks could possibly be used in association
with the data provided by Scila. After we have done researching and testing, we
determined that the neural network included in the Apache Spark standard library
lacked a lot of functionality, only providing the use of a multi-layer perceptron neural
network with limited options for configuration [58].

Looking beyond Apache Sparks provided machine learning library we decided to try
implementing a neural network included in the Deep Learning 4 Java library(DL4J).
DL4J is an open-source, JVM-based toolkit for building, training and deploying
neural networks. It was built for Java and Scala and is well integrated with Spark. It
provides tools to configure, train, and evaluate neural networks [35].

Compared to the Apache Spark neural network DL4J contains a wide range of different
models and configurations of neural networks. Besides a multi-layer perceptron
network used in Spark, it provides you the possibilities to set up a recurrent network,
a long-short-term memory network and Restricted Boltzmann machines to name a
few [34].

6.5.2 Data requirements for DL4J

All input to the deep learning networks – whether it’s words, images or other data –
must be transformed into numbers known as vectors, in a process called vectorization
[32] [63]. The Deep Learning 4 Java networks require the training and test datasets
to be in the DataSet data structure. DataSet differs from the Apache Sparks Dataset
data structure and is part of the ND4J library. ND4J is a library associated with
DL4J and is a library for using N-dimensional arrays in Java [43].

An ND4J DataSet consists of two INDArrays, which is the data structure for numerical
arrays within the ND4J library. The first INDArray represents the features vector
and the second INDArray represents the labels vector [41] [42]. The initialization of
an INDArray is done with the ND4J objects create a method and requires the input
to be a numerical and primitive Java data type [43].

74

6.5.3 Transforming our data from Spark to DL4J

Deep Learning 4 Java comes with an ETL 2 library called DataVec which purpose is
to prepare the data to be used by DL4J. Unfortunately, none of the functionality in
DataVec was suitable for usage with the data we already keep processed and cached
inside Apache Spark, most data management in DataVec is designed to process data
from disk storage [33].

Instead, we opted to design our own ETL process by taking advantage of some of
Spark MLLib features, Spark User-Defined functions and Java 8 Utilities.

The below figure shows how the process from Spark Dataset to DL4J ready DataSet
takes place. The gray objects represent the data structure of the data in that current
stage. The blue objects represent the functions being called at that stage.

2Extract, Transform, Load: https://en.wikipedia.org/wiki/Extract,_transform,_load

75

https://en.wikipedia.org/wiki/Extract,_transform,_load

Figure 40: Flowchart depicting the general DL4J transformation.

76

6.5.4 DL4J Neural Network

While testing the DL4J data transformer and DL4Js neural network functionality
we decided to implement a simple one layer feedforward neural network. The main
goal of this of the neural network implemented as a proof of concept for DL4J and
making sure that the data transformer worked successfully. Since the data provided
was randomized and not optimal for machine learning we decided not to try and
optimize or broaden the implementation.

77

7 Conclusions

When we were provided with the specifications, the main aim provided for us was to
first see if we could utilize spark to parse the Scila propriety data format in manner
that would be useful at a large scale, and secondly, use it then to create a spoofing
detection mechanism and separately, use it in machine learning for anomaly detection.
The broad range of the specifications allowed us to approach the problems on our
own terms and we were able to arrive at satisfying conclusions which are mentioned
below.

The main thing to understand about parsing the Scila data is that the JSON files
cannot be read directly by Spark’s API in order to create the datasets the SQL queries
used in the spoofing detection expects. Due to the need to pre-process the input
data, which slightly increases the time required in reading the data as the processing
required increases.

There is a major difference in both memory usage and computation times when
using cached data, parquet, the order in which and the method how the files are
read and processed. The machine learning requires the data in a particular format
while spoofing benefits from another, it is configurable to make a choice between
two different implementations. One parses the data on a day-by-day basis while the
other combines all the days into a much bigger dataset before performing any SQL
queries.

By parsing the data on a day-by-day basis, some efficiency in Apache Spark’s laziness
is gained but performance in other areas is lost. Most notably is how the data can be
cached more efficiently but more overhead to parse each dataset.

We were able to use SparkSQL to make filters for spoofing detection. It worked as
per the requirements and in accordance with the specifications. After applying the
filters we managed to obtain orders which fell amongst the criteria. The user can
modify the parameters according to their discretion and ensure that they can widen
or narrow their range. We found that there was no one specific parameter that could
grantee and instead, required managing the parameters together.

We were able to utilize machine learning for this project in different approaches.
The available dataset made it hard to actually distinguish some pattern, but we
managed to do some experiments that could show a basic idea of what could be
done using Spark and other available tools to be combined with it. Spark has a
good library for machine learning, but it still has imperfection for supervised and

78

unsupervised learning. However, there is nothing at all for time series algorithm. It
does not have any time series model that could easily implement and that is why we
need to implement time series model in R. In overall, spark MLlib is not as good as
other libraries such as Scikit-learn and R. In clustering models, it has difficulty to
do outliers detection. Moreover, it has not a give good result while we have used
supervised learning.

8 Future work

There are still a lot of work that could be done in this project, but with the limitation
of time and resources that we had made it impossible to do more. It would be great
if the future works could use real big data and more directed goals. We suggest these
future work for anyone who is interested in exploring more.

• Explore the latest technology such as Apache Flink for streaming and or batch
processing.

• Implement the spoofing detection mechanism while utilizing spark streaming.

• Implement DBSCAN in Spark for Java to use as anomalies detection model.

• Implement Support Vector Machine that could handle the multiclass problem
and use different kernels.

• Integrate Spark MLlib and DL4J to be able to explore more diverse types of
neural network.

79

References

[1] Ben Aisen. A Comparison of Multiclass SVM Methods. http://courses.

media.mit.edu/2006fall/mas622j/Projects/aisen-project/. (Accessed
on 21/12/2017). Dec. 2006.

[2] Adebiyi A Ariyo, Adewumi O Adewumi, and Charles K Ayo. “Stock price
prediction using the ARIMA model”. In: Computer Modelling and Simulation
(UKSim), 2014 UKSim-AMSS 16th International Conference on. IEEE. 2014,
pp. 106–112.

[3] Bahman Bahmani et al. “Scalable K-Means++”. In: (2012). url: http://
theory.stanford.edu/~sergei/papers/vldb12-kmpar.pdf.

[4] Sean Borman. The Expectation Maximization Algorithm A short tutoria. https:
//www.cs.utah.edu/~piyush/teaching/EM_algorithm.pdf. (Accessed on
17/12/2017).

[5] Dhruba Borthakur. HDFS Architecture Guide. https://hadoop.apache.org/
docs/r1.2.1/hdfs_design.html. (Accessed on 05/12/2017). Apr. 2013.

[6] Jason Browniee. How to Check if Time Series Data is Stationary with Python.
https://machinelearningmastery.com/time-series-data-stationary-

python/. (Accessed on 14/12/2017). Dec. 2016.

