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Abstract

This report will explain what current distribution in conductors is, and
how to calculate the effect. It will go into some depth on the theoretical
background and describe an example of solving the problem numerically.
It also leads to a conclusion that in some cases the current and thermal
distributions can be viewed as uniform. The report will not go into the
physical processes that leads to the current distribution.
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1 Introduction

The term “current distribution” is used throughout this report to indicate
the phenomenon that a current does not always distribute itself uniformly
in a conductor. The purpose of this report is to give a tool for calculating
the current distribution. This effect is visible during short current pulses
(transients) or in the first microseconds when a DC current is turned on.
The nonuniform distribution is also present in a high frequency harmonic
current. The property that the current becomes nonuniformly distributed,
when the input current is a harmonic current, will later be useful for both
analytical and numerical reasons.

It also turns out that the uneven distribution of current means that the
temperature will be nonuniformly distributed, as the current gives a heating
effect. So to calculate the distribution of the current in the conductor there
will also be a need to calculate the temperature distribution in the conductor.

A general analytical solution of how the current is distributed in the con-
ductor is not known, and for most inputs the resulting distributions can not
be analytically calculated. This means that the distribution must be calcu-
lated numerically. The same conclusion is also valid for the temperature, as
it is directly dependent on the current distribution.

1.1 What assumptions can be made about the conductor

The first assumption made about the conductor is that it is cylinder shaped
with radius a and of length /. The second assumption is that the length [ is
large enough to approximate to infinity. These are reasonable assumptions
for most normal conductors, as the most common conductor is a cylinder
shaped metal wire. These assumptions also gives a possibility to simplify the
analytical part of the problem very much before numerical methods must
be applied.

1.2 What parameters will the distribution depend on?

The distribution of the current is, as stated before, dependent on the tem-
perature of the conductor. The distribution is also dependent on the radius
of the conductor and the material properties of the conductor. Finally the
current distribution is dependent on the size and form of the input current.
As the current is flowing through the conductor, the thermal effect will
make the conductor heat up. The heating effect will be distributed sim-
ilarly to the current. The temperature then gives differences in electrical
conductivity and thus further differences in the current distribution.



1.3 Is the temperature distribution relevant ?

The question of the temperature distribution’s relevancy comes from the fact
that the material that is primarily studied, copper, has a very good thermal
conductivity. The thermal conductivity might actually be so good that the
temperature can be approximated to be uniformly distributed inside the
conductor. An approximation such as that would simplify the calculations a
lot, but it would only be relevant for copper and some other materials with
high thermal conductivity, and not for any other material.

So, for some materials, the temperature distribution in the conductor
will be such that it must be taken in account, the speed with which the heat
spreads in these is too low to be neglected.

2 Theoretical analysis

In this section the analytical part of the different sub-problems will be taken
as far as possible. It will also have a brief discussion on the numerical
implications of the formulas in the end of each subsection. The section is
split into three different subsections. The first subsection is only about the
current distribution. The second subsection is about thermal transport in a
conductor. The third subsection is about the coupling between the current
distribution and the thermal distribution.

2.1 Current distribution

One of the first things that is needed is to theoretically examine the distribu-
tion of the magnetic field inside the conductor. This is because the magnetic
field is tightly coupled to the current. The following are definitions of the
symbols that will be used in this section.

H [A/m] Magnetic field strength (magnetic intensity)
E [V/m] Electric field strength (electric intensity)

B [T;Wb/m?; Vs/m?| Magnetic flux density (magnetic induction)
D [C/m? As/m?] Electric flux density (electric displacement)
i [A/m?] Current density

o [A/Vm] Conductivity

p o [Vs/Am] Permeability

e [As/Vm)] Permittivity

Following by one of Maxwell’s equations, the current density can, via the
magnetic field, be calculated. This is according to the formula
oD
VxH=3+—. 1
i+, (1)
This together with Ohm’s law j = ¢ E and the relation D = ¢FE gives



VX(VXH)ZU(VXE)—I—.E%(VXE). (2)

