

Uppsala Student Project 2017
Financial Surveillance Using Big Data

Project Specification

Industry representatives

Fredrik Lydén Gustaf Gräns Gustav Tano

Scila AB

2 Summary 3

3 Introduction 4

4 Background 4
4.1 Orders 5
4.2 Order Book 6
4.3 Trade 7

5 Architectural components 7
5.1 Scila high-level technical architecture 7
5.2 Message Format 8

5.2.1 Data Types 8
5.2.2 Message Header 9
5.2.3 Message Types 10
5.2.4 Order Event Message 12
5.2.5 Trade Event Message 13
5.2.6 Order Book Message 14

6 Deliverables 14
6.1 Component 1 14

14
6.2 Component 2 15

6.2.1 Spoofing Alert Rule Requirement Specification 15
6.3 Component 3 16
6.4 Component 4 - (extra task, if time allows) 16

6.4.1 Order and Trade Report Specification 16

7 Implementation 17
7.1 Tools and Languages 17

7.1.1 Required 17
7.1.2 Recommended Integrated Development Environments 17
7.1.3 Optional but recommended 17
7.1.4 Communication 17

7.2 Non functional requirements 17

8 References 18

2 Summary
The scope of this project is to create an application that reads the extreme amounts
of financial data that the Scila system produces and provide cloud based tools to:

● Process the data in a cloud environment
● Batch/ad-hoc visualizations/reports
● Batch-oriented market abuse pattern detection
● Anomaly detection using Machine Learning

3 Introduction
Scila Surveillance is a market surveillance solution for exchanges, trading
participants and regulators that applies modern technology to obtain an early
detection of market abuse and data to create presentable evidence. The solution
covers all asset classes and market models and has been deployed for over 30
clients in 13 countries since 2008.

All data that the Scila application consumes are written to disc in a modified JSON
format. The data consists of events and reference data for instruments, exchanges
and market participants. The Scila system creates vast amounts of data. At some
customers the system can consume more than 30 billion messages per day and
million events per second. The main functionality of the Scila application is to stream
data real time and surveil for possible market abuse. The stored data is used to
investigate potential breaches using graphical views for analyzation and replay, event
by event, in the Scila Client. The data can also be used for extensive reporting.

The goal of this project is to provide a proof of concept how Apache Spark can be
used to process and present data that the Scila system produces. This is done by
creating an application that can process large volumes of Scila data and to provide
tools to visualize and run pattern detection on it.

4 Background
The Scila system analyzes a wide range of Market Messages that originate from
Financial Market Places and surrounding systems such as Orders, Trades,
Reference Data, Reference Prices, News, Positions and State Changes. The
messages are analyzed in real-time. The system triggers Alerts when suspicious
behaviour is detected. This project will focus on two message types; orders and
trades. The data produced by a Scila System can be analyzed in a cloud-based
environment.

4.1 Orders
An order is an instruction to buy or sell on a trading venue such as a stock market,
bond market, commodity market, or financial derivative market. These instructions
can be simple or complicated. Two of the standard Order Types are [Ref 2]:

● Market Order - A market order is a buy or sell order to be executed
immediately at current market prices. As long as there are willing sellers and
buyers, market orders are filled. Market orders are therefore used when
certainty of execution is a priority over price of execution. A market order is
the simplest of the order types. This order type does not allow any control
over the price received. The order is filled at the best price available at the
relevant time. In fast-moving markets, the price paid or received may be quite
different from the last price quoted before the order was entered.

● Limit Order - A limit order is an order to buy a security at no more than a
specific price, or to sell a security at no less than a specific price (called "or
better" for either direction). This gives the trader (customer) control over the
price at which the trade is executed; however, the order may never be
executed ("filled"). Limit orders are used when the trader wishes to control
price rather than certainty of execution. A buy limit order can only be
executed at the limit price or lower. For example, if an investor wants to buy a
stock, but doesn't want to pay more than $20 for it, the investor can place a
limit order to buy the stock at $20. By entering a limit order rather than a
market order, the investor will not buy the stock at a higher price, but, may get
fewer shares than he wants or not get the stock at all. A sell limit order is
analogous; it can only be executed at the limit price or higher. A limit order
that can be satisfied by orders in the limit book when it is received is
marketable. For example, if a stock is asked $86.41 (large size), a buy order
with a limit of $90 can be filled right away. Similarly, if a stock is bid $86.40, a
sell order with a limit of $80 will be filled right away. A limit order may be

partially filled from the book and the rest added to the book. Both buy and sell
orders can be additionally constrained. Two of the most common additional
constraints are fill or kill (FOK) and all or none (AON). FOK orders are either
filled completely on the first attempt or canceled outright, while AON orders
stipulate that the order must be filled with the entire number of shares
specified, or not filled at all. If it is not filled, it is still held on the order book for
later execution.