[7] Jason Brownlee. Why One-Hot Encode Data in Machine Learning? https:

//machinelearningmastery.com/why-one-hot-encode-data-in-machine-

learning/. (Accessed on 19/12/2017). July 2017.

[8] Checkstyle. checkstyle - Checkstyle 8.5. http://checkstyle.sourceforge.
net/. (Accessed on 08/12/2017). Nov. 2017.

[9] Checkstyle. Google Java Style Guide. http://checkstyle.sourceforge.net/
reports/google-java-style-20170228.html. (Accessed on 08/12/2017).
Feb. 2017.

[10] Yihua Chen and Maya R. Gupta. EM Demystified: An Expectation-Maximization
Tutorial. https://www2.ee.washington.edu/techsite/papers/documents/
UWEETR-2010-0002.pdf. (Accessed on 17/12/2017).

[11] CircleCI. Overview - CircleCI. https://circleci.com/docs/2.0/about-
circleci/. (Accessed on 08/12/2017). 2017.

[12] databricks.org. Reading JSON Files. https://docs.databricks.com/spark/
latest/data-sources/read-json.html. (Accessed on 21/12/2017).

80

http://courses.media.mit.edu/2006fall/mas622j/Projects/aisen-project/
http://courses.media.mit.edu/2006fall/mas622j/Projects/aisen-project/
http://theory.stanford.edu/~sergei/papers/vldb12-kmpar.pdf
http://theory.stanford.edu/~sergei/papers/vldb12-kmpar.pdf
https://www.cs.utah.edu/~piyush/teaching/EM_algorithm.pdf
https://www.cs.utah.edu/~piyush/teaching/EM_algorithm.pdf
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://machinelearningmastery.com/time-series-data-stationary-python/
https://machinelearningmastery.com/time-series-data-stationary-python/
https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/
https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/
https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/
http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/reports/google-java-style-20170228.html
http://checkstyle.sourceforge.net/reports/google-java-style-20170228.html
https://www2.ee.washington.edu/techsite/papers/documents/UWEETR-2010-0002.pdf
https://www2.ee.washington.edu/techsite/papers/documents/UWEETR-2010-0002.pdf
https://circleci.com/docs/2.0/about-circleci/
https://circleci.com/docs/2.0/about-circleci/
https://docs.databricks.com/spark/latest/data-sources/read-json.html
https://docs.databricks.com/spark/latest/data-sources/read-json.html

[13] OpenStack Foundation. OpenStack. https://www.openstack.org/. (Accessed
on 05/12/2017).

[14] OpenStack Foundation. OpenStack Docs: Horizon: The OpenStack Dashboard
Project. https://docs.openstack.org/horizon/latest/. (Accessed on
05/12/2017). Dec. 2017.

[15] R Foundation. R: What is R? https://www.r-project.org/about.html.
(Accessed on 05/12/2017).

[16] The Apache Software Foundation. Apache Maven Checkstyle Plugin. https:
//maven.apache.org/plugins/maven-checkstyle-plugin/. (Accessed on
08/12/2017). Oct. 2015.

[17] David Gerbing. Time series Components. http://web.pdx.edu/~gerbing/
515/Resources/ts.pdf. (Accessed on 13/12/2017). Jan. 2016.

[18] Git. Git - About Version Control. https://git- scm.com/book/en/v2/

Getting-Started-About-Version-Control. (Accessed on 06/12/2017).

[19] Git. Git - Git Basics. https://git-scm.com/book/en/v2/Getting-Started-
Git-Basics. (Accessed on 06/12/2017).

[20] hortonworks.com. What is Tungsten for Apache Spark? https://community.

hortonworks.com/articles/72502/what-is-tungsten-for-apache-spark.

html. (Accessed on 21/12/2017).

[21] Chih-Ling Hsu. Time Series Analysis and Models. https:// chih- ling -

hsu.github.io/2017/03/20/time-series. (Accessed on 19/12/2017). Mar.
2017.

[22] Rob J Hyndman and George Athanasopoulos. Auto Regressive Model. https:
//www.otexts.org/fpp/8/3. (Accessed on 18/12/2017). Sept. 2017.

[23] Rob J Hyndman and George Athanasopoulos. Moving Average Model. https:
//www.otexts.org/fpp/8/4. (Accessed on 18/12/2017). Sept. 2017.

[24] Rob J Hyndman and George Athanasopoulos. Non-seasonal ARIMA. https:
//www.otexts.org/fpp/8/5. (Accessed on 18/12/2017). Sept. 2017.

[25] Rob J Hyndman and George Athanasopoulos. Time series Components. https:
//www.otexts.org/fpp/6/1. (Accessed on 13/12/2017). Sept. 2017.

81

https://www.openstack.org/
https://docs.openstack.org/horizon/latest/
https://www.r-project.org/about.html
https://maven.apache.org/plugins/maven-checkstyle-plugin/
https://maven.apache.org/plugins/maven-checkstyle-plugin/
http://web.pdx.edu/~gerbing/515/Resources/ts.pdf
http://web.pdx.edu/~gerbing/515/Resources/ts.pdf
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://community.hortonworks.com/articles/72502/what-is-tungsten-for-apache-spark.html
https://community.hortonworks.com/articles/72502/what-is-tungsten-for-apache-spark.html
https://community.hortonworks.com/articles/72502/what-is-tungsten-for-apache-spark.html
https://chih-ling-hsu.github.io/2017/03/20/time-series
https://chih-ling-hsu.github.io/2017/03/20/time-series
https://www.otexts.org/fpp/8/3
https://www.otexts.org/fpp/8/3
https://www.otexts.org/fpp/8/4
https://www.otexts.org/fpp/8/4
https://www.otexts.org/fpp/8/5
https://www.otexts.org/fpp/8/5
https://www.otexts.org/fpp/6/1
https://www.otexts.org/fpp/6/1

[26] Yoshiro Ikura and Mark Gimple. “Efficient scheduling algorithms for a single
batch processing machine”. In: Operations Research Letters 5.2 (1986), pp. 61–
65. issn: 0167-6377. doi: https : / / doi . org / 10 . 1016 / 0167 - 6377(86)

90104-5. url: http://www.sciencedirect.com/science/article/pii/
0167637786901045.

[27] Docker Inc. What is a Container. https://www.docker.com/what-container.
(Accessed on 06/12/2017). Sept. 2017.

[28] Docker Inc. What is Docker? https : / / www . docker . com / what - docker.
(Accessed on 06/12/2017). Nov. 2017.

[29] intel.com. Intel Hyper-Threading Technology. https : / / www . intel . com /

content/www/us/en/architecture-and-technology/hyper-threading/

hyper-threading-technology.html. (Accessed on 12/01/2018).

[30] investopedia.com. Financial Instrument. https://www.investopedia.com/
terms/f/financialinstrument.asp. (Accessed on 21/12/2017).