The right hand side of this equation is, via the vector identity and Maxwell’s
equation V- B = 0,

Vx(VxH)=V(V-H)-V’H =-V’H. (3)
Together with Maxwell’s equation

B

and the constitutive relation B = yH equation (2) can now be written as

2
V?H = a,uaa—I;I + 6/16871;[. (5)
This is the general wave equation. In a conducting medium, displacement
currents can be neglected in comparison with conduction currents. This
means that the last term in equation (5) can be omitted and the result is
the magnetic diffusion equation

0OH
V*H =op——. 6
TH, (6)
For a long straight cylindrical conductor with radius a, and a time-dependent
current, the problem can be solved via the magnetic field, equation (6) gives

10 0Hy Hy  0OHy

v or (a—> T Ty ")
in which a move to cylindrical coordinates and expansion of the equation
(6) has been done. Since the total current in the cylinder is known, the
relationship between the total current and the magnetic field on the surface
of the conductor can be calculated via Biot-Savarts formula,

ul I
Hy=By=_—= Hy(r=a) = —. 8
pHo =By =5 o(r =a) =5 (8)
The relationship between magnetic field and current is given by equation
(1) neglecting the displacement current, and in cylindrical coordinates the
problem gives

1 OHy | Hy

. 0 _
J2 = TE(THH) = o + 9)

Especially equation (7) gives the basis of the first numerical experiments
conducted so far, as the total current in the conductor is known, the mag-
netic field on the surface of the conductor is also known. Any change in the
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total current will immediately be reflected in a change in the magnetic field
on the surface of the conductor.

There is an analytical solution to the problem, but only for harmonic
currents, the proof can be found in chapter 30,4 in [1]. The solution for a
harmonic current with angular frequency w and amplitude I is

. Ik Jo(kr) 4,
J: = fie (ﬁfi(ka)e t> (10)

where k = /—ipow and J,, are the Bessel functions.

This is under the assumption that o, y and ¢ are constant, this assump-
tion is generally not true, especially when it comes to the conductivity, o,
that changes a lot when the temperature changes. When the material in the
conductor heats up, its properties change. For the case where the properties
changes, equation (2) has to be written

Vx(VxH):(VXJE)-l-%(Ver). (11)

The left-hand side becomes, as before,

~-V?’H, (12)

but the right-hand side becomes different, the first term becomes

(VxoE)=0(VxE)+VoxE

o(nH)
=05 + (Vo) x E ’ (13)
B o0H ou
=—opa- =0 + (Vo) x E

and the second term becomes

%(V x eE) = %(e(v x E)) + %((Vs) x E)
_ _% (57‘9(“551))) + %((Vs) < E) (14)
PH  0c0(uH) 0

—€l 52 " o1 o +a((V€)XE).

Which gives the more general wave equation

V2H = o(t) 8—H+08—M—(VJ) x E+e¢

8H 0 d(uH) 8
"ot T 5t

o Yoot ot

((Ve) x E).

(15)
This is a quite much more complicated equation than the one for constant
material properties. But for a non-magnetic conductor the assumption can
be made that the permittivity and the permeability are constant in both



time and space and that they are equal to the values of vacuum. With these
assumptions the last equation, equation (15), can be written as

oOH N 0’H

T ey
ot T o
This equation has one extra term in comparison with equation (5), that
term can be expanded to

V2H = o(t) — (Vo) x E. (16)

1 1 oD
E = ~7)=(V —|VxH-—]). 17
(Vo) x B= (Vo) x (1) = (Vo) x (7 (vx#-2)).  an
If, in equation (16), only a time dependent conductivity is considered the
result is the equation

oOH 0’H

If again the effects of displacement current contribution is neglected in the
equations (16) and (18) the result is

V’H = o(t),uaa—I;I — (Vo) x (%(V X H)) (19)

and

9 o0H

V°H = o(t)p 5

Equation (20) is quite straight forward, it just adds the time dependence
and nothing more. Equation (19) on the other hand needs more attention.
The second term can, in cylyndrical coordinates and via cylinder symmetry,

be expanded to the following

(20)