4.2 Order Book
An order book is a list of buy and sell orders for a specific security or financial
instrument, typically organized by price level and sorted on time. The order book lists
the number of shares or lots being bid or offered at each price point, or market depth
[Ref 1].

In today’s financial markets, order books are primarily electronic and updated
automatically by computers or algorithms. However, some over-the-counter (OTC)
markets are still traded via phone or in specialized auctions. In those cases the order
book can be maintained and updated manually by traders or dealers.
An order book can also be defined as a “tradeable entity”, since the same instrument
(e.g. stock) can be traded in different order books. For example, Ericsson stock can
be traded on different markets operated by different exchanges, i.e. in different order
books. Consequently, the term order book refers to the tradable entity and not the
instrument or security itself.

Depending on the market and asset class, different types of order books exist:

Transparency
Lit order book - transparent, which means that participants can see orders in the
order book, i.e. price and volume

Dark order book - non-transparent, which means that participants are not able to see
other orders than their own

Lit/dark hybrid - semi-transparent, typically participants can see aggregated price and
volume information, but not specific market depth or volume

Matching logic
Auto-matching - orders are matched continuously into trades by the trading engine
(“matching engine”). Most common matching logic is by price and time.
Auto-matching is most common for liquid markets such as equities, options and
futures.
Call Auctions - orders are collected and matched at one given moment. The
matching process is called to uncross the book. Auctions can be used to match
orders for less liquid markets. Reasons to use an call auction includes:

1. Establish an equilibrium price before moving to continuous/automatch trading
2. Concentrate liquidity at certain time intervals, for example opening or closing

of the market
3. Establish a benchmark price

4.3 Trade
In financial markets, trading refers to the buying and selling of securities, such as
the purchase of stock on the floor of the New York Stock Exchange. A trade is two
orders which has been matched and executed. Information usually provided to the
Scila system in a trade message are: participant information, originating orders, price
volume, time. [Ref 3].

5 Architectural components

5.1 Scila high-level technical architecture
The Scila Surveillance architecture is based around the ability to capture and analyze
large amounts of events. From a high-level perspective the Scila Surveillance system
is composed of one or multiple servers to which multiple clients connect. The
server(s) is responsible for collecting, processing and storing the incoming market
data information and to distribute the data to the clients connected to the server. The
client application is used by the surveillance staff to monitor the marketplace, either
in real-time or in batch-mode.
High-level architecture of Scila Surveillance.

5.2 Message Format
The message format in Scila, used both when storing transactional and for
communication between the Server and Client, is built upon the standardized JSON
format, see http://www.json.org/.
The messages are written in text format, one message per line. All messages must
contain the following data:

This chapter contains a subset of the Scila Message Format Documentation. The
messages of interest for this project are, the previously explained, OrderBook, Order
and Trade.

5.2.1 Data Types
This chapter contains a specification of the different data types that may be used as
values in the message.

http://www.json.org/
http://www.json.org/

5.2.2 Message Header
The Message Header consists of Message Metadata and information from the
Message Source.

5.2.3 Message Types
The internal protocol in Scila is a normalized model of the transaction flow, with a
minimum of fields required for the different type of transactions. The messages can
be extended to add appropriate fields and functionality required by different
customers. The following chapters contain lists of the "core" data fields for different
transactions in Scila. Please note that all types may not be relevant to every
exchange.

5.2.4 Order Event Message

5.2.5 Trade Event Message

5.2.6 Order Book Message

6 Deliverables
For each deliverable step Scila wants an executable system that we can run on our
internal and cloud test servers.

6.1 Component 1
Create an application using Apache Spark which is able to read the Scila TX files.
Use the Apache Spark SQL module to query the data. This component is the core of
the solution and should be used by the other components.
Answer the questions:

1. Using the Scila tx-format (events sorted in time per instrument group). How do we
take advantage of the existing format of trade data for optimum performance when
integrating with Apache Spark?

2. How can the data be partitioned to provide highest possible performance for simple
SQL queries?

6.2 Component 2
Using Component 1 to query data and implement alert rule which finds cases of
market abuse of the type: Spoofing.