[31] Anil K. Jain. “Data clustering: 50 years beyond K-means”. In: Pattern Recog-
nition Letters 31.8 (2010), pp. 651–666. doi: https://doi.org/10.1016/
j.patrec.2009.09.011. url: http://www.sciencedirect.com/science/
article/pii/S0167865509002323.

[32] Deep Learning 4 Java. Custom Datasets. https://deeplearning4j.org/

customdatasets. (Accessed on 15/12/2017).

[33] Deep Learning 4 Java. DataVec: A Vectorization and ETL Library. https:
//deeplearning4j.org/datavec. (Accessed on 17/12/2017).

[34] Deep Learning 4 Java. Documentation. https : / / deeplearning4j . org /

documentation. (Accessed on 15/12/2017).

[35] Deep Learning 4 Java. Overview. https://deeplearning4j.org/index.html.
(Accessed on 15/12/2017).

[36] C. Ji et al. “Big Data Processing in Cloud Computing Environments”. In: 2012
12th International Symposium on Pervasive Systems, Algorithms and Networks.
Dec. 2012, pp. 17–23. doi: 10.1109/I-SPAN.2012.9.

[37] Reid Johnson. Cluster Similarity. https : / / www3 . nd . edu / ~rjohns15 /

cse40647.sp14/www/content/lectures/14%20-%20EM%20&%20Evaluation.

pdf. (Accessed on 08/01/2018).

[38] Holden Karau and Rachel Warren. High Performance Spark. Best Practices For
Scaling & Optimizing Apache Spark. O’Reilly, 2017, pp. 7–26.

82

http://dx.doi.org/https://doi.org/10.1016/0167-6377(86)90104-5
http://dx.doi.org/https://doi.org/10.1016/0167-6377(86)90104-5
http://www.sciencedirect.com/science/article/pii/0167637786901045
http://www.sciencedirect.com/science/article/pii/0167637786901045
https://www.docker.com/what-container
https://www.docker.com/what-docker
https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.investopedia.com/terms/f/financialinstrument.asp
https://www.investopedia.com/terms/f/financialinstrument.asp
http://dx.doi.org/https://doi.org/10.1016/j.patrec.2009.09.011
http://dx.doi.org/https://doi.org/10.1016/j.patrec.2009.09.011
http://www.sciencedirect.com/science/article/pii/S0167865509002323
http://www.sciencedirect.com/science/article/pii/S0167865509002323
https://deeplearning4j.org/customdatasets
https://deeplearning4j.org/customdatasets
https://deeplearning4j.org/datavec
https://deeplearning4j.org/datavec
https://deeplearning4j.org/documentation
https://deeplearning4j.org/documentation
https://deeplearning4j.org/index.html
http://dx.doi.org/10.1109/I-SPAN.2012.9
https://www3.nd.edu/~rjohns15/cse40647.sp14/www/content/lectures/14%20-%20EM%20&%20Evaluation.pdf
https://www3.nd.edu/~rjohns15/cse40647.sp14/www/content/lectures/14%20-%20EM%20&%20Evaluation.pdf
https://www3.nd.edu/~rjohns15/cse40647.sp14/www/content/lectures/14%20-%20EM%20&%20Evaluation.pdf

[39] The MathWorks. MATLAB Product Description. https://se.mathworks.
com/help/matlab/learn_matlab/product-description.html. (Accessed on
08/12/2017). 2017.

[40] Jeff Morrison. Arima Model. http://www.forecastingsolutions.com/arima.
html. (Accessed on 14/12/2017).

[41] ND4J. ND4J Documentation: DataSet. https://nd4j.org/doc/org/nd4j/
linalg/dataset/DataSet.html. (Accessed on 17/12/2017).

[42] ND4J. ND4J Documentation: INDArray. https://nd4j.org/doc/org/nd4j/
linalg/api/ndarray/INDArray.html. (Accessed on 17/12/2017).

[43] ND4J. N-Dimensional Arrays for Java. https://nd4j.org/introduction.
(Accessed on 15/12/2017).

[44] Openstack.org. Welcome to OpenStack Documentation. https://docs.openstack.
org/pike/. (Accessed on 21/12/2017).

[45] Research Optimus. What is time series analysis? https://www.researchoptimus.

com/article/what-is-time-series-analysis.php. (Accessed on 13/12/2017).
Oct. 2017.

[46] Johan Örtenblad. MARKET SURVEILLANCE SYSTEM. https://people.
kth.se/~maguire/DEGREE-PROJECT-REPORTS/020606-Johan-Ortenblad.

pdf. (Accessed on 1/12/2017). 2001.

[47] Sean Owen. What are the differences between batch processing and stream process-
ing systems? - Quora. https://www.quora.com/What-are-the-differences-
between-batch-processing-and-stream-processing-systems. (Accessed
on 05/12/2017). Oct. 2014.

[48] Warren Sarle. Section - How many hidden units should I use? http://www.

faqs.org/faqs/ai-faq/neural-nets/part3/section-10.html. (Accessed
on 21/12/2017). Mar. 2017.

[49] PennState Eberly College of Science. Non-Seasonal ARIMA Models. https:
/ / onlinecourses . science . psu . edu / stat510 / node / 64. (Accessed on
14/12/2017).

[50] Scikit-learn. 2.1. Gaussian mixture models. http://scikit- learn.org/

stable/modules/mixture.html. (Accessed on 15/12/2017).

[51] Scila. Approaches to Market Surveillance in Emerging Markets. https://

www.iosco.org/library/pubdocs/pdf/IOSCOPD313.pdf. (Accessed on
1/12/2017). Dec. 2009.

83

https://se.mathworks.com/help/matlab/learn_matlab/product-description.html
https://se.mathworks.com/help/matlab/learn_matlab/product-description.html
http://www.forecastingsolutions.com/arima.html
http://www.forecastingsolutions.com/arima.html
https://nd4j.org/doc/org/nd4j/linalg/dataset/DataSet.html
https://nd4j.org/doc/org/nd4j/linalg/dataset/DataSet.html
https://nd4j.org/doc/org/nd4j/linalg/api/ndarray/INDArray.html
https://nd4j.org/doc/org/nd4j/linalg/api/ndarray/INDArray.html
https://nd4j.org/introduction
https://docs.openstack.org/pike/
https://docs.openstack.org/pike/
https://www.researchoptimus.com/article/what-is-time-series-analysis.php
https://www.researchoptimus.com/article/what-is-time-series-analysis.php
https://people.kth.se/~maguire/DEGREE-PROJECT-REPORTS/020606-Johan-Ortenblad.pdf
https://people.kth.se/~maguire/DEGREE-PROJECT-REPORTS/020606-Johan-Ortenblad.pdf
https://people.kth.se/~maguire/DEGREE-PROJECT-REPORTS/020606-Johan-Ortenblad.pdf
https://www.quora.com/What-are-the-differences-between-batch-processing-and-stream-processing-systems
https://www.quora.com/What-are-the-differences-between-batch-processing-and-stream-processing-systems
http://www.faqs.org/faqs/ai-faq/neural-nets/part3/section-10.html
http://www.faqs.org/faqs/ai-faq/neural-nets/part3/section-10.html
https://onlinecourses.science.psu.edu/stat510/node/64
https://onlinecourses.science.psu.edu/stat510/node/64
http://scikit-learn.org/stable/modules/mixture.html
http://scikit-learn.org/stable/modules/mixture.html
https://www.iosco.org/library/pubdocs/pdf/IOSCOPD313.pdf
https://www.iosco.org/library/pubdocs/pdf/IOSCOPD313.pdf

[52] Scila. Uppsala Student Project 2017 Financial Surveillance Using Big Data.
http://www.it.uu.se/edu/course/homepage/projektDV/ht17/specification.

pdf. (Accessed on 1/12/2017). Aug. 2017.