1 1 (8H, Hy\ 4
;(VXH)_G(8T+T>0 (21)

and then, in cylyndrical coordinates and via cylinder symmetry,

0o
= — 5, 22
Vo Brr (22)
Combined with equation (19), equation (21) and (22) gives,
0?Hy 10Hy Hy 100 (0Hp Hy _ 0Hy (23)
or:2 " r or r2  odr \ Or r )" F e

The three equations (7), (8) and (9) are linear differential equations and
as such they are numerically solvable by standard methods. The equation
(23) on the other hand is non-linear, since it depends on the temperature,
which in turn depends on H. This means that a numerical solution requires
a more advanced algorithm.



2.2 Thermal distribution

As current flows in a conductor the conductor will heat up and the heat
will spread out inside the conductor. One problem to solve is how fast the
heat spreads inside the conductor. Can the temperature in the conductor be
viewed as uniformly distributed? The spread of heat inside the conductor
is described by the heat equation

oT kh

— = kV2T 4 .

at VTN
Where £ is a source of heat and « = CL, where A is thermal conductivity,

cp specific heat capacity and p density.p In cylindrical coordinates and with
the use of symmetry equation (24) becomes.

oT 10 oT Kkh

oT (62T 10T h)
=K .

(24)

This expands to

o "\a trar Ty (26)

The boundary conditions is of Neuman type ie. %—f =0atr=aandr=0.

For the edge of the conductor this is motivated by neglecting heat transfer to
the surroundings by radiation or conduction and in the center by symmetry.

To get some sort of idea of how fast the thermal conduction inside the
conductor is, this equation has to be solved. The solution will be calculated
primarily for copper. Equation (26) is a linear partial differential equation
and can be solved with standard numerical methods or quite often even
analytically.

2.3 Combining the current and thermal distributions

Finding the relation between the heating effect of the current, the thermal
effect on the electric conductivity and the temperature, it is necessary to
calculate the thermal and current distributions at work inside the same
system.

The relation between electric resistivity and conductivity is

1
P=7 (27)

and .
o (28)

 po(1+a(T - Ty))
Here pg is the electric resistivity at room temperature and « is the temper-
ature coefficient of the material of the conductor. Now equation (20) can be



written as

1 OH
po(1+ a(T(t) —To) " ot

Equation (23) can also be rewritten, the result is as follows

V’H =

0°Hy 10Hy Hy
or? r Or r2

ool + (T (t) — To)) 2

or (Po(l —I—oz(Jl“(t) —TO))> (8;7{9 T ?) = (30)

1 O0Hy
po(l+ a(T@) —To)" ot -

At the same time the heat equation for the temperature distribution 7' of
the conductor is, with added heating from current flowing in the conductor,
-2

h is L. This gives )
oT KJ
— =KV°T :
AT

Here is o(t) defined as in equations (27) and (28). Expanding this according

to equation (26) gives the following result

(31)

or o’T N 10T 3%po(1+ (T — Typ))
—_— K —_— _—— .
ot or?  ror A

Equation (31) is a non-linear differential equation, which is hard to solve

numerically, but we will propose a number of methods to get around that
to get a close approximation.

(32)

2.4 Material and parameters

This section covers the material primarily studied, copper, and the parame-
ters connected to it. The numerical values of the properties are taken from
[2], chapter T-1.1 and T-2.1 .

T = 1356 K] melting temperature
T, = 2855 K] vaporizing temperature
a=4.33%10"% [1/K]  Temperature coefficient
cp =385 [ J / kg K] Specific heat capacity
A =400 [W / m K] Thermal conductivity

I =205 103 [J / kg] Heat of fusion

d=896%10> [kg/m® density
00 =>5961%107 [1/Qm] Conductivity at room temperature



3 Numerical implementation

This section will be an application of the formulas derived in the earlier
sections. It contains the same division in three subsections. One section
for the current distribution, one section for the thermal distribution and
one section for the combination of these two properties. Throughout this
section the following definitions will be used.