The definition of spoofing is quite wide. It merely means that a market participant is
putting orders into the market without intent to trade (see:
https://en.wikipedia.org/wiki/Spoofing_(finance)).

Here we’ll analyze one particular scenario, to find occurrences where a participant
has tried to manipulate the market prices by entering and cancelling large orders on
the opposite side just before a trade.

6.2.1 Spoofing Alert Rule Requirement Specification
Scenario
A participant intends to trade on one side of the market. To execute his order at a
better price he first enters a large order on the other side of the market, hoping that
other participants will improve his price or add more volume. He then cancels his
spoofing order and enters an order on the other side and gets a better price than he
would have otherwise.

Parameters
Minimum Spoofing Order Value <MinSpoof>
The minimum value of the spoofing order

● Spoofing Order Cancellation Percentage <SpoofCxlPerc>
The minimum part of the spoofing order that needs to be cancelled

● Spoofing Time <SpoofTime>
The time, before the trade, that spoofing orders are looked for.

● Participant level
The level of the participant. The levels are defined in a hierarchy where
‘member’ is the top level, ‘user’ the second and ‘endUserRef’ the third.

Implementation suggestion

1. Find all trades that were executed during continuous trading
(SubTypeOfTrade == AUTOMATCH).

2. Find all orders with the same participant as the trade on the opposite side
within <spoofTime> prior to the trade that are of <minSpoof> value or more.
(Note that this check will be for both bid and ask side.)

3. For the orders that fulfill 2), check that at least <spoofCxlPerc> is cancelled
within <spoofTime>

4. Alert for each fulfilled scenario

https://en.wikipedia.org/wiki/Spoofing_(finance)

6.3 Component 3
Use Component 1 and Spark Machine Learning Library (MLLib) for Anomaly
Detection. Find outliers, using unsupervised learning (like clustering), in Price and
Volume or Participant, of Orders that deviates so much from other observations to
arouse suspicion.

https://spark.apache.org/docs/latest/ml-guide.html

6.4 Component 4 - (extra task, if time allows)
Integrate Component 1 with QlikView and/or Tableau to create drill down reports for
statistics per participants and instrument.

6.4.1 Order and Trade Report Specification
Create a report in Tableau or QlikView with the fields listed below. The report shall
show one row per instrument. The user shall be able to specify the time than the
reports span.

Field Name Description

Instrument Name Name of instrument

Date Time Span Date-time span of report parameter

VWAP Volume Weighted Average Price

Number of Trades Number of trades

Trade Volume Sum of volume on all trades

https://spark.apache.org/docs/latest/ml-guide.html

Turnover Sum of volume times price on all trades

Number of Orders Number of orders

Number of Ask Orders Number of orders on ask side

Number of Bid Orders Number of orders on bid side

Order to Trade Ratio Number of orders per trade

High Price Highest price

Low Price Lowest price

7 Implementation

7.1 Tools and Languages

7.1.1 Required
Java 8
Apache spark: https://spark.apache.org/

7.1.2 Recommended Integrated Development Environments
IDE: IntelliJ IDEA https://www.jetbrains.com/idea or Eclipse https://eclipse.org
Maven for building: https://maven.apache.org

7.1.3 Optional but recommended
Spring Framework: https://spring.io
Spring Boot: https://start.spring.io/

7.1.4 Communication
For questions and discussions with Scila there will be a Google Group available.
Email: projectcs@scila.se

7.2 Non functional requirements
1. The solution must be able to consistently analyze billions of rows of data

without generating errors and with response times on the order of 10s or 100s
of seconds.

https://eclipse.org/
https://www.jetbrains.com/idea/
https://spring.io/
https://spark.apache.org/
https://start.spring.io/
https://maven.apache.org/

2. The solution needs to deliver interactive performance on known query
patterns i.e. return results in no greater than several seconds on small data
sets (on the order of thousands or millions of rows).

8 References
1. Order Book, Investopedia

http://www.investopedia.com/terms/o/order-book.asp
2. Order, Wikipedia

https://en.wikipedia.org/wiki/Order_(exchange)
3. Trade, Wikipedia

https://en.wikipedia.org/wiki/Trade_(financial_instrument)

https://en.wikipedia.org/wiki/Trade_(financial_instrument)
https://en.wikipedia.org/wiki/Order_(exchange)
http://www.investopedia.com/terms/o/order-book.asp