[53] Pivotal Software. Spring Framework Overview. https://docs.spring.io/
spring / docs / current / spring - framework - reference / overview . html.
(Accessed on 05/12/2017). Nov. 2017.

[54] Tableau Software. Tableau Desktop — Tableau Software. https://www.tableau.
com/products/desktop. (Accessed on 08/12/2017). 2017.

[55] Frontline Solvers. Time series. https://www.solver.com/time- series.
(Accessed on 13/12/2017). Dec. 2017.

[56] Apache Spark. Apache Spark FAQ. https://spark.apache.org/faq. (Ac-
cessed on 19/12/2017).

[57] Apache Spark. Classification and regression. https://spark.apache.org/
docs/latest/ml-classification-regression.html. (Accessed on 21/12/2017).

[58] Apache Spark. Classification and regression. https://spark.apache.org/
docs/latest/. (Accessed on 15/12/2017).

[59] Apache Spark. Clustering - RDD-based API. https://spark.apache.org/
docs/2.2.0/mllib-clustering.html#gaussian-mixture. (Accessed on
18/12/2017).

[60] Apache Spark. Ensembles - RDD-based AP. https://spark.apache.org/
docs/latest/mllib-ensembles.html. (Accessed on 21/12/2017).

[61] Apache Spark. Machine Learning Library (MLlib) Guide. https://spark.
apache.org/docs/latest/ml-guide.html. (Accessed on 08/01/2017).

[62] Apache Spark. Overview - Spark 2.2.0 Documentation. https://spark.apache.
org/docs/2.2.0/. (Accessed on 05/12/2017).

[63] Apache Spark. SQL Programming Guide. https://spark.apache.org/docs/
latest/sql-programming-guide.html. (Accessed on 15/12/2017).

[64] spark.apache.org. Creating Datasets. https://spark.apache.org/docs/

latest/sql-programming-guide.html#creating-datasets. (Accessed on
21/12/2017).

[65] spark.apache.org. Datasets and DataFrames. https://spark.apache.org/
docs/latest/sql-programming-guide.html#datasets-and-dataframes.
(Accessed on 21/12/2017).

84

http://www.it.uu.se/edu/course/homepage/projektDV/ht17/specification.pdf
http://www.it.uu.se/edu/course/homepage/projektDV/ht17/specification.pdf
https://docs.spring.io/spring/docs/current/spring-framework-reference/overview.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/overview.html
https://www.tableau.com/products/desktop
https://www.tableau.com/products/desktop
https://www.solver.com/time-series
https://spark.apache.org/faq
https://spark.apache.org/docs/latest/ml-classification-regression.html
https://spark.apache.org/docs/latest/ml-classification-regression.html
https://spark.apache.org/docs/latest/
https://spark.apache.org/docs/latest/
https://spark.apache.org/docs/2.2.0/mllib-clustering.html#gaussian-mixture
https://spark.apache.org/docs/2.2.0/mllib-clustering.html#gaussian-mixture
https://spark.apache.org/docs/latest/mllib-ensembles.html
https://spark.apache.org/docs/latest/mllib-ensembles.html
https://spark.apache.org/docs/latest/ml-guide.html
https://spark.apache.org/docs/latest/ml-guide.html
https://spark.apache.org/docs/2.2.0/
https://spark.apache.org/docs/2.2.0/
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-datasets
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-datasets
https://spark.apache.org/docs/latest/sql-programming-guide.html#datasets-and-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#datasets-and-dataframes

[66] spark.apache.org. Extracting, transforming and selecting features. https://
spark.apache.org/docs/2.2.0/rdd- programming- guide.html#rdd-

operations. (Accessed on 22/12/2017).

[67] spark.apache.org. RDD Operations. https : / / spark . apache . org / docs /

latest/ml-features.html#vectorassembler. (Accessed on 21/12/2017).

[68] Tavish Srivastava. A Complete Tutorial on Time Series Modeling in R. https:
//www.analyticsvidhya.com/blog/2015/12/complete-tutorial-time-

series-modeling/. (Accessed on 18/12/2017). Dec. 2015.

[69] Michael Steinbach, George Karypis, and Vipin Kumar. “A Comparison of Docu-
ment Clustering Techniques”. In: (2000). url: https://pdfs.semanticscholar.
org/c110/0f525044b2b926f7bd7f407ce7b0157bcfd8.pdf.

[70] Roopam Upadhyay. Arima Model. http://ucanalytics.com/blogs/arima-
models - manufacturing - case - study - example - part - 3/. (Accessed on
14/12/2017). June 2015.

[71] Jake VanderPlas. Python Data Science Handbook. Access from https://jakevdp.github.io/PythonDataScienceHandbook/index.html.
O’Reilly Media, Nov. 2016. isbn: 978-1491912058.

[72] Liam Voughan. How the Flash Crash Trader’s $50 Million Fortune Vanished.
https://www.bloomberg.com/news/features/2017- 02- 10/how- the-

flash- crash- trader- s- 50- million- fortune- vanished. (Accessed on
20/12/2017). Feb. 2017.

[73] Wikipedia. Multinomial logistic regression. https://en.wikipedia.org/wiki/
Multinomial_logistic_regression. (Accessed on 21/12/2017). Oct. 2017.

[74] Wikipedia. Statistical classification. https : / / en . wikipedia . org / wiki /

Statistical_classification. (Accessed on 19/12/2017). Nov. 2017.

[75] Christo Wilson. Guide to Using HDFS and Spark. https://cbw.sh/spark.
html. (Accessed on 21/12/2017).

[76] Kyung-A Yoon, Oh-Sung Kwon, and Doo-Hwan Bae. “An Approach to Out-
lier Detection of Software Measurement Data using the K-means Clustering
Method”. In: (2007). issn: 1938-6451. doi: https://doi.org/10.1109/

ESEM.2007.49. url: http://ieeexplore.ieee.org/abstract/document/
4343773/.