H [A/m]  Magnetic field strength (magnetic intensity), 6-wise
T (K] Temperature

D, F Difference matrices

J [A/m?] Current density, z-wise

N number of points in the radius, numbered from 1 to N
n Time step index

1 Radius index

a [m] total radius of conductor

T [m] present radius

h [m] Ar

k [s] At

3.1 Current distribution
3.1.1 Numerical scheme 1

To find the current distribution a partial differential equation must be solved.
Starting with equation (6), where o constant in time and space will simplify

the problem.
< > T n+l
‘ .

T

Rt & Ri & Rin
Figure 1: The difference scheme in Magnetic field calculation.

For the solving of the current distribution in time and space numerically
a backward difference scheme is chosen. The scheme implemented in this
section is a standard backward difference scheme, illustrated in figure 1, the
advantage of this scheme over any forward difference scheme is that it is



always stable. This difference scheme results in the following matrix

[+l —(1+2) 0
2
D= ~(1-g) et —(1+3) (33)
0 —(1—2L) ct+ by

where c = 2+ %2 The matrix D is a tri-diagonal matrix with as many rows
as the spatial resolution, N. The boundary conditions for the difference
scheme given by equation (8) and the fact that in the centre of a cylindrical
conductor the magnetic field is zero. Then there is the system DH,,; = H,
to solve where H is a vector of the magnetic field strength on different
distances from the centre of the conductor. The values at the edges, where
the radius r is either equal to 0 or a, are already known. The value at r is
0, because there is no enclosed current so the magnetic field must be 0.

The current density in the z-direction is then calculated with equation
(9) approximated with finite differences,

Hiyi —Hi | H;
Ji = oh + o (34)

For r = 0 the limit » — 0 is used,

ji= 2—3H1 + 4Hy — Hjy
! 2h

3.1.2 Numerical result 1

Starting with the total magnetic field equal to zero and then changing the
total field at the outer edge yields an estimation of the field distribution
inside the conductor.

To get an estimation of how large the error in this estimation is, it has to
be compared to an analytically deduced solution for an harmonic current.
This far in the numerical calculations there is an estimation error in the
range of 1%. This error seems to be quite small, but the true effects on
thermal distribution and electric conductivity are not known.

One way to decrease this error is to increase the resolution in time.
The above implemented scheme has a truncation error of the order O(k +
h?). Where k is the time step and h is the spatial step. So increasing
the resolution in time would only decrease the error linearly. By using

10



another difference scheme the truncation error can be lowered to the order
of O(k? + h?). The difference scheme now looks like figure 2 and is called a
Crank-Nicolson difference scheme.

O—O Q‘Tm
O/g\O I,

Rt & Ri & R+

Figure 2: The improved difference scheme in the Magnetic field calculation.

3.1.3 Numerical Scheme 2

The numerical method used for solving equation (7) and (23) is the finite
differences method with the Crank-Nicolson scheme, illustrated in figure
2. The idea behind Crank-Nicolson is that for each point that is to be
calculated, the neighbouring points in both the new time step and old step
are used to approximate spatial derivatives. Since the solution of points
in the new time step are unknown the method is implicit which requires
that a system of equations is solved in each time step. The advantages of
this scheme are that it is unconditionally stable and has truncation error
of O(k% + h?). The equation for Hy in spatial point i and time point n +
1, using equation (7) becomes with the 6 subscript dropped, derivatives
approximated with finite differences, h as spatial step (N spatial points)
and k as time step

H) = 2H M + HIM + H,—-2H'+H!,

1+1
2h? 2h2
1 1
+ Hznfl _ HE—l + Hiy — H, _ Han _H
4hr 4hr 272 272
Ht1 — g
}_ﬂ gl _ 1+h_2+a,uh2 HM 4 l—l—ﬁ gl
2 Ar -1 2r2 k ¢ 2  Ar i+l

1 A h?  ouh® 1 A
= (5g) e (g ) - (3 4p)

At the boundary is the solution known, so the boundary values are not
calculated but they will affect the solution in two different ways. At the

11



centre point, r = 0, the value is zero and will not have an effect on the
solution of the system of equations. However, at the edge of the conductor,
r = a, the H-field is not zero. This is dealt with by modifying the right-hand
side in the last equation. The system of equations can in matrix form be
written as

DH™ — —DH" - 72"“}:”1

with

h n+1 n
(1+ g ) G+ 1)

subtracted from the right-hand side of the last equation due to the boundary
condition at the edge. And the matrix

1 h
1+C§L _§+E 0

1 h
0 —54‘4— 1+CTJ<771

. 2 2
with ¢! = 2’;—2 - ”’fch , as result.