85

https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#rdd-operations
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#rdd-operations
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#rdd-operations
https://spark.apache.org/docs/latest/ml-features.html#vectorassembler
https://spark.apache.org/docs/latest/ml-features.html#vectorassembler
https://www.analyticsvidhya.com/blog/2015/12/complete-tutorial-time-series-modeling/
https://www.analyticsvidhya.com/blog/2015/12/complete-tutorial-time-series-modeling/
https://www.analyticsvidhya.com/blog/2015/12/complete-tutorial-time-series-modeling/
https://pdfs.semanticscholar.org/c110/0f525044b2b926f7bd7f407ce7b0157bcfd8.pdf
https://pdfs.semanticscholar.org/c110/0f525044b2b926f7bd7f407ce7b0157bcfd8.pdf
http://ucanalytics.com/blogs/arima-models-manufacturing-case-study-example-part-3/
http://ucanalytics.com/blogs/arima-models-manufacturing-case-study-example-part-3/
https://www.bloomberg.com/news/features/2017-02-10/how-the-flash-crash-trader-s-50-million-fortune-vanished
https://www.bloomberg.com/news/features/2017-02-10/how-the-flash-crash-trader-s-50-million-fortune-vanished
https://en.wikipedia.org/wiki/Multinomial_logistic_regression
https://en.wikipedia.org/wiki/Multinomial_logistic_regression
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Statistical_classification
https://cbw.sh/spark.html
https://cbw.sh/spark.html
http://dx.doi.org/https://doi.org/10.1109/ESEM.2007.49
http://dx.doi.org/https://doi.org/10.1109/ESEM.2007.49
http://ieeexplore.ieee.org/abstract/document/4343773/
http://ieeexplore.ieee.org/abstract/document/4343773/

Appendices

Appendix A Installation Guide

A.1 Overview

All source code is available in the Github repository (it is a private repository as
of now). The system has been tested on two different configurations a. cluster, b.
docker image.

• Cluster:

– OpenStack Infrastructure

– Ubuntu trusty server 14.04.5

– Oracle JDK 1.8.0 151

– Apache Spark 2.2.0

– HDFS 2.7.3 & 2.9.0

• Docker (without HDFS):

– docker, 17.07.0-ce

– Oracle JRE 1.8.0 151

– openSUSE leap 42.3

– Apache Spark 2.2.0

A.2 Setting up the cluster

In order to setup the cluster it is required to create a user to run the application,
download and install HDFS and Spark and Java 8. We build one image and then
clone it and spawn multiple VMs from that. The computer that will host Spark
master and HDFS master will be called master and hdfs. The node that work only
as workers in our setup are called cool-instance-{1, 2, 3, 4, 5, 6}.

If there is another setup steps A.2.3 A.2.3 A.2.4 A.2.5 A.2.3 A.2.4

86

https://github.com/flanaras/project-cs-ht17

A.2.1 User

We create a new user cluster in order to run both Spark and HDFS.

user=c l u s t e r
sudo useradd $user
sudo usermod $user −d /home/ $user
sudo usermod $user −s / bin /bash
sudo mkdir /home/$USER
sudo chown $user : u s e r s /home/ $user −R

Both Spark and HDFS need passwordless ssh access. The following commands will
create an SSH key and will allow access to the same computer with the same key.

sudo su − $user
ssh−keygen −q −N ”” −t r sa −b 4096
cp . ssh / i d r s a . pub . ssh / author i z ed keys

A.2.2 Java

The application has been written in Java 8 and also both Spark and HDFS require
Java to run. To download and install Java 8 on Ubuntu execute:

sudo add−apt−r e p o s i t o r y ppa : webupd8team/ java
sudo apt−get update
sudo apt−get i n s t a l l o rac l e−java8− i n s t a l l e r

A.2.3 Spark

Download Spark, add it to the bash path and configure it.

This command will download Spark version 2.2.0, will extract it under /usr/local/spark-
2.2.0-bin-hadoop2.7, will create a soft link to spark and will give ownership to the
previously created user.

sudo bash −c ” c u r l −s https : // d3kbcqa49mib13 . c l oud f r on t . net / spark −2.2.0−bin−hadoop2 . 7 . tgz | ta r −xz −C / usr / l o c a l /\
&& cd / usr / l o c a l \
&& ln −s spark −2.2.0−bin−hadoop2 . 7 spark ”

sudo chown $user : u s e r s / usr / l o c a l / spark −R

87

Create environment variable called SPARK HOME to point at the base of Spark’s
installation and add Spark’s binaries to the path. To take effect relogin from that
user.

echo SPARK HOME=/usr / l o c a l / spark >> ˜/ . bashrc
echo PATH=$PATH:$SPARK HOME/ bin :$SPARK HOME/ sb in >> ˜/ . bashrc

To set the output of the Spark to be Warning instead of Info or Error, to reduce log
files.

sudo su − c l u s t e r
bash −c ”cp / usr / l o c a l / spark / conf / l o g 4 j . p r o p e r t i e s . template / usr / l o c a l / spark / conf / l o g 4 j . p r o p e r t i e s && sed − i −e s /ERROR/WARN/g / usr / l o c a l / spark / conf / l o g 4 j . p r o p e r t i e s && sed − i −e s /INFO/WARN/g / usr / l o c a l / spark / conf / l o g 4 j . p r o p e r t i e s ”

Set the host for the master and the port that the workers will listen on.

sudo su − c l u s t e r
echo ”SPARK MASTER HOST='master '
SPARK WORKER PORT= '15002 '” > $SPARK\ HOME/ conf / spark−env . sh

Set master’s configuration.

sudo su − c l u s t e r
echo ” spark . d r i v e r . port 15000
spark . blockManager . port 15001
spark . eventLog . enabled t rue
spark . eventLog . d i r hdfs : // hdfs :9000/ shared / events
spark . h i s t o r y . f s . l o gD i r e c t o ry hdfs : // hdfs :9000/ shared / events
spark . h i s t o r y . u i . a c l s . enable f a l s e
spark . h i s t o r y . u i . admin . a c l s ∗
spark . h i s t o r y . u i . admin . a c l s . groups ∗” > $SPARK\ HOME/ conf / spark−d e f a u l t s . conf

Set slaves on the master of the cluster.

sudo su − c l u s t e r
echo ” l o c a l h o s t
cool−in s tance−1
cool−in s tance−2
cool−in s tance−3
cool−in s tance−4
cool−in s tance−5
cool−in s tance −6” > $SPARK\ HOME/ conf / s l a v e s

88

A.2.4 HDFS

For HDFS we both need to download, add it to the path and configure it. We
download it from a mirror in Sweden, if that does not work for some reason you can
find all available mirrors here.