For equation (23) D will be different for each time step, because the
extra term in the equation has parameters that are time dependent. The
system of equations will now be written like

20" uh?H™
k
where the superscripts of D and o state the time step and

1
1+ h 1 9oy QHn+1_|_ 1 doy_y ﬁHn
2 dryy ) \oWt, o 4N Ton o oor 4N

Dn—I—lHn—I—l — _DTLHTL _

subtracted from the right-hand side of the last equation due to the boundary

12



condition at the edge. And the matrix

— n 1l h
l+cy 5+ 4 +d3 0
1 h n 1 h n
D" = s~ 4 —l+d st tq
1 h m )
0 g2 Ay —ltey
(36)
+1 n,p2 np2
. n_ 1 00" p n_ k2 _ atph® alh
with d}' = T —4—7 and ¢! = I i i

3.1.4 Numerical result 2

For error analysis the analytical solution for a time harmonic current has
been used. This can be seen in figure 3. In figure 4 the relative difference
between the numerical and the analytical solutions along the radius is plot-
ted. Where the numbers are the number of points in time and space. The
error tends to decrease by a factor of four when the step length is halved
which is in accordance with the theory of the error for the Crank-Nicolson
scheme. This makes it safe to assume that the implementation of the nu-
merical method is correct.

A

&
i

Wt
(X

0
0

Figure 3: The current density distribution from a harmonic current.
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401\/
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relative error

0 0.2 0.4 0.6 0.8 1
radii (m) x 107

Figure 4: Error of numerical solution for a harmonic current.

3.2 Thermal distribution
3.2.1 Numerical scheme

To find the temperature distribution, equation (32) is solved with the same
method that is used for the current distribution. The boundary condition
here is of neuman type which is modeled by, in the first and last equation,
setting T" 1 = T1 and Ty 1 = Tn+1 respectively. As heat source the average
current density of both time steps (n and n + 1) is used. The system of
equations can then be written as

Frntl _ g _ %Tn _ R2(jntL 4 jm)2
kk 4o\ ’

according to [2] and section 2.4 , the constants for copper are

cp = 385 specific heat capacity
A = 400 thermal conductivity
d = 8.96 x 103 density
A
T d+ Cp

14
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The difference scheme applied for solving the temperature distribution over

time and space results in the following difference matrix

1 matr

i-diagona

The matrix F' is a tr

and to solve equation (26) with the above algorithm some initial temperature

is an example of a solution.

igure 5

F

distribution is needed.

\
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800

600

— 400

O

The temperature diffus

Figure 5

3.2.2 Result

The

tial results suggests that the thermal distribution may be slow enough

ini

to be a factor in the current distribution. The conductor might be heated in
a non-uniform distribution and thus have a non-uniform distributed electri-
cal conductivity. Figure 5 shows the temperature spreading out inside the

conductor, this figure was created with no external heating, i.e. 7 = 0 and
calculated in an environment where the radius is 100 * 10~% m and the total

time is 1 % 10~° seconds. The initial distribution o

80075

based on the formula T, =

1S



3.3 Combining the current and thermal distributions

This section will cover the complete implementation of the numerical im-
plementation of the current distribution problem. To solve the non-linear
equations derived, two different methods were suggested.

One method is to increase the resolution in time for the thermal distri-
bution. And then calculate the thermal distribution twice as many times
as the current distribution or more. The current distribution would then
be calculated on the basis of the last known current distribution, in time
n, and the thermal distribution between time n + 1 and n. The thermal
distribution in time n + 1 would then be calculated based on the thermal
distribution between time n and time n + 1 and the current distribution in
time n + 1.