c u r l http :// apache . mi r ro r s . spacedump . net /hadoop/common/hadoop−2.9.0/ hadoop −2 . 9 . 0 . ta r . gz | ta r −xz −C / usr / l o c a l / \
&& cd / usr / l o c a l \
&& ln −s hadoop−2.9.0 hadoop”

sudo chown $user : u s e r s / usr / l o c a l /hadoop −R

To add it on the path execute:

sudo su − c l u s t e r
echo HADOOP PREFIX=/usr / l o c a l /hadoop >> ˜/ . bashrc
echo HADOOPCOMMONHOME=/usr / l o c a l /hadoop >> ˜/ . bashrc
echo HADOOP HDFS HOME=/usr / l o c a l /hadoop >> ˜/ . bashrc
echo HADOOP MAPRED HOME=/usr / l o c a l /hadoop >> ˜/ . bashrc
echo HADOOP YARN HOME=/usr / l o c a l /hadoop >> ˜/ . bashrc
echo HADOOP CONF DIR=/usr / l o c a l /hadoop/ e tc /hadoop >> ˜/ . bashrc

To configure HDFS add these properties to $HADOOP COMMON HOME/etc/hadoop/hdfs-
site.xml on all nodes.

sudo su − c l u s t e r
echo ”<?xml ve r s i on =”1.0” encoding=”UTF−8”?>
<?xml−s t y e s h e e t type=”text / x s l ” h r e f=”c o n f i g u r a t i o n . x s l ”?>
<con f i gu ra t i on>
<property
<name>d f s . r e p l i c a t i o n </name>
<value>3</value>

</property>
<property>
<name>d f s . permiss ions</name>
<value>f a l s e </value>

</property>
<property>
<name>d f s . namenode . name . d ir</name>
<value>/usr / l o c a l /hadoop/ hdfs /namenode</value>

</property>

89

http://www.apache.org/dyn/closer.cgi/hadoop/common/hadoop-2.9.0/hadoop-2.9.0.tar.gz

<property>
<name>d f s . datanode . data . d i r</name>
<value>/usr / l o c a l /hadoop/ hdfs /datanode</value>

</property>
</con f i gu ra t i on >” > / usr / l o c a l /hadoop−2.9.0/ e t c /hadoop/ hdfs−s i t e . xml

Create necessary folders in all nodes:

sudo mkdir −p /app/hadoop/tmp
sudo chown $user : u s e r s /app/hadoop/tmp −R
sudo mkdir −p / usr / l o c a l /hadoop/ hdfs /namenode
sudo chown $user : u s e r s / usr / l o c a l /hadoop/ hdfs /namenode −R
sudo mkdir −p / usr / l o c a l /hadoop/ hdfs /datanode
sudo chown $user : u s e r s / usr / l o c a l /hadoop/ hdfs /datanode −R

Set hadoop settings on all nodes:

sudo su − c l u s t e r
echo ”<?xml ve r s i on =”1.0” encoding=”UTF−8”?>
<?xml−s t y l e s h e e t type=”text / x s l ” h r e f=”c o n f i g u r a t i o n . x s l ”?>
<con f i gu ra t i on>
<property>
<name>f s . d e f a u l t . name</name>
<value>hdfs : // master :9000</ value>

</property>
<property>
<name>hadoop . tmp . d ir</name>
<value>/app/hadoop/tmp</value>

</property>
</con f i gu ra t i on >” > / usr / l o c a l /hadoop−2.9.0/ e t c /hadoop/ core−s i t e . xml

On all nodes add the hostnames in the Hadoop slave and master files:

sudo su − c l u s t e r
echo master > / usr / l o c a l /hadoop−2.9.0/ e t c /hadoop/ masters
echo ” master
cool−in s tance−1
cool−in s tance−2
cool−in s tance−3
cool−in s tance−4

90

cool−in s tance−5
cool−in s tance −6” > / usr / l o c a l /hadoop−2.9.0/ e t c /hadoop/ s l a v e s

A.2.5 System parameters

Add IP addresses with hostnames in /etc/host, substitute with your own IPs and
hostnames.

sudo bash −c ' echo ” 1 2 7 . 0 . 0 . 1 l o c a l h o s t
1 0 . 1 0 . 3 3 . 8 3 master hdfs
1 0 . 1 0 . 3 3 . 8 9 cool−in s tance−1 in s t−1
1 0 . 1 0 . 3 3 . 9 0 cool−in s tance−2 in s t−2
1 0 . 1 0 . 3 3 . 9 1 cool−in s tance−3 in s t−3
1 0 . 1 0 . 3 3 . 9 2 cool−in s tance−4 in s t−4
1 0 . 1 0 . 3 3 . 9 3 cool−in s tance−5 in s t−5
1 0 . 1 0 . 3 3 . 9 4 cool−in s tance−6 in s t −6” >> / e tc / hosts '

A.2.6 Prepare HDFS for Spark history server

Create The folders for the history server and add permissions.

sudo su − c l u s t e r
hdfs d f s −mkdir / shared
hdfs d f s −mkdir / shared / events
hdfs d f s −chmod −R 755 / shared / events

A.2.7 Upload data into HDFS

Create a folder for the data under root:

sudo su − c l u s t e r
hdfs d f s −mkdir / data /
hdfs d f s −chmod −R 755 / data /
cd %r o o t o f d a t a%/
hdfs d f s −put 2017/ / data /

91

A.2.8 Starting the cluster

To start HDFS and Spark execute:

sudo su − c l u s t e r
s t a r t−d f s . sh
s ta r t−a l l . sh
s ta r t−h i s to ry−s e r v e r . sh

A.2.9 Executing the application

On a separate computer in the same network where only Spark is required (set
up as shown above), copy myspark-submit to / and create a folder target (/tar-
get) containing all of the xml files and both Scila-$version$.jar and Scila-$version$-
dependencies.jar. Then execute from the home folder myspark-submit. Now wait
until the program finishes.

A.3 Docker

In this section we will demonstrate how to use the Docker image to use a simple
cluster environment with a master and a worker. Adding more workers can be done
either manually or by adapting the current script. These images are public available
on Github, they operate with Spark and do not contain HDFS.

Tested on:

• openSUSE Tumbleweed 20171215

• Docker version 17.07.0-ce, build 87847530f717

• Ubuntu 16.04.3 LTS desktop

• Docker version 17.09.1-ce, build 19e2cf6

A.3.1 Docker image

This image is publicly available on Github (flanaras/docker-spark-configuration),
which contains the Dockerfile for manual building. The base image for this contains
Spark 2.2.0 and Oracle JRE8

92

https://github.com/flanaras/docker-spark-configuration

Begin by cloning the repository by:

g i t c l one https : // github . com/ f l a n a r a s / docker−spark−c o n f i g u r a t i o n . g i t

Build the images:

. / bui ld−docker

Create a folder called ”docker-mount” on your home folder and place there:

• myspark-submit,

• a folder called target with all jar and xml files,

• a folder called data with the input data. The folder structure should like like
%folder%/data/YEAR/MONTH/DAY

After all this has been done, it is possible to run the docker images to run the cluster.
This can be done by invoking the ./run-docker script. The output will look something
like this:

5434 cc87dfaed1f526c318e0dcfe7978bda43d4206c0e4757fb0004d72e44947
7 a0421e6 fd8e fb37 f591 f1 f e6d45c6dac6c91daaa3585a68c0e7 f99920 f490c9

The first hash is the spark-master container and the second one is the spark-worker.
Attach to the second one with: docker attach %hash%. Press any button to make
the prompt appear. Now change directory to /host and then execute myspark-
submit.

cd / host
. / myspark−submit

To detach from the container without terminating it type ctrl p + ctrl q.

Some other useful docker commands are:

• docker ps -a (displays all the docker containers)

• docker system prune -a (delete all images, networks, etc from the computer)

93

Appendix B Troubleshooting

B.1 HDFS Troubleshooting

HDFS master has a web interface listening on port 50070 (http://host:50070/ by
default and shows the current state of the cluster.

B.1.1 General

Do not upload data to HDFS while the application is running and vice versa.

There can be a lot of problems regarding HDFS how to make it run initially.

B.1.2 Take it online

To start the cluster type:

sudo su − c l u s t e r
s t a r t−d f s . sh

B.1.3 Take it offline

To turn off the cluster type:

sudo su − c l u s t e r
stop−d f s . sh

B.1.4 Report

To get an HDFS report from the terminal type:

sudo su − c l u s t e r
hdfs dfsadmin −r epo r t

94

B.1.5 Format

When the cluster starts it needs some time to verify its contents and show the cluster
being online. Be sure to allow enough time for the cluster to perform this operation
before formatting.

To format the HDFS cluster when it will not recognise all nodes or shows no space at
all. Take the HDFS cluster offline. To format the namenode and datanode:

sudo su − c l u s t e r
hadoop namenode −format
hadoop datanode −format

After this take the cluster online and generate a report. If the report is still showing
no space, take it offline again, delete all data from all nodes local data:

sudo bash −c ”rm −r / usr / l o c a l /hadoop/ hdfs /datanode /∗”

After this format again and generate a report. This should solve the space prob-
lem.

B.1.6 Missing nodes

If there are some nodes missing from the web interface or the report there is
probably a problem with the $HADOOP HDFS HOME/etc/hadoop/masters or
$HADOOP HDFS HOME/etc/hadoop/slaves or the hostnames there are missing
from /etc/hosts.

B.2 Spark Troubleshooting

Some common problems that might be occur follow.

B.2.1 Turn on cluster

To turn on the cluster type from the master:

sudo su − c l u s t e r
s t a r t−a l l . sh

95

This will put the master and worker nodes online and will serve a web interface on
http://master:8080.

B.2.2 Turn off cluster

To turn off the cluster type from the master:

sudo su − c l u s t e r
stop−a l l . sh

B.2.3 Turn online specific node

To take online a specific node from the cluster, SSH to that computer and type:

sudo su − c l u s t e r
s t a r t−s l a v e . sh spark :// master :7077

B.2.4 Turn offline specific node

To take offline a specific node from the cluster, SSH to that computer and type:

sudo su − c l u s t e r
stop−s l a v e . sh

B.2.5 Turn online history server

To put online the history server for statistics, SSH on the master and type:

sudo su − c l u s t e r
s t a r t−h i s to ry−s e r v e r . sh

This will start the spark history server on http://master:18080

96

B.2.6 Take history server offline

To turn off the history server

sudo su − c l u s t e r
stop−h i s to ry−s e r v e r . sh

B.2.7 Master will not start

If the master or worker will not start check the following.

• In the $SPARK HOME/conf/spark-defaults.conf that both spark.eventLog.dir
and spark.history.fs.logDirectory paths exist and are accessible.

• There is in /etc/hosts an entry for the hostname of that computer.

• That you have specified an IP address on one of the interfaces that are attached
on the computer.

B.2.8 No entries in history server

On version 2.9.0 of Hadoop there was a problem with the permissions and there is
no access to the to those files from the history server. To resolve this type from any
node:

sudo su − c l u s t e r
hdfs d f s −chmod −R 755 / shared / events

B.2.9 Networking

In order for Spark it is required to have the following ports allowed in the firewall.

• 15000

• 15001

• 15002

• 7077 (master only)

• 8080 (master only, web ui)

97

• 18080 (master only, web ui)

Appendix C Usage instructions

C.1 General usage

The general usage of this prototype is done by changing the main bean that is stated
in dev.xml as shown in the snippet.

<bean id=”main” c l a s s=”p r o j e c t c s . c o n t r o l . mainrunnables . I n i t i a l S c e n a r i o ”/>

The only part that is needed to be changed is InitialScenario, and it could be
changed into any of theses options:

• InitialScenario is for displaying initial scenario used in machine learning part,
right now it is used as an example of making a scenario.

• SpoofModule is the main for spoof detection algorithm.

• NeuralNetworkModule is the main for DL4J implementation.

• SupervisedScenario is the main for classification implementation.

• TimeSeriesScenario is the main for ARIMA model implementation.

• UnsupervisedLearningModule is the main for clustering.

• BenchmarkModule is the main used for benchmarking the parsing process.

• TableauReport is the main for generating a CSV file for Tableau.

Other important part is a list of dates of data that will be used and it could be found
in spark.xml.

<bean id=”dat eL i s t ” c l a s s=”java . u t i l . ArrayList”>
<cons t ructor−arg>

<u t i l : l i s t >
<r e f bean=”wholeMonthExample”/>

</ u t i l : l i s t >
</const ructor−arg>

</bean>

98

C.2 Spoofing

To make changes in the parameters for spoofing detection, they need to maneuver to
the spoof.xml file and make changes in the following bean:

<bean id=”spoo f ” c l a s s=”p r o j e c t c s . model . Spoof”>
<property name=”minSpoofValue” value=”4”/>
<property name=”spoofTime” value =”500”/>
<property name=”p a r t i c i p a n t L e v e l ” va lue=”endus e r r e f ”/>
<property name=”spoofCance lPerc ” value =”0.3”/>
<property name=”minPr i c eD i f f e r ence ” value =”0.5”/>

</bean>

As of now the threshold for the minimum spoof value is set at 4 percent, while the
spoof time threshold is 500 milliseconds, the level of the participant is limited to the
enduserref string, the percentage limit for the spoof cancelation is 0.3 percent and for
minimum price difference is 0.5 percent. We can change these values according to
how we wide or narrow we would want to make the detection parameters.

C.3 ARIMA

In order to predict future stock price, we need to set the days to forecast in ml-
beans.xml

<bean id=” f o r e c a s t ” c l a s s=”p r o j e c t c s . model . ArimaForecast”>
<property name=”forecas tDays ” value=”10”/>

</bean>

Currently, it is predicting 10 days but we can change the value according to increase
in size of dataset. For example, we can set the forecastDays value = ”20”.
We also need to change the path of R script according to the user in ArimaForecast.java
:

pub l i c s t a t i c f i n a l S t r ing FILENAME R =
”/home/ user / t a r g e t / f o r e c a s t S t o c k s . r ” ;

For example:

99

pub l i c s t a t i c f i n a l S t r ing FILENAME R =
”/home/ rahul / t a r g e t / f o r e c a s t S t o c k s . r ” ;

C.4 Unsupervised Learning

In order to run unsupervised learning, it need to set some parameter in ml-beans.xml
and ml-models.xml. In ml-beans.xml, consists of general parameters which will be
use in both unsupervised learnings which are K-Means and Gaussian Mixture Models.
The parameters need to be set in ml-beans.xml:

• Number of cluster This parameter has function to determine how many clusters
that user wants. The defaults values for this parameter is 5.