Another method is to approximate the current distribution by a p-th
degree polynomial and use that as a approximation for calculating the ther-
mal distribution in time step n + 1. The current distribution would then
be calculated on the basis of the approximated thermal distribution in time
step n + 1 and the current distribution in time step n

The method chosen here is the p-th degree polynomial approximation
with p equal to 2. In time step n, approximate the current distribution in the
following time step n + 1 by using a second-degree polynomial approxima-
tion. That allows a calculation of an expected value for the current density.
That approximation is used for calculating the thermal distribution. Then
calculation of the actual current density based on the previous time step n
and the thermal distribution in time step n + 1 is done.

3.3.1 Numerical schemes and why

In this part of connecting the current and thermal distributions, the heating
effect, the changing material properties and the thermal transport are all
implemented.

The calculations are done in the following order:

2h2
1. b=-D"H" — kH‘;“

2. jp=j""2—3j""1 + 357, the polynomial approximation

_ 2h2 R2(jp+5™)?
3. f=—FT" — 27" — 2P0

4. T =F7'f

5 o= WOJL—TO)’ recalculation of o
6 do _ Ti41—0i-1
*ori 2h

7. uppdate D"}

16



8. Hn—|—1 — (Dn—H)—lb

n+1l_ pn+l n+41
H H H;

n+1 _ Hipg r—1

L

The updating of D™*! is done according to (36) because D contains time
dependency. The calculation of the temperature and current distributions
stop when the temperature reaches the vaporisation temperature. The poly-
nomial approximation is done using Lagrange’s interpolation formula. Using
three equally spaced points this yields the approximation in the point 2 in
the list.

3.3.2 Result from the process

For initial testing of this implementation a copper wire with radius 60 % 106
m and a current pulse with top value 3%10% A that has a duration of 0.2x1076
s was used. This input generates a close to uniform distribution of both
temperature and current. For a conductor with large radius the distributions
will look different. This subsection will show how the distribution of current
and temperature changes when different input currents are given. The pulse
given as input has the form

cos(2xm* &) — 1

i(t) = —Io 5

(38)

where At is the desired length of the pulse, and ¢ goes from 0 to At. Iy is
the desired top value. The equation (38) will be used to generate input in
all the following experiments.

Current pulse
3000 T T

2500

2000

<1500

1000

500

0.8 1

Figure 6: The current pulse as input.

The figures 6 and 7 describes in turn the current transient that is the
input to the system, the resulting current density distribution and the re-
sulting temperature distribution. A note about the figures 6 and 7 is that
they describe an implementation of the equations (29) and (32). This im-
plementation lacks some terms that will have a significant impact on the

17
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Figure 7: The resulting current density and temperature distributions.

final distributions in many cases. However this input is not one of the more

extreme cases.

Current density

=

—

o
— .‘

=
e
————

—

S

——
- —
——__——

_—‘—

——=

=

—=

——

‘
s ‘\
it
nn\\\\‘““\\‘\\\“\‘\‘\\\l\“‘“\‘\\““‘u““
i m\\\\ n\\ m‘\‘
i \“m\ \\\ ‘|\\ ‘

\\\ “\l \

current density
o h !
- o v = »v v oo

x
S
5

Temperature

©
=}

~
o

o
=

\\‘“\\\\\\

\‘"

\\\ ‘\\\\‘ “‘\\“‘“‘\ ““\\“
\\\“ n\\\‘ \\ (il

ity T \\‘ \\ i
\\‘“‘“n\‘““ \\\‘\\‘\‘«\‘\«‘“\‘\\‘
\‘\\\ “\‘\ “\‘\‘“‘\\‘.“
it
\l

o
=}

temperature

N
S

30

Figure 8: The resulting current density and temperature distributions, from

equation 30.