<property name=”numberOfCluster ” value= ”5”/>

• Number of pca This parameter has function to determine how many dimensional
will be created to run unsupervised learning. The defaults value for this
parameter is 3

<property name=”pcaNum” value= ”3”/>

• Clustering Model This parameter has function to determine what kind of unsu-
pervised learning algorithm will be used.

<property name=”c lus t e r ingMode l ” r e f=”GaussianMixtureModels”/>

• Output Filename This parameter has function to determine the name of output
file which has result of unsupervised learning algorithm

<property name=”outputFilename ” value=”c lu s t e rResu l tData . csv”/>

• Features This parameter has function to determine which columns will be used to
run unsupervised algorithm. The name of column must be appear when user
do initialize dataset for unsupervised algorithm. This parameter will receive
array list of columns name.

<property name=”f e a t u r e s”>
<bean c l a s s=”java . u t i l . ArrayList”>

<cons t ructor−arg>
<u t i l : l i s t >

<r e f bean=”p r i c e ”/>

100

<r e f bean=”volume”/>
<r e f bean=”timestampHour”/>
<r e f bean=”timestampMinute”/>
<r e f bean=”timestampSecond”/>

</ u t i l : l i s t >
</const ructor−arg>

</bean>
</property>

There is another parameters which can be modified to get different result of
clusters. The parameter is placed at ml-models.xml. Each of unsupervised
learning has its own parameters to be set. There are distance threshold which is
used by K-Means and probability threshold used by Gaussian Mixture Models

<bean name=”KMeansClustering” c l a s s=”p r o j e c t c s . ml . model . KmeansClustering”>
<property name=”di s tanceThresho ld ” value =”0.90000”/>

</bean>
<bean name=”GaussianMixtureModels ” c l a s s=”p r o j e c t c s . ml . model . GaussianMixtures”>

<property name=”probab i l i t yThre sho ld ” value =”0.90000”/>
</bean>

C.5 Classification

There are 3 parameters used in general classification, which are classifier, label, and
features. Available column to be used as label and or features is in ml-columns.xml
and available classifier is in ml-models.xml. These could be changed in ml-beans.xml
as shown in the snippet below.

<bean id=”superv i s edLearn ing ” c l a s s=”p r o j e c t c s . ml . c o n t r o l . C l a s s i f i c a t i o n P i p e l i n e ”>
<property name=” c l a s s i f i e r ” r e f=”ml−svm”/>
<property name=” l a b e l ” r e f=”allMember”/>
<property name=”f e a t u r e s”>

<bean c l a s s=”java . u t i l . ArrayList”>
<cons t ructor−arg>

<u t i l : l i s t >
<r e f bean=”p r i c e ”/>
<r e f bean=”volume”/>
<r e f bean=”tradeMonth”/>

101

<r e f bean=”tradeDate”/>
<r e f bean=”tradeHour”/>
<r e f bean=”obId”/>

</ u t i l : l i s t >
</const ructor−arg>

</bean>
</property>

</bean>

The hyper-parameter tuning is a parameter that could be turn on or off in the
ml-models.xml as shown below.

<bean id=”tuneParameter ” c l a s s=”java . lang . Boolean”>
<cons t ructor−arg value=” f a l s e ”/>

</bean>

C.6 Generated Report for Tableau

Tableau cannot be integrated into Spark and vice versa, that is why we generated a
CSV file that could be used in Tableau. The report is a predefined table based on
the specification from Scila. It has parameter of starting date and ending date as
shown in this snippet below which could be found in base.xml. Available dates could
be found in dates.xml.

<bean id=”makeReport” c l a s s=”p r o j e c t c s . model . GenerateReport”>
<property name=”star tDate ” r e f =”10September2017”/>
<property name=”endDate” r e f =”20September2017”/>

</bean>

102

	Introduction
	Finance Surveillance
	Big Data
	Project CS and Scila AB
	Project Goals

	Background
	Financial Market Surveillance
	Why is it necessary
	How it Happens

	What are the techniques of market manipulation
	Momentum Ignition or Layering
	Quote Manipulation
	Spoofing

	Anomalies
	Big data processing
	Software used
	Spark
	Spark MLlib
	Hadoop Distributed File System (HDFS)
	Spring framework
	R Programming Language
	Docker
	Git version control
	OpenStack Helion and Horizon
	Checkstyle plugin
	Circle CI
	Tableau
	MATLAB

	System architecture
	Hardware architecture
	Software architecture
	System overview and operations

	Parsing Implementation
	Data
	Data Structure

	Optimization
	Internal Dataset storage

	Benchmark

	Spoofing Detection Implementation
	Filters
	Data
	SQL
	Parameters

	Result and output
	JSON
	CSV

	Benchmark

	Machine Learning Implementation
	Data transformation in Spark
	StringIndexer
	One-hot Encoding
	VectorAssembler
	StandardScaler
	Principal Component Analysis
	VectorSlicer
	Normalizer

	Classifying market participant in Trade Dataset
	Introduction to classification
	Classifier
	Classification workflow
	Result

	Clustering
	K-means
	Bisecting K-means
	Gaussian Mixture Model
	Anomaly detection
	Implementation
	Experiments
	Result

	Forecasting stock closing price
	Introduction to Time series
	Components of Time series
	ARIMA Model
	Stationarity
	Integrated (I)
	Auto-Regressive (AR) Model
	Moving Average (MA) Model
	General Steps in ARIMA Model
	Implementation

	Deep Learning 4 Java
	What is DL4J?
	Data requirements for DL4J
	Transforming our data from Spark to DL4J
	DL4J Neural Network

	Conclusions
	Future work
	Appendices
	Appendix Installation Guide
	Overview
	Setting up the cluster
	User
	Java
	Spark
	HDFS
	System parameters
	Prepare HDFS for Spark history server
	Upload data into HDFS
	Starting the cluster
	Executing the application

	Docker
	Docker image

	Appendix Troubleshooting
	HDFS Troubleshooting
	General
	Take it online
	Take it offline
	Report
	Format
	Missing nodes

	Spark Troubleshooting
	Turn on cluster
	Turn off cluster
	Turn online specific node
	Turn offline specific node
	Turn online history server
	Take history server offline
	Master will not start
	No entries in history server
	Networking

	Appendix Usage instructions
	General usage
	Spoofing
	ARIMA
	Unsupervised Learning
	Classification
	Generated Report for Tableau