The figure 8 is calculated with the same input as figure 7, the current
pulse in figure 6, but an implementation of the equation (30). As it can be
seen, the difference is not very large. The reason to why the figures look
similar, is that the current density is close to uniformly distributed. The
close to uniform distribution means that the extra term in equation (30)
compared to equation (29) gives a contribution that is close to zero. This
in turn means that the results will not differ much. Especially the current
density distribution is almost identical while the temperature distribution

is somewhat more different.

3.3.3 Modeling melting and vaporising

When the temperature in the conductor reaches the melting point it does not
instantly melt. The melting process require some additional energy. This
will make the temperature remain at the melting temperature for some time



while the necessary energy to melt the conductor is absorbed. The same also
goes for the transition to gas form.

In the algorithm this is modeled by keeping track of how much material
that are melted in each point and if the temperature rises above the melt-
ing point and the point is not completly melted, the excess temperature is
converted to heat and used to melt more of the point instead of heating
the point over the melting point. The same goes for the opposite process.
If vaporising temperature is reached the algorithm stops since it can not
be considered to have much accuracy any more and the conducting wire
probably is about to explode.

4 Final results

One of the results of the tests, is that for some of the inputs the current is
close to uniformly distributed. For the time-intervals and the current pulses
primarily studied, it can also be seen that the temperature does give some
difference in how the current is distributed, however not much. One of the
reasons for this result, is that the temperature is very dependent on the
heating from the current flowing through the conductor. When the current
is close to uniformly distributed so is the heating effect and the temperature
becomes almost uniformly distributed as well.

Current pulse
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Figure 9: The current pulse.

This is valid for current transients with top value of 2«10% A and duration
of about 0.2 * 1075 s and radius of 50 * 10~ m in figure 9 that is given by
the equation (38). The result of these parameters is shown in figure 10.

Increasing the radius of the conductor, the current distribution becomes
different, more current flows close to the surface. The heating effect of the
current makes the conductor heat up on the surface faster than closer to the
centre of the conductor. In figure 11 the current pulse is the same as the
current pulse in figure 6, but the resulting current and heat distributions
are different.
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Figure 10: Current density and temperature distributions.
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Figure 11: Current density and temperature distributions.

Figure 11 describes what happens to the temperature and current dis-
tributions for a conductor with radius 100 * 10~ % m but otherwise the same
conditions as before.
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Figure 12: The original current pulse.
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Figure 13: The actual conducted current and resulting current density.
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Figure 14: The average temperature and the temperature distribution.
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What also was tested was a conductor with radius 60 * 107 m and
a top current at 1.6 *+ 103 A and a pulse length of about 15 x 1076 s, this
showed that the current and temperature was distributed in a close to perfect
uniform distribution. This can be seen in figure 13 and figure 14. The final
average temperature is close to 2600 °C which is almost exactly the boiling
temperature at 2855 °K for copper. The stop at the melting temperature can
also be seen in the figure. As the calculations stop at the limit temperature,
which is set to the boiling temperature, we can then draw the conclusion
that any non-uniformities in the current distribution can be neglected in
this case.

5 Conclusions

What has been found is that the distribution of the current and temperature
might not be relevant in conductors with a radius of 60 * 107® m and above.
This is when a gaussian current pulse of top value less than 2 x 10 A and
duration shorter than 15 % 10—6 s is applied. The current and temperature
becomes almost perfectly uniformly distributed. To get any other distribu-
tion the duration of the pulse must be about 10 times shorter or the radius
must be smaller. The only effect of increasing the top value of the pulse is
that the temperature rises faster and the effect of increasing the radius is
that the temperature rises slower. Another conclusion is that the distribu-
tion of the temperature is relevant, at least in those cases where there is a
non-uniform current distribution. The speed with which the thermal energy
spreads in copper is not large enough to estimate to infinity and it is not
slow enough to estimate to zero.
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A Origin of the report

This report was written as an assignment in the course “Tekniskt-veten-
skapliga datorberdkningar” given on the department of scientific comput-
ing, Uppsala University, Sweden, spring term of 2003. The assignment was
initiated by Anders Larsson at FOI, the Swedish Defence Research Agency.
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